Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (139)

Search Parameters:
Keywords = cysteine labelling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1585 KB  
Article
Affinity- and Format-Dependent Pharmacokinetics of 89Zr-Labeled Albumin-Binding VHH Constructs
by Simon Leekens, Peter Casteels, Tom Van Bogaert, Pieter Deschaght, Veronique De Brabandere, Christopher Cawthorne, Guy Bormans and Frederik Cleeren
Pharmaceuticals 2026, 19(1), 120; https://doi.org/10.3390/ph19010120 - 9 Jan 2026
Viewed by 237
Abstract
Background/Objectives: NANOBODY® molecules (VHHs) are attractive vectors for radiopharmaceuticals due to their small size and high target affinity, but rapid clearance and pronounced kidney retention limit their therapeutic applicability. Binding to serum albumin is a widely used strategy to prolong circulation, yet [...] Read more.
Background/Objectives: NANOBODY® molecules (VHHs) are attractive vectors for radiopharmaceuticals due to their small size and high target affinity, but rapid clearance and pronounced kidney retention limit their therapeutic applicability. Binding to serum albumin is a widely used strategy to prolong circulation, yet the respective contributions of albumin-binding affinity and molecular format remain insufficiently defined. This study aimed to systematically evaluate how affinity and valency modulate VHH pharmacokinetics. Methods: Four monovalent albumin-binding VHHs spanning nanomolar to micromolar affinities and two bivalent constructs were engineered, generated by fusing an albumin-binding VHH to an irrelevant non-binding VHH. All constructs incorporated a site-specific cysteine for DFO* conjugation, enabling uniform zirconium-89 labeling with high radiochemical purity. Pharmacokinetics were assessed in healthy mice using serial blood sampling and positron emission tomography. Blood and kidney exposure were quantified by non-compartmental analysis. Results: All albumin-binding constructs showed increased systemic exposure and reduced kidney uptake relative to a non-binding control. Nanomolar-affinity binders reached maximal exposure, and further affinity increases (KD < ~100 nM) did not improve pharmacokinetics, suggesting a threshold. The micromolar binder showed intermediate exposure but still reduced renal retention compared with control. Valency effects were affinity-dependent. They were negligible at high affinity but pronounced at low affinity, where bivalency reduced systemic exposure and increased kidney uptake toward control levels. Conclusions: Albumin binding enables tuning of VHH pharmacokinetics in an affinity-dependent manner. Above an apparent affinity threshold, pharmacokinetics become format independent, whereas below this threshold, molecular format substantially influences systemic and renal disposition. Full article
(This article belongs to the Special Issue Advances in Theranostic Radiopharmaceuticals)
Show Figures

Graphical abstract

27 pages, 3010 KB  
Review
Targeting the Reactive Proteome: Recent Advances in Activity-Based Protein Profiling and Probe Design
by Yuan-Fei Zhou, Ling Zhang, Zhuoyi L. Niu and Zhipeng A. Wang
Biomolecules 2025, 15(12), 1699; https://doi.org/10.3390/biom15121699 - 5 Dec 2025
Viewed by 1627
Abstract
Activity-based protein profiling (ABPP) has emerged as a powerful chemical proteomics approach for profiling active amino acid residues, mapping functional proteins, and guiding covalent drug development in complex biological systems. Recent methodological advances have produced several novel formats, including tandem orthogonal proteolysis-ABPP (TOP-ABPP), [...] Read more.
Activity-based protein profiling (ABPP) has emerged as a powerful chemical proteomics approach for profiling active amino acid residues, mapping functional proteins, and guiding covalent drug development in complex biological systems. Recent methodological advances have produced several novel formats, including tandem orthogonal proteolysis-ABPP (TOP-ABPP), isotopic tandem orthogonal proteolysis-ABPP (IsoTOP-ABPP), and competitive IsoTOP-ABPP, enabling broader target identification and quantitative analysis for varied experimental purposes. In parallel, chemical probe design has evolved to selectively target specific amino acid residues, such as cysteine (Cys), lysine (Lys), and histidine (His), and to incorporate photoaffinity labeling (PAL) functionalities for capturing transient or weak protein-ligand interactions. Additionally, the integration of cleavable linkers with diverse cleavage mechanisms, including acid/base-mediated, redox-mediated, and photo irradiation mechanisms, has enhanced probe versatility and downstream analytical workflows. This review summarizes recent advances in ABPP methodologies and the design of activity-based probes and PAL probes, emphasizing their implications for future work in chemical biology. Full article
Show Figures

Figure 1

15 pages, 1419 KB  
Article
Identification and Quantitation of 14C-Labeled Catechol Metabolites in Rat Plasma After Intranasal Instillation of Smoldering Eucalyptus Wood Smoke Extract
by David Baliu-Rodriguez, Dorothy J. You, Michael A. Malfatti, Esther A. Ubick, Yong Ho Kim and Bruce A. Buchholz
Methods Protoc. 2025, 8(6), 147; https://doi.org/10.3390/mps8060147 - 4 Dec 2025
Viewed by 454
Abstract
The increasing frequency, duration, and intensity of wildfires over the past decade have raised significant concerns about widespread exposure to wildfire smoke. Inhalation of wildfire smoke poses a substantial risk to human health, with epidemiological studies linking exposure to cardiovascular, respiratory, and neurological [...] Read more.
The increasing frequency, duration, and intensity of wildfires over the past decade have raised significant concerns about widespread exposure to wildfire smoke. Inhalation of wildfire smoke poses a substantial risk to human health, with epidemiological studies linking exposure to cardiovascular, respiratory, and neurological dysfunction. Wildfire smoke contains hundreds of chemical compounds across diverse classes, with concentrations varying by fuel type and combustion conditions. Phenolic compounds are prominent constituents of wood smoke, and catechol is especially abundant under smoldering conditions that produce dense smoke. In this study, 14C-labeled catechol was spiked into smoldering eucalyptus wood smoke extract (WSE) and administered to rats via intranasal instillation. Plasma was collected at 5 min and 2 h post-exposure. Samples were analyzed using parallel accelerator and molecular mass spectrometry (PAMMS). Major catechol-derived metabolites identified included benzene oxide, catechol-cysteine conjugate, and catechol-glutamine conjugate; the parent compound was not detected. These results indicate that inhaled catechol in wood smoke is quickly metabolized upon entry into circulation. PAMMS enabled both identification and relative quantification of circulating catechol metabolites, demonstrating feasibility for biomarker discovery and exposure assessment. Full article
(This article belongs to the Section Biochemical and Chemical Analysis & Synthesis)
Show Figures

Graphical abstract

16 pages, 2524 KB  
Article
Synthesis and Evaluation of Radiogallium-Labeled Peptide Probes for In Vivo Imaging of Legumain Activity
by Takeshi Fuchigami, Kohnosuke Itagaki, Sakura Yoshida, Morio Nakayama, Masayuki Munekane and Kazuma Ogawa
Molecules 2025, 30(23), 4527; https://doi.org/10.3390/molecules30234527 - 24 Nov 2025
Viewed by 582
Abstract
Legumain (LGMN), a lysosomal cysteine protease, is crucial for tumor progression, invasion, and metastasis, making it a promising target for cancer imaging and therapy. This study developed novel 67Ga-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA)-conjugated LGMN-cleavable peptide probes ([67Ga]Ga-NOTA-LCPs) composed of polyarginine and [...] Read more.
Legumain (LGMN), a lysosomal cysteine protease, is crucial for tumor progression, invasion, and metastasis, making it a promising target for cancer imaging and therapy. This study developed novel 67Ga-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA)-conjugated LGMN-cleavable peptide probes ([67Ga]Ga-NOTA-LCPs) composed of polyarginine and polyglutamic acid sequences linked by LGMN-cleavable sites for nuclear medicine imaging of LGMN activity. The probes were synthesized via fluorenylmethoxycarbonyl solid-phase peptide synthesis and radiolabeled in high radiochemical yields. In vitro assays with HCT116 cells showed significantly higher uptake of [67Ga]Ga-NOTA-LCPs compared to non-cleavable controls, confirming efficient cleavage and cellular uptake. In vivo studies in tumor-bearing mice revealed rapid renal clearance, low non-specific binding, and favorable tumor-to-blood ratios, particularly for [67Ga]Ga-NOTA-LCP-1. These results demonstrate the potential of [67Ga]Ga-NOTA-LCPs as effective LGMN-responsive imaging agents, with further optimization needed to improve tumor specificity and reduce off-target accumulation. Full article
(This article belongs to the Special Issue Advance in Radiochemistry, 2nd Edition)
Show Figures

Figure 1

16 pages, 3041 KB  
Article
Rigor & Reproducibility: pH Adjustments of Papain with L-Cysteine Dissociation Solutions and Cell Media Using Phenol Red Spectrophotometry
by Joshua M. Hilner, Allison Turner, Calissa Vollmar-Zygarlenski and Larry J. Millet
Biosensors 2025, 15(11), 727; https://doi.org/10.3390/bios15110727 - 1 Nov 2025
Viewed by 1113
Abstract
Phenol red is a widely used, low-cost, label-free colorimetric pH indicator that bridges traditional colorimetric assays with modern quantitative imaging and cell-based screening platforms. Its protonation-dependent absorbance shift (430–560 nm) allows for the real-time monitoring of extracellular acidification, which indirectly reflects cellular metabolism, [...] Read more.
Phenol red is a widely used, low-cost, label-free colorimetric pH indicator that bridges traditional colorimetric assays with modern quantitative imaging and cell-based screening platforms. Its protonation-dependent absorbance shift (430–560 nm) allows for the real-time monitoring of extracellular acidification, which indirectly reflects cellular metabolism, growth, and respiration. Although phenol red lacks the molecular specificity of genetically encoded or fluorogenic biosensors, it remains useful in systems where pH changes are effective proxies for physiological processes. Existing tissue digestion protocols often overlook key parameters, especially pH control and enzyme cofactor use. This study presents a straightforward, spectrophotometric method to monitor and adjust the pH of low-volume (1 mL) buffered enzymatic dissociation media using phenol red and a plate reader. We titrated dissociation solutions to physiological pH (~7.4) using spectrophotometric pH measurements validated against conventional glass pH probe readings, confirming method reliability. Accurate pH assessment is critical for isolating viable primary cells for downstream applications such as tissue engineering, single-cell omics, and neurophysiological assays. We highlight that papain-based dissociation media supplemented with L-cysteine can be acidic (pH 6.6) if unadjusted, compromising cell viability. This accessible approach enhances reproducibility by promoting pH documentation concerning dissociation conditions that contribute to advancing consistency in biomedical, cellular, neuronal, and tissue engineering research. Full article
Show Figures

Graphical abstract

17 pages, 1397 KB  
Article
Activity-Based Profiling of Papain-like Cysteine Proteases During Late-Stage Leaf Senescence in Barley
by Igor A. Schepetkin and Andreas M. Fischer
Plants 2025, 14(20), 3132; https://doi.org/10.3390/plants14203132 - 11 Oct 2025
Viewed by 939
Abstract
Leaf senescence is a developmental process that allows nutrients to be remobilized and transported to sink organs. Previously, papain-like cysteine proteases (PLCPs) have been found to be highly expressed during leaf senescence in different plant species. In this study, we analyzed active PLCPs [...] Read more.
Leaf senescence is a developmental process that allows nutrients to be remobilized and transported to sink organs. Previously, papain-like cysteine proteases (PLCPs) have been found to be highly expressed during leaf senescence in different plant species. In this study, we analyzed active PLCPs in barley (Hordeum vulgare L.) leaves during the terminal stage of natural senescence. Anion exchange chromatography of protein extracts from barley leaves, harvested six weeks after anthesis, followed by activity assays using the substrates Z-FR-AMC and Z-RR-AMC, revealed a single prominent peak corresponding to active PLCPs. This hydrolytic activity was completely inhibited by E-64, a potent and irreversible inhibitor of cysteine proteases. Fractions enriched for PLCP activity were affinity-labeled with DCG-04 and subjected to SDS-PAGE fractionation, separating two major bands at 43 and 38 kDa. These bands were analyzed using tandem mass spectrometry, allowing the identification of eleven PLCPs. Identified enzymes belong to eight PLCP subfamilies, including CTB/cathepsin B-like (HvPap-19 and -20), RD19/cathepsin F-like (HvPap-1), ALP/cathepsin H-like (HvPap-12 or aleurain), SAG12/cathepsin L-like A (HvPap-17), CEP/cathepsin L-like B (HvPap-14), RD21/cathepsin L-like D (HvPap-6 and -7), cathepsin L-like E (HvPap-13 and -16), and XBCP3 (HvPap-8). Among the identified PLCPs, HvPap-6 was the most abundant. Peptides corresponding to HvPap-6 were identified in both the 43 kDa and 38 kDa bands in approximately the same quantity based on total spectral count. Thus, our results indicate that two active HvPap-6 isoforms can be isolated from barley leaves at late senescence. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

14 pages, 6958 KB  
Article
A pH-Responsive Liquid Crystal-Based Sensing Platform for the Detection of Biothiols
by Xianghao Meng, Ronghua Zhang, Xinfeng Dong, Zhongxing Wang and Li Yu
Chemosensors 2025, 13(8), 291; https://doi.org/10.3390/chemosensors13080291 - 6 Aug 2025
Cited by 1 | Viewed by 907
Abstract
Biothiols, including cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), are crucial for physiological regulation and their imbalance poses severe health risks. Herein, we developed a pH-responsive liquid crystal (LC)-based sensing platform for detection of biothiols by doping 4-n-pentylbiphenyl-4-carboxylic acid (PBA) into [...] Read more.
Biothiols, including cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), are crucial for physiological regulation and their imbalance poses severe health risks. Herein, we developed a pH-responsive liquid crystal (LC)-based sensing platform for detection of biothiols by doping 4-n-pentylbiphenyl-4-carboxylic acid (PBA) into 4-n-pentyl-4-cyanobiphenyl (5CB). Urease catalyzed urea hydrolysis to produce OH, triggering the deprotonation of PBA, thereby inducing a vertical alignment of LC molecules at the interface corresponding to dark optical appearances. Heavy metal ions (e.g., Hg2+) could inhibit urease activity, under which condition LC presents bright optical images and LC molecules maintain a state of tilted arrangement. However, biothiols competitively bind to Hg2+, the activity of urease is maintained which enables the occurrence of urea hydrolysis. This case triggers LC molecules to align in a vertical orientation, resulting in bright optical images. This pH-driven reorientation of LCs provides a visual readout (bright-to-dark transition) correlated with biothiol concentration. The detection limits of Cys/Hcy and GSH for the PBA-doped LC platform are 0.1 μM and 0.5 μM, respectively. Overall, this study provides a simple, label-free and low-cost strategy that has a broad application prospect for the detection of biothiols. Full article
(This article belongs to the Special Issue Feature Papers on Luminescent Sensing (Second Edition))
Show Figures

Figure 1

24 pages, 2919 KB  
Article
The Identification of Proteolytic Substrates of Calpain-5 with N-Terminomics
by Jozsef Gal, Antoine Dufour, Daniel Young, Eddy S. Yang and James W. Geddes
Int. J. Mol. Sci. 2025, 26(13), 6459; https://doi.org/10.3390/ijms26136459 - 4 Jul 2025
Cited by 1 | Viewed by 1358
Abstract
Calpain-5/CAPN5 is a calcium-activated, non-lysosomal cysteine (thiol) protease. The substrate repertoire of CAPN5 is not known. Calpains catalyze limited proteolysis of their substrates, generating neo-N-termini that correspond to internal residues of their nascent substrate proteins. To identify such neo-N-termini generated by CAPN5, we [...] Read more.
Calpain-5/CAPN5 is a calcium-activated, non-lysosomal cysteine (thiol) protease. The substrate repertoire of CAPN5 is not known. Calpains catalyze limited proteolysis of their substrates, generating neo-N-termini that correspond to internal residues of their nascent substrate proteins. To identify such neo-N-termini generated by CAPN5, we employed an N-terminomics approach called TAILS (Terminal amine isotopic labeling of substrates) to quantitatively compare the N-terminal peptides detected in parental and CAPN5-deficient SH-SY5Y neuroblastoma cells. Thirty neo-N-termini corresponding to 29 protein groups and 24 unique proteins were detected to be depleted in the CAPN5−/− cells. A subset of the identified putative substrates was further studied with CAPN5 co-immunoprecipitation, in vitro calcium-induced CAPN5 proteolysis assay, and their cellular fragmentation patterns were compared in parental and CAPN5-deficient SH-SY5Y cells. Here, we provide evidence for CAPN5-mediated proteolysis of the synaptic proteins DLGAP4, IQSEC1 and MPDZ, the neurodegeneration-related EWS, hnRNPU, TFG and UGP2, the DNA replication regulator MCM3, and the neuronal differentiation regulator LMTK1. Our data provide new relevance for neovascular inflammatory vitreoretinopathy (NIV), a progressive eye disease caused by pathogenic mutations in CAPN5. Data are available via ProteomeXchange with identifier PXD064313. Full article
Show Figures

Figure 1

14 pages, 4695 KB  
Article
Effect of Lipopolysaccharide (LPS) on Oxidative Stress and Apoptosis in Immune Tissues from Schizothorax prenanti
by Jiqin Huang, Wei Jiang, Hongying Ma, Han Zhang, Hu Zhao, Qijun Wang and Jianlu Zhang
Animals 2025, 15(9), 1298; https://doi.org/10.3390/ani15091298 - 30 Apr 2025
Cited by 1 | Viewed by 1546
Abstract
Schizothorax prenanti is an economically important cold-water fish in China. Lipopolysaccharide (LPS) can induce an immune response in S. prenanti; however, little is known about the effects of LPS on oxidative stress (OS) and apoptosis in S. prenanti. In this study, [...] Read more.
Schizothorax prenanti is an economically important cold-water fish in China. Lipopolysaccharide (LPS) can induce an immune response in S. prenanti; however, little is known about the effects of LPS on oxidative stress (OS) and apoptosis in S. prenanti. In this study, S. prenanti fish were stimulated with LPS at a dose of 10 mg/kg of body weight. After 0 h, 12 h and 24 h, the tissue samples were collected. The OS- and apoptosis-related genes and enzymatic activities in the liver, head kidney (HK), and spleen of S. prenanti were analyzed by a two-way repeated-measures analysis of variance (ANOVA). Hematoxylin and eosin and terminal transferase uridyl nick end labeling staining were also performed. In S. prenanti, LPS administration downregulated the catalase (CAT) and B-cell lymphoma/Leukemia-2 (Bcl-2) expression levels, and upregulated BCL2-associated X (Bax) and cysteine-aspartic-specific protease-3 (caspase-3) expression levels. Meanwhile, superoxide dismutase and CAT enzymatic activities were inhibited and malondialdehyde (MDA) content was increased by LPS treatment. Additionally, LPS treatment induced OS damage and apoptosis in tissue sections. These results indicated that apoptosis in the liver, HK, and spleen of LPS-administered S. prenanti may be mediated by OS via the mitochondrial apoptotic signaling pathway. Our findings are expected to contribute to a better understanding of the responses of different tissues to bacterial challenges. In addition, we can increase the tolerance of fish to the OS through dietary manipulation in the future. Full article
Show Figures

Figure 1

20 pages, 6781 KB  
Article
A Novel Cystatin Gene from Sea Cucumber (Apostichopus japonicus): Characterization and Comparative Expression with Cathepsin L During Early Stage of Hypoxic Exposure-Induced Autolysis
by Siyu Yao, Rui Zhang, Siyuan Ma, Ting Zhao, Qinhao Liu, Lin Zhu, Chang Liu, Liming Sun and Ming Du
Foods 2025, 14(8), 1404; https://doi.org/10.3390/foods14081404 - 18 Apr 2025
Viewed by 990
Abstract
Autolysis in sea cucumber has long been a threat to raw material storage and product processing. The involvement of endogenous cysteine protease in sea cucumber autolysis has been proved extendedly. However, as an essential part of the mechanism of autolysis, the role of [...] Read more.
Autolysis in sea cucumber has long been a threat to raw material storage and product processing. The involvement of endogenous cysteine protease in sea cucumber autolysis has been proved extendedly. However, as an essential part of the mechanism of autolysis, the role of its endogenous inhibitor has seldom been reported. To investigate the role of cysteine protease inhibitors in the early stage of hypoxic exposure-induced autolysis, a novel cystatin gene (SjCyt) belonging to the subfamily of cystatin C was cloned from Apostichopus japonicus by homology cloning and rapid amplification of cDNA ends. The affinity of SjCyt to cysteine protease (cathepsin L and cathepsin B) was investigated by molecular dynamics simulations. Pertinent metrics, including the root mean square deviation, radius of gyration, Gibbs free energy, binding free energy, and bond-forming frequency, showed that the conformation of SjCyt–SjCL was more stable and confirmed a stronger interaction of SjCyt with cathepsin L than with cathepsin B. Thus, cathepsin L (SjCL) was selected to further study its co-expression with SjCyt over a period of 9 h at an early stage of hypoxic exposure. Quantitative RT-qPCR revealed a ubiquitous transcriptional profile of SjCyt and SjCL in all the tested tissues, with the highest abundance in the dorsal epidermis, tube feet, and coelomocytes. Temporal transcription of them showed an overall up-regulated co-expression in the dorsal epidermis and tube feet. However, up-regulated SjCyt and down-regulated SjCL were observed at the protein level. Further immunofluorescence double labeling also found increased staining of SjCyt and SjCyt–SjCL complexes and decreased SjCL. Additionally, recombinant SjCyt was prepared and demonstrated an evident autolysis-inhibiting effect. The results of this study indicated that the anti-autolytic regulation of SjCyt functions at the very early stage of hypoxic exposure, exerting effects at both the transcriptional and translational levels. The above finding offers new insights into the mechanisms of sea cucumber autolysis. Full article
(This article belongs to the Special Issue Mechanism and Control of Quality Changes in Aquatic Products)
Show Figures

Figure 1

27 pages, 7555 KB  
Article
Cylindracin, a Fruiting Body-Specific Protein of Cyclocybe cylindracea, Represses the Egg-Laying and Development of Caenorhabditis elegans and Drosophila melanogaster
by Yamato Kuratani, Akira Matsumoto, Ayako Shigenaga, Koji Miyahara, Keisuke Ekino, Noriaki Saigusa, Hiroto Ohta, Makoto Iwata and Shoji Ando
Toxins 2025, 17(3), 118; https://doi.org/10.3390/toxins17030118 - 1 Mar 2025
Viewed by 1549
Abstract
Mushrooms are a valuable source of bioactive compounds to develop efficient, secure medicines and environmentally friendly agrochemicals. Cylindracin is a small cysteine-rich protein that is specifically expressed in the immature fruiting body of the edible mushroom Cyclocybe cylindracea. Recombinant protein (rCYL), comprising [...] Read more.
Mushrooms are a valuable source of bioactive compounds to develop efficient, secure medicines and environmentally friendly agrochemicals. Cylindracin is a small cysteine-rich protein that is specifically expressed in the immature fruiting body of the edible mushroom Cyclocybe cylindracea. Recombinant protein (rCYL), comprising the C-terminal cysteine-rich domain of cylindracin, inhibits the hyphal growth and conidiogenesis of filamentous fungi. Here, we show that rCYL represses the egg-laying and development of Caenorhabditis elegans and Drosophila melanogaster. The feeding of rCYL at 16 µM reduced the body volume of C. elegans larvae to approximately 60% when compared to the control. At the same concentration, rCYL repressed the frequencies of pupation and emergence of D. melanogaster to 74% and 40%, respectively, when compared to the control. In virgin adult flies, feeding of rCYL at 47 µM substantially repressed the frequency of egg-laying, and the pupation and emergence of the next generation, especially for females. These inhibitory effects of rCYL gradually disappeared after ceasing the ingestion of rCYL. The use of fluorescence-labeled rCYL revealed that the protein accumulates specifically at the pharynx cuticles of C. elegans. In D. melanogaster, fluorescence-labeled rCYL was detected primarily in the midguts and to a lesser degree in the hindguts, ovaries, testes, and malpighian tubules. rCYL was stable against trypsin, chymotrypsin, and pepsin, whereas it did not inhibit proteolytic and glycolytic enzymes in vitro. rCYL oligomerized and formed amyloid-like aggregates through the binding to heparin and heparan sulfate in vitro. These results suggest that rCYL has potential as a new biocontrol agent against pests. Full article
Show Figures

Figure 1

15 pages, 4862 KB  
Article
Enhanced Site-Specific Fluorescent Labeling of Membrane Proteins Using Native Nanodiscs
by Bence Ezsias, Felix Wolkenstein, Nikolaus Goessweiner-Mohr, Rohit Yadav, Christine Siligan, Sandra Posch, Andreas Horner, Carolyn Vargas, Sandro Keller and Peter Pohl
Biomolecules 2025, 15(2), 254; https://doi.org/10.3390/biom15020254 - 10 Feb 2025
Cited by 3 | Viewed by 2677
Abstract
Fluorescent labeling of membrane proteins is essential for exploring their functions, signaling pathways, interaction partners, and structural dynamics. Organic fluorophores are commonly used for this purpose due to their favorable photophysical properties and photostability. However, a persistent challenge is the inaccessibility of the [...] Read more.
Fluorescent labeling of membrane proteins is essential for exploring their functions, signaling pathways, interaction partners, and structural dynamics. Organic fluorophores are commonly used for this purpose due to their favorable photophysical properties and photostability. However, a persistent challenge is the inaccessibility of the surface-exposed cysteine residues required for site-specific labeling, as these residues often become sequestered within detergent micelles during protein extraction. To address this limitation, we developed an approach based on polymer-encapsulated nanodiscs that preserves the protein’s native-like lipid-bilayer environment while ensuring the accessibility of surface-exposed cysteine residues. In this method, His-tagged proteins embedded in native nanodiscs are retained on a nickel affinity column, allowing for simultaneous purification and labeling by adding fluorescent dyes. This versatile technique was demonstrated with two challenging-to-label membrane proteins, the potassium channel KvAP and the urea channel HpUreI, for which detergent-based labeling had failed. This opens new possibilities for studying a wide range of fluorescently labeled membrane proteins in near-native states, advancing applications in biophysics, structural biology, and drug discovery. Full article
(This article belongs to the Special Issue Advances in Cellular Biophysics: Transport and Mechanics)
Show Figures

Figure 1

16 pages, 10440 KB  
Article
Gintonin-Enriched Panax ginseng Extract Induces Apoptosis in Human Melanoma Cells by Causing Cell Cycle Arrest and Activating Caspases
by Su-Hyun Lee, Gyun-Seok Park, Rami Lee, Seongwoo Hong, Sumin Han, Yoon-Mi Lee, Seung-Yeol Nah, Sung-Gu Han and Jae-Wook Oh
Foods 2025, 14(3), 381; https://doi.org/10.3390/foods14030381 - 24 Jan 2025
Cited by 3 | Viewed by 2141
Abstract
Gintonin, a non-saponin glycolipoprotein from Panax ginseng, acts as a lysophosphatidic acid ligand. However, its anticancer effects, especially in melanoma, remain unclear. This study investigated the anti-proliferative effects and intracellular signaling mechanisms of a gintonin-enriched fraction (GEF) from Panax ginseng in human [...] Read more.
Gintonin, a non-saponin glycolipoprotein from Panax ginseng, acts as a lysophosphatidic acid ligand. However, its anticancer effects, especially in melanoma, remain unclear. This study investigated the anti-proliferative effects and intracellular signaling mechanisms of a gintonin-enriched fraction (GEF) from Panax ginseng in human melanoma cell lines. In vitro, GEF treatment significantly inhibited cell proliferation, reduced clonogenic potential, and delayed wound healing in melanoma cells. Flow cytometry and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining showed that GEF induced apoptosis, as evidenced by increased apoptotic cell populations and nuclear changes. GEF also caused cell cycle arrest in the G1 phase for A375 cells and the G2/M phase for A2058 cells. It triggered apoptotic signaling via activation of caspase-3, -9, poly (ADP-ribose) polymerase cleavage, and downregulation of B cell lymphoma-2 (Bcl-2). GEF treatment also raised intracellular reactive oxygen species (ROS) levels and mitochondrial stress, which were mitigated by N-acetyl cysteine (NAC), an ROS inhibitor. In vivo, GEF suppressed tumor growth in A375- and A2058-xenografted mice without toxicity. These findings suggest that GEF from Panax ginseng has potential antitumor effects in melanoma by inducing apoptosis and cell cycle arrest, presenting a promising therapeutic avenue. Full article
Show Figures

Figure 1

18 pages, 3279 KB  
Article
Cell Labeling with 15-YNE Is Useful for Tracking Protein Palmitoylation and Metabolic Lipid Flux in the Same Sample
by Nadine Merz, Karin Schilling, Dominique Thomas, Lisa Hahnefeld and Sabine Grösch
Molecules 2025, 30(2), 377; https://doi.org/10.3390/molecules30020377 - 17 Jan 2025
Cited by 2 | Viewed by 1490
Abstract
Protein S-palmitoylation is the process by which a palmitoyl fatty acid is attached to a cysteine residue of a protein via a thioester bond. A range of methodologies are available for the detection of protein S-palmitoylation. In this study, two methods for the [...] Read more.
Protein S-palmitoylation is the process by which a palmitoyl fatty acid is attached to a cysteine residue of a protein via a thioester bond. A range of methodologies are available for the detection of protein S-palmitoylation. In this study, two methods for the S-palmitoylation of different proteins were compared after metabolic labeling of cells with 15-hexadecynoic acid (15-YNE) to ascertain their relative usefulness. It was hypothesized that labeling cells with a traceable lipid would affect lipid metabolism and the cellular lipidome. In this study, we developed a method to track 15-YNE incorporation into lipids using liquid chromatography high-resolution mass spectrometry (LC-HRMS) as well as protein palmitoylation in the same sample. We observed a time- and concentration-dependent S-palmitoylation of calnexin and succinate dehydrogenase complex flavoprotein subunit A (SDHA) depending on the cell type. The detection of S-palmitoylation with a clickable fluorophore or biotin azide followed by immunoprecipitation is shown to be equally useful. 15-YNE was observed to be incorporated into a wide array of lipid classes during the process, yet it did not appear to modify the overall lipid composition of the cells. In conclusion, we show that 15-YNE is a useful tracer to detect both protein S-palmitoylation and lipid metabolism in the same sample. Full article
Show Figures

Figure 1

15 pages, 5375 KB  
Article
Glycyrrhizinate Monoammonium Cysteine-Loaded Lipid Nanoparticles Allow for Improved Acute Liver Injury Therapy
by Yunjie Xu, Pinghui Li, Shiran Sun, Yulin Chen, Lixia Feng, Dawei Jiang, Chidan Wan, Jianbo Li and Xiong Cai
Pharmaceutics 2025, 17(1), 90; https://doi.org/10.3390/pharmaceutics17010090 - 12 Jan 2025
Viewed by 2227
Abstract
Background: Acute liver injury (ALI) is a prevalent and potentially lethal condition globally, where pharmacotherapy plays a vital role. However, challenges such as rapid drug excretion and insufficient concentration at hepatic lesions often impede the treatment’s effectiveness. Methods: We successfully prepared glycyrrhizinate monoammonium [...] Read more.
Background: Acute liver injury (ALI) is a prevalent and potentially lethal condition globally, where pharmacotherapy plays a vital role. However, challenges such as rapid drug excretion and insufficient concentration at hepatic lesions often impede the treatment’s effectiveness. Methods: We successfully prepared glycyrrhizinate monoammonium cysteine (GMC)-loaded lipid nanoparticles (LNPs) using high-pressure homogenization. The characterization and safety of the LNPs were measured using electrophoretic light scattering (ELS), transmission electron microscopy (TEM), dynamic light scattering (DLS), cytotoxicity assays, and hemolysis tests. The distribution of LNPs in mice was explored using fluorescence labeling methods. The encapsulation efficiency of LNP-GMC was detected using High-Performance Liquid Chromatography (HPLC), and its slow-release effect on GMC was assessed through dialysis. The therapeutic effects of LNP-GMC and pure GMC on the ALI model were evaluated using fibroblast activation protein inhibitor (FAPI) PET imaging, blood biochemical indicators, and liver pathology slices. Results: The encapsulation of GMC in LNPs enhances drug stability and prolongs its hepatic retention, significantly improving its bioavailability and sustained release within the liver. This study also explores the expression of fibroblast activation protein (FAP) in ALI, employing 68Ga-FAPI PET/CT imaging for effective differentiation and assessment of liver injury. Conclusions: Our results suggest that LNPs offer an enhanced therapeutic approach for ALI treatment, reducing the required drug dosage, and 68Ga-FAPI PET/CT imaging provides a novel method for diagnosis and treatment assessment. This study contributes valuable insights into the utilization of LNPs in liver disease treatment, presenting a promising direction for future clinical applications. Full article
(This article belongs to the Special Issue Advances in Radiopharmaceuticals for Disease Diagnoses and Therapy)
Show Figures

Figure 1

Back to TopTop