Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = cyanate resin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5320 KiB  
Article
Di-Cyclohexene Oxide Bridged by DDSQ: Preparation, Characterization, and Application as Fillers for Cyanate Ester Resin
by Xiaoye Gao, Wencheng Gao, Dingyi Lu and Riwei Xu
Molecules 2025, 30(5), 1113; https://doi.org/10.3390/molecules30051113 - 28 Feb 2025
Cited by 1 | Viewed by 630
Abstract
In order to improve the dielectric properties of existing thermosetting resins, taking advantage of reactive fillers is a simple and feasible option. In this paper, we synthesized a new double epoxycyclohexane double-decker silsesquioxane (DEDDSQ), in which the structure of aliphatic epoxy resin introduced [...] Read more.
In order to improve the dielectric properties of existing thermosetting resins, taking advantage of reactive fillers is a simple and feasible option. In this paper, we synthesized a new double epoxycyclohexane double-decker silsesquioxane (DEDDSQ), in which the structure of aliphatic epoxy resin introduced into DDSQ successfully, and the resulting structure of DEDDESQ is confirmed by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) spectroscopy, and mass spectrometry (MS). Cyanate ester resin was selected as the case study for the application of DEDDSQ as reactive fillers. A CE/E51/DEDDSQ nanocomposite was fabricated by incorporating a small proportion of E51 resin and DEDDSQ into cyanate ester resin to enhance its comprehensive properties. X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS) analyses demonstrated that DEDDSQ dispersed uniformly within the resin matrix. Dynamic mechanical analysis (DMA) demonstrated that the CE/E51/8.0DEDDSQ nanocomposites exhibit excellent thermal properties. The glass transition temperature (Tg) of the nanocomposite was measured to be 264 °C, indicating its excellent thermal stability. Dielectric property measurements showed that the addition of DEDDSQ reduced the dielectric constant of the cyanate ester resin, with the CE/E51/8.0DEPOSS nanocomposite exhibiting a dielectric constant of 2.47 at 1 MHz. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

12 pages, 1202 KiB  
Article
Influence of Monomer Size on CO2 Adsorption and Mechanical Properties in Microporous Cyanate Ester Resins
by Yukun Bai, Gota Kikugawa and Naoki Kishimoto
Polymers 2025, 17(2), 148; https://doi.org/10.3390/polym17020148 - 9 Jan 2025
Viewed by 916
Abstract
Molecular simulations offer valuable insights into thermosetting polymers’ microstructures and interactions with small molecules, aiding in the development of advanced materials. In this study, we design two cyanate resin models featuring monomers of different sizes and employ a previously developed method to generate [...] Read more.
Molecular simulations offer valuable insights into thermosetting polymers’ microstructures and interactions with small molecules, aiding in the development of advanced materials. In this study, we design two cyanate resin models featuring monomers of different sizes and employ a previously developed method to generate crosslinked structures. We then analyze their crosslinking processes and physicochemical properties. Using quantum chemistry calculations and a GCMC/MD approach, we investigate CO2 adsorption. Our results show that monomer size does not significantly affect the crosslinking process and provides a degree of polymerization as 83.8 ± 0.3% vs. 76.7 ± 1.4%, but it does influence key properties, such as the glass transition temperature (520 K vs. 420 K) and Young’s modulus (2.32 GPa vs. 1.77 GPa). Moreover, CO2 adsorption differs between the two models: the introduction of propyl ether moieties lowers by around 70% CO2 uptake, indicating that specific adsorption sites impact gas adsorption. This study demonstrates a promising strategy for designing and optimizing thermosetting polymers with controllable gas separation and storage capabilities. Full article
Show Figures

Figure 1

16 pages, 13078 KiB  
Article
Metallization of Carbon Fiber-Reinforced Plastics (CFRP): Influence of Plasma Pretreatment on Mechanical Properties and Splat Formation of Atmospheric Plasma-Sprayed Aluminum Coatings
by Christian Semmler, Willi Schwan and Andreas Killinger
Coatings 2024, 14(9), 1169; https://doi.org/10.3390/coatings14091169 - 11 Sep 2024
Cited by 1 | Viewed by 1683
Abstract
Carbon fiber-reinforced plastics (CFRPs) have broad applications as lightweight structural materials due to their remarkable strength-to-weight ratio. Aluminum is often used as a bond coating to ensure adhesion between CFRPs and further coatings with a higher melting temperature. However, challenges persist in optimizing [...] Read more.
Carbon fiber-reinforced plastics (CFRPs) have broad applications as lightweight structural materials due to their remarkable strength-to-weight ratio. Aluminum is often used as a bond coating to ensure adhesion between CFRPs and further coatings with a higher melting temperature. However, challenges persist in optimizing their surface properties and adhesion attributes for diverse applications. This investigation explores the impact of sandblasting and plasma pretreatment on CFRP surfaces and their influence on plasma-sprayed aluminum coatings. Two distinct CFRP substrates, distinguished by their cyanate ester and epoxy resin matrices, and two different aluminum powder feedstocks were employed. Plasma pretreatment induced micro-surface roughening in the range of 0.5 µm and significantly reduced the contact angles on polished specimens. Notably, on sandblasted specimens, plasma-activated surfaces displayed improved wetting behavior, which is attributed to the removal of polymeric fragments and augmented fiber exposure. Aluminum splats show a better interaction with carbon fibers compared to a polymeric matrix material. The impact of plasma activation on the coating adhesion proved relatively limited. All samples with plasma activation had deposition efficiencies that increased by 12.5% to 34.4%. These findings were supported by SEM single-splat analysis and contribute to a deeper comprehension of surface modification strategies tailored to CFRPs. Full article
Show Figures

Figure 1

19 pages, 2708 KiB  
Article
Effect of Amino-Functionalized Polyhedral Oligomeric Silsesquioxanes on Structure-Property Relationships of Thermostable Hybrid Cyanate Ester Resin Based Nanocomposites
by Olga Grigoryeva, Alexander Fainleib, Olga Starostenko, Diana Shulzhenko, Agustin Rios de Anda, Fabrice Gouanve, Eliane Espuche and Daniel Grande
Polymers 2023, 15(24), 4654; https://doi.org/10.3390/polym15244654 - 9 Dec 2023
Cited by 5 | Viewed by 1675
Abstract
Nanocomposites of cyanate ester resin (CER) filled with three different reactive amino-functionalized polyhedral oligomeric silsesquioxane (POSS) were synthesized and characterized. The addition of a small quantity (0.1 wt.%) of amino-POSS chemically grafted to the CER network led to the increasing thermal stability of [...] Read more.
Nanocomposites of cyanate ester resin (CER) filled with three different reactive amino-functionalized polyhedral oligomeric silsesquioxane (POSS) were synthesized and characterized. The addition of a small quantity (0.1 wt.%) of amino-POSS chemically grafted to the CER network led to the increasing thermal stability of the CER matrix by 12–15 °C, depending on the type of amino-POSS. A significant increase of the glass transition temperature, Tg (DSC data), and the temperature of α relaxation, Tα (DMTA data), by 45–55 °C of the CER matrix with loading of nanofillers was evidenced. CER/POSS films exhibited a higher storage modulus than that of neat CER in the temperature range investigated. It was evidenced that CER/aminopropylisobutyl (APIB)-POSS, CER/N-phenylaminopropyl (NPAP)-POSS, and CER/aminoethyl aminopropylisobutyl (AEAPIB)-POSS nanocomposites induced a more homogenous α relaxation phenomenon with higher Tα values and an enhanced nanocomposite elastic behavior. The value of the storage modulus, E′, at 25 °C increased from 2.72 GPa for the pure CER matrix to 2.99–3.24 GPa for the nanocomposites with amino-functionalized POSS nanoparticles. Furthermore, CER/amino-POSS nanocomposites possessed a higher specific surface area, gas permeability (CO2, He), and diffusion coefficients (CO2) values than those for neat CER, due to an increasing free volume of the nanocomposites studied that is very important for their gas transport properties. Permeability grew by about 2 (He) and 3.5–4 times (CO2), respectively, and the diffusion coefficient of CO2 increased approximately twice for CER/amino-POSS nanocomposites in comparison with the neat CER network. The efficiency of amino-functionalized POSS in improving the thermal and transport properties of the CER/amino-POSS nanocomposites increased in a raw of reactive POSS containing one primary (APIB-POSS) < eight secondary (NPAP-POSS) < one secondary and one primary (AEAPIB-POSS) amino groups. APIB-POSS had the least strongly pronounced effect, since it could form covalent bonds with the CER network only by a reaction of one -NH2 group, while AEAPIB-POSS displayed the most highly marked effect, since it could easily be incorporated into the CER network via a reaction of –NH2 and –NH– groups with –O–C≡N groups from CER. Full article
(This article belongs to the Special Issue Porous Polymeric Materials: Design and Applications)
Show Figures

Figure 1

12 pages, 5233 KiB  
Article
The Catalytic Curing Reaction and Mechanical Properties of a New Composite Resin Matrix Material for Rocket Fuel Storage Tanks
by Chuan Li, Zhengjun Liu, Ke Xue, Yingda Huo, Fubao Li and Xiaoping Zhu
Appl. Sci. 2023, 13(21), 11790; https://doi.org/10.3390/app132111790 - 28 Oct 2023
Cited by 3 | Viewed by 1800
Abstract
In this paper, an equimolar blend of bisphenol A dipropargyl ether and cyanate ester was selected to study the effect of different catalysts on the curing reaction of a bisphenol A dipropargyl ether and cyanate ester blended resin system, and the thermal stability [...] Read more.
In this paper, an equimolar blend of bisphenol A dipropargyl ether and cyanate ester was selected to study the effect of different catalysts on the curing reaction of a bisphenol A dipropargyl ether and cyanate ester blended resin system, and the thermal stability and mechanical properties of the catalytically cured blended resin system were investigated. Acetylacetone salts of transition metals and dibutyl ditin laurate reduced the curing temperature of bisphenol AF-type di cyanate ester, and copper acetylacetonate at a mass fraction of 0.3% significantly reduced the curing temperature of bisphenol AF-type di cyanate ester to less than 473 K. Bisphenol A dipropargyl ether pr-polymerized and equimolarly blended with bisphenol A di cyanate ester and bisphenol E-type di cyanate ester also cured below 473 K under the same conditions. Among the cured compounds of the blended resins of bisphenol A dipropargyl ether with bisphenol AF-type di cyanate ester, bisphenol A-type di cyanate ester and bisphenol E-type di cyanate ester, the blended resins of bisphenol A-type di cyanate ester and bisphenol E-type di cyanate ester have better overall performance. The residual rate of 873 K in air was 38%, and the flexural strength, flexural modulus, and impact strength were 129.4 MPa, 4.3 GPa, and 27.3 kJ·m−2, respectively. This kind of blended resin is expected to be used in the liquid oxygen storage tanks of rockets. Full article
(This article belongs to the Special Issue Physics and Mechanics of New Materials and Their Applications 2023)
Show Figures

Figure 1

12 pages, 3599 KiB  
Article
Effects of Accelerated Aging on Thermal, Mechanical and Shape Memory Properties of Cyanate-Based Shape Memory Polymer: III Vacuum Thermal Cycling
by Zhongxin Ping, Fang Xie, Xiaobo Gong, Liwu Liu, Jinsong Leng and Yanju Liu
Polymers 2023, 15(8), 1893; https://doi.org/10.3390/polym15081893 - 14 Apr 2023
Cited by 3 | Viewed by 2760
Abstract
Shape memory polymers (SMPs) with intelligent deformability have shown great potential in the field of aerospace, and the research on their adaptability to space environments has far-reaching significance. Chemically cross-linked cyanate-based SMPs (SMCR) with excellent resistance to vacuum thermal cycling were obtained by [...] Read more.
Shape memory polymers (SMPs) with intelligent deformability have shown great potential in the field of aerospace, and the research on their adaptability to space environments has far-reaching significance. Chemically cross-linked cyanate-based SMPs (SMCR) with excellent resistance to vacuum thermal cycling were obtained by adding polyethylene glycol (PEG) with linear polymer chains to the cyanate cross-linked network. The low reactivity of PEG overcame the shortcomings of high brittleness and poor deformability while endowing cyanate resin with excellent shape memory properties. The SMCR with a glass transition temperature of 205.8 °C exhibited good stability after vacuum thermal cycling. The SMCR maintained a stable morphology and chemical composition after repeated high–low temperature cycle treatments. The SMCR matrix was purified by vacuum thermal cycling, which resulted in an increase in its initial thermal decomposition temperature by 10–17 °C. The continuous vacuum high and low temperature relaxation of the vacuum thermal cycling increased the cross-linking degree of the SMCR, which improved the mechanical properties and thermodynamic properties of SMCR: the tensile strength of SMCR was increased by about 14.5%, the average elastic modulus was greater than 1.83 GPa, and the glass transition temperature increased by 5–10 °C. Furthermore, the shape memory properties of SMCR after vacuum thermal cycling treatment were well maintained due to the stable triazine ring formed by the cross-linking of cyanate resin. This revealed that our developed SMCR had good resistance to vacuum thermal cycling and thus may be a good candidate for aerospace engineering. Full article
(This article belongs to the Special Issue Shape Memory Polymer Materials)
Show Figures

Figure 1

13 pages, 1845 KiB  
Article
Femtosecond UV Laser Ablation Characteristics of Polymers Used as the Matrix of Astronautic Composite Material
by Mingyu Lu, Ming Zhang, Kaihu Zhang, Qinggeng Meng and Xueqiang Zhang
Materials 2022, 15(19), 6771; https://doi.org/10.3390/ma15196771 - 29 Sep 2022
Cited by 11 | Viewed by 2449
Abstract
Ultrafast laser processing has recently emerged as a new tool for processing fiber-reinforced polymer (FRP) composites. In the astronautic industry, the modified epoxy resin (named 4211) and the modified cyanate ester resin (known as BS-4) are two of the most widely used polymers [...] Read more.
Ultrafast laser processing has recently emerged as a new tool for processing fiber-reinforced polymer (FRP) composites. In the astronautic industry, the modified epoxy resin (named 4211) and the modified cyanate ester resin (known as BS-4) are two of the most widely used polymers for polymer-based composites. To study the removal mechanism and ablation process of different material components during the ultrafast laser processing of FRPs, we isolated the role of the two important polymers from their composites by studying their femtosecond UV laser (260 fs, 343 nm) ablation characteristics for controllable machining and understanding the related mechanisms. Intrinsic properties for the materials’ transmission spectrum, the absorption coefficient and the optical bandgap (Eg), were measured, derived, and compared. Key parameters for controllable laser processing, including the ablation threshold (Fth), energy penetration depth (δeff), and absorbed energy density (Eabs) at the ablation threshold, as well as their respective “incubation” effect under multiple pulse excitations, were deduced analytically. The ablation thresholds for the two resins, derived from both the diameter-regression and depth-regression techniques, were compared between resins and between techniques. An optical bandgap of 3.1 eV and 2.8 eV for the 4211 and BS-4 resins, respectively, were obtained. A detectable but insignificant-to-ablation difference in intrinsic properties and ablation characteristics between the two resins was found. A systematic discrepancy, by a factor of 30~50%, between the two techniques for deriving ablation thresholds was shown and discussed. For the 4211 resin ablated by a single UV laser pulse, a Fth of 0.42 J/cm2, a δeff of 219 nm, and an Eabs of 18.4 kJ/cm3 was suggested, and they are 0.45 J/cm2, 183 nm, and 23.2 kJ/cm3, respectively, for the BS-4 resin. The study may shed light on the materials’ UV laser processing, further the theoretical modeling of ultrafast laser ablation, and provide a reference for the femtosecond UV laser processing characteristics of FRPs for the future. Full article
(This article belongs to the Special Issue Laser Micro/Nanofabrication and Related Applications)
Show Figures

Figure 1

15 pages, 3152 KiB  
Article
A Manufacturing Process Simulation of Toughened Cyanate-Ester-Based Composite Structures with Respect to Stress Relaxation
by Nicolas Gort, Fabian Schadt, Martin Liebisch, Christian Brauner and Tobias Wille
Materials 2022, 15(19), 6675; https://doi.org/10.3390/ma15196675 - 26 Sep 2022
Viewed by 1909
Abstract
The objectives of this study were to experimentally determine the effects of the stress relaxation of a cyanate-ester-based composite, derive and integrate constitutive equations into commercial FEM software, and apply this approach to understand the formation of residual stress in a typical aerospace [...] Read more.
The objectives of this study were to experimentally determine the effects of the stress relaxation of a cyanate-ester-based composite, derive and integrate constitutive equations into commercial FEM software, and apply this approach to understand the formation of residual stress in a typical aerospace structure—namely, a stiffened panel. In preliminary studies, a cyanate-ester-based composite with increased fracture toughness for high-temperature applications was developed. High curing temperatures up to 260 °C will inevitably lead to high process-induced stresses. To assess the magnitude of impact on the development of internal stresses, the relaxation behavior of the neat resin was measured and characterized. The system was toughened, and the effect of stress relaxation increased as the temperature got closer to the glass transition temperature of the toughener, which was approximately 240 °C. With the use of an incremental linear viscoelastic model, the relaxation behavior was integrated into a process model with a holistic approach. A stiffened panel was manufactured and used as the validation use case. The displacement field was validated with an optical 3D measuring system, and good agreement was found between the simulated and experimental results. The maximum difference between the elastic and the viscoelastic solution was found to be 15%. Furthermore, the stress magnitude in the transverse material direction resulted in a more critical value higher than the material strength. Full article
Show Figures

Figure 1

15 pages, 6890 KiB  
Article
High Thermal Resistance of Epoxy/Cyanate Ester Hybrids Incorporating an Inorganic Double-Decker-Shaped Polyhedral Silsesquioxane Nanomaterial
by Yang-Chin Kao, Wei-Cheng Chen, Ahmed F. M. EL-Mahdy, Meei-Yu Hsu, Chih-Hao Lin and Shiao-Wei Kuo
Molecules 2022, 27(18), 5938; https://doi.org/10.3390/molecules27185938 - 13 Sep 2022
Cited by 3 | Viewed by 2247
Abstract
In this study, we prepared a difunctionalized cyanate ester double-decker silsesquioxane (DDSQ-OCN) cage with a char yield and thermal decomposition temperature (Td) which were both much higher than those of a typical bisphenol A dicyanate ester (BADCy, without the DDSQ [...] Read more.
In this study, we prepared a difunctionalized cyanate ester double-decker silsesquioxane (DDSQ-OCN) cage with a char yield and thermal decomposition temperature (Td) which were both much higher than those of a typical bisphenol A dicyanate ester (BADCy, without the DDSQ cage) after thermal polymerization. Here, the inorganic DDSQ nanomaterial improved the thermal behavior through a nano-reinforcement effect. Blending the inorganic DDSQ-OCN cage into the epoxy resin improved its thermal and mechanical stabilities after the ring-opening polymerization of the epoxy units during thermal polymerization. The enhancement in the physical properties arose from the copolymerization of the epoxy and OCN units to form the organic/inorganic covalently bonded network structure, as well as the hydrogen bonding of the OH groups of the epoxy with the SiOSi moieties of the DDSQ units. For example, the epoxy/DDSQ-OCN = 1/1 hybrid, prepared without Cu(II)-acac as a catalyst, exhibited a glass transition temperature, thermal decomposition temperature (Td), and char yield (166 °C, 427 °C, and 51.0 wt%, respectively) that were significantly higher than those obtained when applying typical organic curing agents in the epoxy resin. The addition of Cu(II)-acac into the epoxy/BADCy and epoxy/DDSQ-OCN hybrids decreased the thermal stability (as characterized by the values of Td and the char yields) because the crosslinking density and post-hardening also decreased during thermal polymerization; nevertheless, it accelerated the thermal polymerization to a lower curing peak temperature, which is potentially useful for real applications as epoxy molding compounds. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Figure 1

12 pages, 11825 KiB  
Article
Mechanical Properties of High-Temperature Fiber-Reinforced Thermoset Composites with Plain Weave and Unidirectional Carbon Fiber Fillers
by Samuel Ernesto Hall, Victoria Centeno, Sergio Favela, Alexis Lopez, Andrew Gallardo, Jacob Pellicotte, Yulianna Torres, Danielle Coverdell, Sabrina Torres, Ahsan Choudhuri, Yirong Lin and Md Sahid Hassan
J. Compos. Sci. 2022, 6(7), 213; https://doi.org/10.3390/jcs6070213 - 18 Jul 2022
Cited by 6 | Viewed by 3660
Abstract
Fiber-reinforced thermoset composites are a class of materials that address the arising needs from the aerospace and hypersonic industries for high specific strength, temperature-resistant structural materials. Among the high-temperature resistant thermoset categories, phenolic triazine (PT) cyanate esters stand out thanks to their inherent [...] Read more.
Fiber-reinforced thermoset composites are a class of materials that address the arising needs from the aerospace and hypersonic industries for high specific strength, temperature-resistant structural materials. Among the high-temperature resistant thermoset categories, phenolic triazine (PT) cyanate esters stand out thanks to their inherent high degradation temperature, glass transition temperature, and mechanical strength. Despite the outstanding properties of these thermosets, the performance of carbon fiber composites using PT cyanate esters as matrices has not been thoroughly characterized. This work evaluated PT and carbon fiber composites’ compressive properties and failure mechanisms with different fiber arrangements. A PT resin with both plain weave (PW) and non-crimped unidirectional (UD) carbon fiber mats was analyzed in this research. Highly loaded thermoset composites were obtained using process temperatures not exceeding 260 °C, and the composites proved to retain compressive strength at temperatures beyond 300 °C. Compressive testing revealed that PT composites retained compressive strength values of 50.4% of room temperature for UD composites and 61.4% for PW composites. Post-compressive failure observations of the gage section revealed that the mechanisms for failure evolved with temperature from brittle, delamination-dominant failure to shear-like failure promoted by the plastic failure of the matrix. This study demonstrated that PT composites are a good candidate for structural applications in harsh environments. Full article
(This article belongs to the Special Issue Additive Manufacturing of Composites and Nanocomposites)
Show Figures

Figure 1

16 pages, 8151 KiB  
Article
The Created Excellent Thermal, Mechanical and Fluorescent Properties by Doping Eu3+-Complex-Anchored Carbon Nanotubes in Polycyanate Resins
by Ziyao Hu, Dong Zhao, Yao Wang, Linjun Huang, Shichao Wang, Sui Mao, Olga Grigoryeva, Peter Strizhak, Alexander Fainleib and Jianguo Tang
Nanomaterials 2022, 12(12), 2040; https://doi.org/10.3390/nano12122040 - 14 Jun 2022
Cited by 1 | Viewed by 2092
Abstract
In the blending process of the composites, the clustering of MWCNTs under high concentration leads to poor dispersion and difficult complexing with luminescent elements. Cyanate ester resins (CERs) have a brittle network structure when cured caused by a conjugation effect that forms a [...] Read more.
In the blending process of the composites, the clustering of MWCNTs under high concentration leads to poor dispersion and difficult complexing with luminescent elements. Cyanate ester resins (CERs) have a brittle network structure when cured caused by a conjugation effect that forms a strong emission peak in the ultraviolet-visible region and quenches the luminescent elements of the fluorescent nanofillers. In this paper, by anchoring of the Eu complex (Eu(TTA)3Phen, ETP) on a surface of longitudinal split unzipped carbon nanotubes (uMWCNTs); fluorescent nanoparticles were prepared as ETP anchor unzipper carbon nanotubes (ETP-uCNTs). Dicyanate ester of bisphenol E (CER-E monomer) is cured to polycyanurate at a lower temperature to achieve a high conversion, promoting a uniform blend with ETP-uCNTs, providing the fluorescence environment with high color purity. Studies show the ETP-uCNTs solve the agglomeration of MWCNTs and improve the interface binding ability. Compared with the pure CER-E, the tensile strength, bending strength and impact strength of CER-E/0.8 wt.% ETP-uCNT hybrid nanocomposites are increased by 94.6%, 92.8% and 101.1%, respectively. The carbon residue rate of CER-E/ETP-uCNTs is up to 47.14% at 800 °C, the temperature of the maximum reaction rate decreases by 67.81 °C, and the partial absorption of ultraviolet light is realized between 200 and 400 nm. Full article
(This article belongs to the Special Issue Hybrid Nano Polymer Composites)
Show Figures

Figure 1

17 pages, 5270 KiB  
Article
Influence of Epoxy Resin Curing Kinetics on the Mechanical Properties of Carbon Fiber Composites
by Isidro Cruz-Cruz, Claudia A. Ramírez-Herrera, Oscar Martínez-Romero, Santos Armando Castillo-Márquez, Isaac H. Jiménez-Cedeño, Daniel Olvera-Trejo and Alex Elías-Zúñiga
Polymers 2022, 14(6), 1100; https://doi.org/10.3390/polym14061100 - 9 Mar 2022
Cited by 32 | Viewed by 5514
Abstract
In this study, the kinetic parameters belonging to the cross-linking process of a modified epoxy resin, Aerotuf 275-34™, were investigated. Resin curing kinetics are crucial to understanding the structure–property–processing relationship for manufacturing high-performance carbon-fiber-reinforced polymer composites (CFRPCs). The parameters were obtained using differential [...] Read more.
In this study, the kinetic parameters belonging to the cross-linking process of a modified epoxy resin, Aerotuf 275-34™, were investigated. Resin curing kinetics are crucial to understanding the structure–property–processing relationship for manufacturing high-performance carbon-fiber-reinforced polymer composites (CFRPCs). The parameters were obtained using differential scanning calorimetry (DSC) measurements and the Flynn–Wall–Ozawa, Kissinger, Borchardt–Daniels, and Friedman approaches. The DSC thermograms show two exothermic peaks that were deconvoluted as two separate reactions that follow autocatalytic models. Furthermore, the mechanical properties of produced carbon fiber/Aerotuf 275-34™ laminates using thermosetting polymers such as epoxies, phenolics, and cyanate esters were evaluated as a function of the conversion degree, and a close correlation was found between the degree of curing and the ultimate tensile strength (UTS). We found that when the composite material is cured at 160 °C for 15 min, it reaches a conversion degree of 0.97 and a UTS value that accounts for 95% of the maximum value obtained at 200 °C (180 MPa). Thus, the application of such processing conditions could be enough to achieve good mechanical properties of the composite laminates. These results suggest the possibility for the development of strategies towards manufacturing high-performance materials based on the modified epoxy resin (Aerotuf 275-34™) through the curing process. Full article
(This article belongs to the Special Issue Advanced Epoxy-Based Materials II)
Show Figures

Graphical abstract

13 pages, 3154 KiB  
Article
Online Cure Monitoring and Modelling of Cyanate Ester-Based Composites for High Temperature Applications
by Lyaysan Amirova, Christian Brauner, Markus Grob, Nicolas Gort, Fabian Schadt, Nikos Pantelelis, Thomas Ricard and Wilco Gerrits
Polymers 2021, 13(18), 3021; https://doi.org/10.3390/polym13183021 - 7 Sep 2021
Cited by 7 | Viewed by 3012
Abstract
A cure kinetics investigation of a high temperature-resistant phenol novolac cyanate ester toughened with polyether sulfone (CE-PES blend) was undertaken using non-isothermal differential scanning calorimetry. Thin ply carbon fiber prepreg, based on the CE-PES formulation, was fabricated, and plates for further in-situ cure [...] Read more.
A cure kinetics investigation of a high temperature-resistant phenol novolac cyanate ester toughened with polyether sulfone (CE-PES blend) was undertaken using non-isothermal differential scanning calorimetry. Thin ply carbon fiber prepreg, based on the CE-PES formulation, was fabricated, and plates for further in-situ cure monitoring were manufactured using automated fiber placement. Online monitoring of the curing behavior utilizing Optimold sensors and Online Resin State software from Synthesites was carried out. The estimation of the glass transition temperature and degree of cure allowed us to compare real time data with the calculated parameters of the CE-PES formulation. Alongside a good agreement between the observed online data and predicted model, the excellent performance of the developed sensors at temperatures above 260 °C was also demonstrated. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

19 pages, 2078 KiB  
Article
Thermal and Dielectric Properties of Cyanate Ester Cured Main Chain Rigid-Rod Epoxy Resin
by Chi-Ping Li and Chih-Min Chuang
Polymers 2021, 13(17), 2917; https://doi.org/10.3390/polym13172917 - 30 Aug 2021
Cited by 19 | Viewed by 3980
Abstract
Thermal and dielectric properties of rigid-rod bifunctional epoxy resin 4,4-bis(2,3-epoxypropoxy) biphenyl epoxy (BP) and commercial epoxy resin diglycidyl ether of bisphenol A (DGEBA) were studied using differential scanning calorimeter (DSC), thermogravimetric analyzer (TGA), dynamic mechanical analyzer (DMA), thermal mechanical analyzer (TMA) and dielectric [...] Read more.
Thermal and dielectric properties of rigid-rod bifunctional epoxy resin 4,4-bis(2,3-epoxypropoxy) biphenyl epoxy (BP) and commercial epoxy resin diglycidyl ether of bisphenol A (DGEBA) were studied using differential scanning calorimeter (DSC), thermogravimetric analyzer (TGA), dynamic mechanical analyzer (DMA), thermal mechanical analyzer (TMA) and dielectric analyzer (DEA). These two epoxies were cured with cyanate ester hardener 2,2’-bis(4-cyanatophenyl) propane (AroCy B10). The BP/B10 system consisting of a rigid-rod structure exhibited better thermal properties than the DGEBA/B10 system with a flexible structure. Anisotropic BP/B10 (2:1) had the highest 5% weight loss temperature, the highest amount of residue and a smaller thermal expansion coefficient than the commercial DGEBA/B10 system. The BP/B10 system, which cured at the LC phase temperature, had higher Tg than the commercial DGEBA/B10 system, as found from dynamic mechanical analysis. The BP/B10 system also demonstrated better dielectric properties than the commercial DGEBA/B10 system when enough curing agent was provided. Full article
(This article belongs to the Special Issue Polymer Nanocomposites for Energy Applications)
Show Figures

Figure 1

14 pages, 4206 KiB  
Article
Improved Mechanical, Anti-UV Irradiation, and Imparted Luminescence Properties of Cyanate Ester Resin/Unzipped Multiwalled Carbon Nanotubes/Europium Nanocomposites
by Na Yang, Xiaohua Qi, Di Yang, Mengyao Chen, Yao Wang, Linjun Huang, Olga Grygoryeva, Peter Strizhak, Alexander Fainleib and Jianguo Tang
Materials 2021, 14(15), 4244; https://doi.org/10.3390/ma14154244 - 29 Jul 2021
Cited by 4 | Viewed by 2094
Abstract
Cyanate ester resin (CER) is an excellent thermal stable polymer. However, its mechanical properties are not appropriate for its application, with brittle weakness, and it has poor functional properties, such as luminescence. This work innovatively combines the luminescence property and the improved mechanical [...] Read more.
Cyanate ester resin (CER) is an excellent thermal stable polymer. However, its mechanical properties are not appropriate for its application, with brittle weakness, and it has poor functional properties, such as luminescence. This work innovatively combines the luminescence property and the improved mechanical properties with the inherent thermal property of cyanate ester. A novel nanocomposite, CER/uMWCNTs/Eu, with multi-functional properties, has been prepared. The results show that with the addition of 0.1 wt.% of uMWCNTs to the resin, the flexural strength and tensile strength increased 59.3% and 49.3%, respectively. As the curing process of the CER progresses, the injected luminescence signal becomes luminescence behind the visible (FBV). The luminescence intensity of CER/uMWCNTs/Eu was much stronger than that of CER/MWCNTs/Eu, and the luminescence lifetime of CER/MWCNTs/Eu and CER/uMWCNTs/Eu was 8.61 μs and 186.39 μs, respectively. FBV exhibited great potential in the embedment of photon quantum information. Therefore, it can be predicted that CER/uMWCNTs/Eu composites will not only have a wide range of applications in sensing, detection, and other aspects, but will also exhibit great potential in the embedding of photon quantum information. Full article
Show Figures

Graphical abstract

Back to TopTop