Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = customizing drug release

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
61 pages, 1180 KiB  
Review
Nanomedicine-Based Advances in Brain Cancer Treatment—A Review
by Borish Loushambam, Mirinrinchuiphy M. K. Shimray, Reema Khangembam, Venkateswaran Krishnaswami and Sivakumar Vijayaraghavalu
Neuroglia 2025, 6(3), 28; https://doi.org/10.3390/neuroglia6030028 - 18 Jul 2025
Viewed by 586
Abstract
Brain cancer is a heterogeneous collection of malignant neoplasms, such as glioblastoma multiforme (GBM), astrocytomas and medulloblastomas, with high morbidity and mortality. Its treatment is complicated by the tumor’s site, infiltrative growth mode and selective permeability of the blood–brain barrier (BBB). During tumor [...] Read more.
Brain cancer is a heterogeneous collection of malignant neoplasms, such as glioblastoma multiforme (GBM), astrocytomas and medulloblastomas, with high morbidity and mortality. Its treatment is complicated by the tumor’s site, infiltrative growth mode and selective permeability of the blood–brain barrier (BBB). During tumor formation, the BBB dynamically remodels into the blood–brain tumor barrier (BBTB), disrupting homeostasis and preventing drug delivery. Furthermore, the TME (Tumor Micro Environment) supports drug resistance, immune evasion and treatment failure. This review points out the ways in which nanomedicine overcomes these obstacles with custom-designed delivery systems, sophisticated diagnostics and personalized therapies. Traditional treatments fail through a lack of BBB penetration, non-specific cytotoxicity and swift tumor adaptation. Nanomedicine provides greater drug solubility, protection against enzymatic degradation, target drug delivery and control over the release. Nanotheranostics’ confluence of therapeutic and diagnostic modalities allows for dynamic adjustment and real-time monitoring. Nanotechnology has paved the way for the initiation of a new era in precision neuro-oncology. Transcending the limitations of conventional therapy protocols, nanomedicine promises to deliver better outcomes by way of enhanced targeting, BBB penetration and real-time monitoring. Multidisciplinary collaboration, regulatory advancements and patient-centered therapy protocols customized to the individual patient’s tumor biology will be necessary to facilitate translation success in the future. Full article
Show Figures

Figure 1

25 pages, 3886 KiB  
Article
Amikacin Coated 3D-Printed Metal Devices for Prevention of Postsurgical Infections (PSIs)
by Chu Zhang, Ishwor Poudel, Nur Mita, Xuejia Kang, Manjusha Annaji, Seungjong Lee, Peter Panizzi, Nima Shamsaei, Oladiran Fasina, R. Jayachandra Babu and Robert D. Arnold
Pharmaceutics 2025, 17(7), 911; https://doi.org/10.3390/pharmaceutics17070911 - 14 Jul 2025
Viewed by 349
Abstract
Background/Objectives: Personalized 3D-printed (3DP) metallic implants delivery systems are being explored to repair bone fractures, allowing the customization of medical implants that respond to individual patient needs, making it potentially more effective and of greater quality than mass-produced devices. However, challenges associated [...] Read more.
Background/Objectives: Personalized 3D-printed (3DP) metallic implants delivery systems are being explored to repair bone fractures, allowing the customization of medical implants that respond to individual patient needs, making it potentially more effective and of greater quality than mass-produced devices. However, challenges associated with postsurgical infections caused by bacterial adhesion remain a clinical issue. To address this, local antibiotic therapies are receiving extensive attention to minimize the risk of implant-related infections. This study investigated the use of amikacin (AMK), a broad-spectrum aminoglycoside antibiotic, incorporated onto 3D-printed 316L stainless steel implants using biodegradable polymer coatings of chitosan and poly lactic-co-glycolic acid (PLGA). Methods: This research examined different approaches to coat 3DP implants with amikacin. Various polymer-based coatings were studied to determine the optimal formulation based on the characteristics and release profile. The optimal formulation was performed on the antibacterial activity studies. Results: AMK-chitosan with PLGA coating implants controlled the rate of drug release for up to one month. The 3DP drug-loaded substrates demonstrated effective, concentration-dependent antibacterial activity against common infective pathogens. AMK-loaded substrates showed antimicrobial effectiveness for one week and inhibited bacteria significantly compared to the uncoated controls. Conclusions: This study demonstrated that 3DP metal surfaces coated with amikacin can provide customizable drug release profiles while effectively inhibiting bacterial growth. These findings highlight the potential of combining 3D printing with localized delivery strategies to prevent implant-associated infections and advance the development of personalized therapies. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

16 pages, 3597 KiB  
Article
Towards a Customized Oral Drug Therapy for Pediatric Applications: Chewable Propranolol Gel Tablets Printed by an Automated Extrusion-Based Material Deposition Method
by Kristiine Roostar, Andres Meos, Ivo Laidmäe, Jaan Aruväli, Heikki Räikkönen, Leena Peltonen, Sari Airaksinen, Niklas Sandler Topelius, Jyrki Heinämäki and Urve Paaver
Pharmaceutics 2025, 17(7), 881; https://doi.org/10.3390/pharmaceutics17070881 - 4 Jul 2025
Viewed by 412
Abstract
Background: Automated semi-solid extrusion (SSE) material deposition is a promising new technology for preparing personalized medicines for different patient groups and veterinary applications. The technology enables the preparation of custom-made oral elastic gel tablets of active pharmaceutical ingredient (API) by using a semi-solid [...] Read more.
Background: Automated semi-solid extrusion (SSE) material deposition is a promising new technology for preparing personalized medicines for different patient groups and veterinary applications. The technology enables the preparation of custom-made oral elastic gel tablets of active pharmaceutical ingredient (API) by using a semi-solid polymeric printing ink. Methods: An automated SSE material deposition method was used for generating chewable gel tablets loaded with propranolol hydrochloride (-HCl) at three different API content levels (3.0 mg, 4.0 mg, 5.0 mg). The physical appearance, surface morphology, dimensions, mass and mass variation, process-derived solid-state changes, mechanical properties, and in-vitro drug release of the gel tablets were studied. Results: The inclusion of API (1% w/w) in the semi-solid CuraBlendTM printing mixture decreased viscosity and increased fluidity, thus promoting the spreading of the mixture on the printed (material deposition) bed and the printing performance of the gel tablets. The printed gel tablets were elastic, soft, jelly-like, chewable preparations. The mechanical properties of the gel tablets were dependent on the printing ink composition (i.e., with or without propranolol HCl). The maximum load for the final deformation of the CuraBlend™-API (3.0 mg) gel tablets was very uniform, ranging from 73 N to 80 N. The in-vitro dissolution test showed that more than 85% of the drug load was released within 15–20 min, thus verifying the immediate-release behavior of these drug preparations. Conclusions: Automated SSE material deposition as a modified 3D printing method is a feasible technology for preparing customized oral chewable gel tablets of propranolol HCl. Full article
Show Figures

Figure 1

16 pages, 764 KiB  
Review
3D Printing in Oral Drug Delivery: Technologies, Clinical Applications and Future Perspectives in Precision Medicine
by Zeena Saleh-Bey-Kinj, Yael Heller, Giannis Socratous and Panayiota Christodoulou
Pharmaceuticals 2025, 18(7), 973; https://doi.org/10.3390/ph18070973 - 28 Jun 2025
Viewed by 1310
Abstract
The recent advancement of 3D-printed drugs is an emerging technology that has the potential for effective and safe oral delivery of personalized treatment regimens to patients, replacing the current “one size fits all” philosophy. The objective of this literature review is to highlight [...] Read more.
The recent advancement of 3D-printed drugs is an emerging technology that has the potential for effective and safe oral delivery of personalized treatment regimens to patients, replacing the current “one size fits all” philosophy. The objective of this literature review is to highlight the importance of 3D-printing technology in the development of personalized treatments, focusing on Levetiracetam, the first FDA-approved 3D-printed drug, for the treatment of epilepsy. Levetiracetam serves as an ideal paradigm for exploring how precision medicine and 3D printing can be applied to improve treatment outcomes for other complex diseases such as diabetes, cardiovascular diseases, and cancer. 3D printing enables precise dosage and time-release profiles by modifying factors such as shape and size, and the combination of active pharmaceutical ingredients (APIs) and excipients, ensuring consistent therapeutic levels over the treatment period. Design of oral tablets with multiple compartments allows for simultaneous treatment with multiple APIs, each one with a different release profile, minimizing drug–drug interactions and side effects. This technology also supports on-demand production, making it particularly beneficial in resource-limited or urgent situations, and offers the flexibility to customize dosage forms. Additive manufacturing could be an important tool for developing personalized treatments to address the diverse medical needs of patients with complex diseases. Therefore, there is a need for more 3D-printed FDA-approved drugs in the biopharmaceutical industry to enable personalized treatment, improved patient compliance, and precise drug release control. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

19 pages, 3044 KiB  
Article
Automated 3D Printing-Based Non-Sterile Compounding Technology for Pediatric Corticosteroid Dosage Forms in a Health System Pharmacy Setting
by M. Brooke Bernhardt, Farnaz Shokraneh, Ludmila Hrizanovska, Julius Lahtinen, Cynthia A. Brasher and Niklas Sandler
Pharmaceutics 2025, 17(6), 762; https://doi.org/10.3390/pharmaceutics17060762 - 9 Jun 2025
Cited by 1 | Viewed by 850
Abstract
Background: Pharmaceutical compounding remains a predominantly manual process with limited innovation, particularly in non-sterile applications. This study explores the implementation of an automated compounding platform based on 3D printing to enhance precision, efficiency, and adaptability in pediatric corticosteroid formulations. Methods: Personalized hydrocortisone dosage [...] Read more.
Background: Pharmaceutical compounding remains a predominantly manual process with limited innovation, particularly in non-sterile applications. This study explores the implementation of an automated compounding platform based on 3D printing to enhance precision, efficiency, and adaptability in pediatric corticosteroid formulations. Methods: Personalized hydrocortisone dosage forms were prepared in a hospital pharmacy setting using a proprietary excipient base and standardized procedures, including automated dosing and syringe heating when required. Three dosage forms—3.2 mg gel tablets, 2.8 mg water-free troches, and 1.2 mg orodispersible films (ODFs)—were selected to demonstrate the platform’s versatility and to address pediatric needs for varying strengths and dosage types. All products were prepared using a reproducible semi-solid extrusion (SSE)-based workflow with the consistent API-excipient blending and automated deposition. Results: Analytical testing confirmed that all formulations met pharmacopeial criteria for mass and content uniformity. The ODF and troche forms achieved rapid drug release, exceeding 75% within 5 min, while the gel tablet showed a slower release profile, reaching 86% by 60 min. Additionally, in-process homogeneity testing across syringe printing cycles confirmed the consistent API distribution. Conclusions: The results support the feasibility of integrating automated compounding technologies into pharmacy workflows. Such systems can improve accuracy, minimize variability, and streamline the production of customized pediatric medications, particularly for drugs with poor palatability or narrow therapeutic windows. Overall, this study highlights the potential of automation to modernize non-sterile compounding, and to better support individualized therapy. Full article
Show Figures

Figure 1

18 pages, 3937 KiB  
Article
Preliminary Evaluation of 3D-Printed Alginate/Gelatin Scaffolds for Protein Fast Release as Suitable Devices for Personalized Medicine
by Benedetta Ghezzi, Ruben Foresti, Luisa Pia Scialoia, Maddalena Botti, Arianna Mersanne, Fulvio Ratto, Francesca Rossi, Chiara Martini, Paolo Perini, Elda Favari and Antonio Freyrie
Biomedicines 2025, 13(6), 1365; https://doi.org/10.3390/biomedicines13061365 - 2 Jun 2025
Viewed by 707
Abstract
Background/Objectives: Drug-coated balloons (DCBs) are emerging as a promising treatment for peripheral artery disease; however, current technologies lack flexibility in customizing drug release profiles and composition, limiting their therapeutic potential. This study aims to develop a Gelatin (Gel) and Sodium Alginate (Alg) bioink [...] Read more.
Background/Objectives: Drug-coated balloons (DCBs) are emerging as a promising treatment for peripheral artery disease; however, current technologies lack flexibility in customizing drug release profiles and composition, limiting their therapeutic potential. This study aims to develop a Gelatin (Gel) and Sodium Alginate (Alg) bioink loaded with apolipoprotein A-I (apoA-I) for controlled drug delivery by using additive manufacturing technologies. Methods: We developed and printed via rapid freeze prototyping (RFP) a Gel and Alg bioink loaded with different concentrations of apoA-I. Mechanical properties related to compressional and tensile forces have been studied, as well as the structural stability and active release from the 3D structure of apoA-I (cholesterol efflux assays). The biological behavior of HUVEC cells with and without ApoA-I was assessed by proliferation assay, metabolic activity analysis, and fluorescence imaging. Results: The 3D structures presented breakpoint stress values consistent with the mechanical requirements for integration within a DCB, and the ability to effectively promote cholesterol transport in J774 cells. Moreover, in vitro studies on HUVECs revealed that the scaffolds exhibited no cytotoxic effects, leading to increased ATP levels and enhanced metabolic activity over time, confirming the possibility to obtain RFP-printed Alg/Gel scaffolds able to provide a stable structure capable of controlled apoA-I release. Conclusions: These findings support the potential of Alg/Gel+apoA-I scaffolds as biocompatible drug delivery systems for vascular applications. Their ability to maintain structural integrity while enabling controlled biomolecular release positions them as promising candidates for personalized cardiovascular therapy, facilitating the rapid customization of bioprinted therapeutic platforms. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Figure 1

48 pages, 2555 KiB  
Review
Review on 3D Printing Filaments Used in Fused Deposition Modeling Method for Dermatological Preparations
by Yong Li Chan, Riyanto Teguh Widodo, Long Chiau Ming, Abdullah Khan, Syed Atif Abbas, Ng Yen Ping, Zarif Mohamed Sofian and Mahibub Mahamadsa Kanakal
Molecules 2025, 30(11), 2411; https://doi.org/10.3390/molecules30112411 - 30 May 2025
Cited by 1 | Viewed by 587
Abstract
Three-dimensional printing, particularly Fused Deposition Modeling (FDM), has revolutionized dermatological drug delivery by offering the ability to create personalized and precise drug formulations. This technology enables the design of customized drug delivery systems using a variety of polymers, such as Polylactic Acid (PLA), [...] Read more.
Three-dimensional printing, particularly Fused Deposition Modeling (FDM), has revolutionized dermatological drug delivery by offering the ability to create personalized and precise drug formulations. This technology enables the design of customized drug delivery systems using a variety of polymers, such as Polylactic Acid (PLA), Polyvinyl Alcohol (PVA), Polyethylene Glycol (PEG), and Polycaprolactone (PCL), each with unique properties that enhance drug release, patient compliance, and treatment efficacy. This review analyzes these polymers in terms of their advantages, limitations, and suitability for dermatological applications. The ability to tailor these materials offers significant potential in overcoming treatment regimens. Additionally, the customization of three-dimensional-printed drug delivery systems provides a platform for creating patient-specific solutions that are more effective and adaptable to individual needs. Despite challenges such as moisture sensitivity and mechanical brittleness, the potential of FDM technology to improve dermatological treatments remains promising. The future of three-dimensional printing in dermatology lies in the integration of optimized materials and advanced printing techniques, which could further enhance patient-specific care and broaden the clinical applicability of these technologies in the pharmaceutical and biomedical sectors. By addressing these limitations and expanding material choices, FDM-based drug delivery systems have the potential to revolutionize the management of dermatological conditions, offering improved therapeutic outcomes and quality of life for patients. Full article
(This article belongs to the Special Issue Advances in Functional Polymers and Their Applications)
Show Figures

Figure 1

36 pages, 2313 KiB  
Review
PLGA Implants for Controlled Drug Delivery and Regenerative Medicine: Advances, Challenges, and Clinical Potential
by Hossein Omidian and Renae L. Wilson
Pharmaceuticals 2025, 18(5), 631; https://doi.org/10.3390/ph18050631 - 27 Apr 2025
Cited by 1 | Viewed by 2254
Abstract
Poly(lactide-co-glycolide) (PLGA) implants have become a cornerstone in drug delivery and regenerative medicine due to their biocompatibility, tunable degradation, and capacity for sustained, localized therapeutic release. Recent innovations in polymer design, fabrication methods, and functional modifications have expanded their utility across [...] Read more.
Poly(lactide-co-glycolide) (PLGA) implants have become a cornerstone in drug delivery and regenerative medicine due to their biocompatibility, tunable degradation, and capacity for sustained, localized therapeutic release. Recent innovations in polymer design, fabrication methods, and functional modifications have expanded their utility across diverse clinical domains, including oncology, neurology, orthopedics, and ophthalmology. This review provides a comprehensive analysis of PLGA implant properties, fabrication strategies, and biomedical applications, while addressing key challenges such as burst release, incomplete drug release, manufacturing complexity, and inflammatory responses. Emerging solutions—such as 3D printing, in situ forming systems, predictive modeling, and patient-specific customization—are improving implant performance and clinical translation. Emphasis is placed on scalable production, long-term biocompatibility, and personalized design to support the next generation of precision therapeutics. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

26 pages, 4052 KiB  
Review
Use of Computational Intelligence in Customizing Drug Release from 3D-Printed Products: A Comprehensive Review
by Fantahun Molla Kassa, Souha H. Youssef, Yunmei Song and Sanjay Garg
Pharmaceutics 2025, 17(5), 551; https://doi.org/10.3390/pharmaceutics17050551 - 23 Apr 2025
Viewed by 797
Abstract
Computational intelligence (CI) mimics human intelligence by expanding the capabilities of machines in data analysis, pattern recognition, and making informed decisions. CI has shown promising contributions to advancements in drug discovery, formulation, and manufacturing. Its ability to analyze vast amounts of patient data [...] Read more.
Computational intelligence (CI) mimics human intelligence by expanding the capabilities of machines in data analysis, pattern recognition, and making informed decisions. CI has shown promising contributions to advancements in drug discovery, formulation, and manufacturing. Its ability to analyze vast amounts of patient data and optimize drug formulations by predicting pharmacokinetic and pharmacodynamic responses makes it a very useful platform for personalized medicine. The integration of CI with 3D printing further strengthens this potential, as 3D printing enables the fabrication of personalized medicines with precise doses, controlled-release profiles, and complex formulations. Furthermore, the automated and digital capabilities of 3D printing make it suitable for integration with CI. CI has proven useful in predicting material printability, optimizing drug release rates, designing complex structures, ensuring quality control, and improving manufacturing processes in 3D printing. In the context of customizing drug release from 3D-printed products, CI techniques have been applied to predict drug release from input variables and to design geometries that achieve the desired release profile. This review explores the role of CI in customizing drug release from 3D-printed formulations. It provides overview of limitations of 3D printing; how CI can overcome these challenges, and its potential in customizing drug release; a comparison of CI with other methods of optimization; and real-world examples of CI integration in 3D printing. Full article
(This article belongs to the Special Issue 3D Printing of Drug Delivery Systems)
Show Figures

Graphical abstract

27 pages, 2497 KiB  
Review
Chitosan Micro/Nanocapsules in Action: Linking Design, Production, and Therapeutic Application
by Yaride Pérez-Pacheco, Bartosz Tylkowski and Ricard García-Valls
Molecules 2025, 30(2), 252; https://doi.org/10.3390/molecules30020252 - 10 Jan 2025
Cited by 4 | Viewed by 2491
Abstract
pH sensitivity of chitosan allows for precise phase transitions in acidic environments, controlling swelling and shrinking, making chitosan suitable for drug delivery systems. pH transitions are modulated by the presence of cross-linkers by the functionalization of the chitosan chain. This review relays a [...] Read more.
pH sensitivity of chitosan allows for precise phase transitions in acidic environments, controlling swelling and shrinking, making chitosan suitable for drug delivery systems. pH transitions are modulated by the presence of cross-linkers by the functionalization of the chitosan chain. This review relays a summary of chitosan functionalization and tailoring to optimize drug release. The potential to customize chitosan for different environments and therapeutic uses introduces opportunities for drug encapsulation and release. The focus on improving drug encapsulation and sustained release in specific tissues is an advanced interpretation, reflecting the evolving role of chitosan in achieving targeted and more efficient therapeutic outcomes. This review describes strategies to improve solubility and stability and ensure the controlled release of encapsulated drugs. The discussion on optimizing factors like cross-linking density, particle size, and pH for controlled drug release introduces a deeper understanding of how to achieve specific therapeutic effects. These strategies represent a refined approach to designing chitosan-based systems, pushing the boundaries of sustained release technologies and offering new avenues for precise drug delivery profiles. Full article
(This article belongs to the Special Issue Advances in Targeted Delivery of Nanomedicines)
Show Figures

Figure 1

24 pages, 7156 KiB  
Article
Nose-to-Brain Delivery of Chitosan-Grafted Leciplexes for Promoting the Bioavailability and Antidepressant Efficacy of Mirtazapine: In Vitro Assessment and Animal Studies
by Amani M. El Sisi, Essam M. Eissa, Ahmed H. E. Hassan, Marina A. Bekhet, Fatma I. Abo El-Ela, Eun Joo Roh, Rasha M. Kharshoum and Adel A. Ali
Pharmaceuticals 2025, 18(1), 46; https://doi.org/10.3390/ph18010046 - 3 Jan 2025
Cited by 2 | Viewed by 1490
Abstract
Background/Objectives: Mirtazapine (MRZ) is a psychotropic drug prescribed to manage serious sorts of depression. By virtue of its extensive initial-pass metabolic process with poor water solubility, the ultimate bioavailability when taken orally is a mere 50%, necessitating repeated administration. The current inquiry [...] Read more.
Background/Objectives: Mirtazapine (MRZ) is a psychotropic drug prescribed to manage serious sorts of depression. By virtue of its extensive initial-pass metabolic process with poor water solubility, the ultimate bioavailability when taken orally is a mere 50%, necessitating repeated administration. The current inquiry intended to fabricate nose-to-brain chitosan-grafted cationic leciplexes of MRZ (CS-MRZ-LPX) to improve its pharmacokinetic weaknesses and boost the pharmacodynamics aspects. Methods: Primarily, MRZ-loaded leciplexes (MRZ-LPXs) were fabricated and tailored employing a central composite design (CCD). Vesicle diameter size (VS), entrapment efficiency (EE %), cumulative MRZ release percentage (CMRZR %), and total quantity penetrating after twenty-four hours (Q24) were the four parameters assessed. Then, the determined optimum formulation was coated with chitosan (CS-MRZ-LPX) and utilized in pharmacodynamics investigations and in vivo biologic distribution studies in Wistar male rats. Results: The customized MRZ-LPX formulation had a diameter size of 186.2 ± 3.5 nm and drug EE of 45.86 ± 0.76%. Also, the tailored MRZ-LPX formulation had a cumulative amount of MRZ released of 76.66 ± 3.06% and the total Q24 permeated was 383.23 ± 13.08 µg/cm2. Intranasal delivery of the tailored CS-MRZ-LPX revealed notably superior pharmacokinetic attributes inside the brain and circulation compared to the orally administered MRZ suspension and the intranasal free drug suspension (p < 0.05); the relative bioavailability was 370.9% and 385.6% for plasma and brain, respectively. Pharmacodynamics’ and immunohistopathological evaluations proved that optimum intranasal CS-MRZ-LPX boosted antidepressant activity compared to the oral and free nasal drug administration. Conclusions: CS-MRZ-LPX tailored formulation can potentially be regarded as a prospective nano platform to boost bioavailability and enhance pharmacodynamics efficacy. Ultimately, intranasal CS-MRZ-LPX can be considered a promising avenue for MRZ targeted brain delivery as an antidepressant. Full article
(This article belongs to the Special Issue Pharmaceutical Formulation Characterization Design)
Show Figures

Graphical abstract

20 pages, 4826 KiB  
Article
FDM 3D Printing Filaments with pH-Dependent Solubility: Preparation, Characterization and In Vitro Release Kinetics
by Gustavo M. Nascimento, Pedro H. N. Cardoso, Eumara M. E. da Silva, Ginetton F. Tavares, Nelson C. Olivier, Pedro M. Faia, Evando S. Araújo and Fabrício S. Silva
Processes 2024, 12(12), 2916; https://doi.org/10.3390/pr12122916 - 19 Dec 2024
Cited by 1 | Viewed by 1144
Abstract
The process of manufacturing drug delivery systems (DDSs) by fused deposition modeling (FDM) with 3D printing requires the availability of a polymeric filament containing the drug of interest. This filament is fused in the printer heating system and used to print polymer/drug volumetric [...] Read more.
The process of manufacturing drug delivery systems (DDSs) by fused deposition modeling (FDM) with 3D printing requires the availability of a polymeric filament containing the drug of interest. This filament is fused in the printer heating system and used to print polymer/drug volumetric parts. Polymers with pH-dependent solubility are widely known in the literature for their controlled release and drug dissolution-enhancing properties, biocompatibility, and variety of release profiles. Given these characteristics, the study of pH-responsive 3D printing filaments appears as a potential alternative for the development of new 3D printing functional materials for healthcare area applications. In this sense, this work aimed at the preparation and characterization of pH-dependent filaments of the Eudragit E 100 copolymer (E100) containing the model drug Amlodipine (Aml) for potential application in the manufacturing of DDSs by 3D printing. The E100/Aml filaments with two distinct drug concentrations were produced by hot-melt extrusion at 105 °C. The posterior chemical protonation treatment of the filaments for 60 min provided a significant improvement in their flexibility. Microstructural analysis (SEM, XRD, FTIR, and DLS) and thermal studies by DSC proved the feasibility of producing the filaments by hot-melt extrusion without the degradation of their constituent materials. The in vitro dissolution profiles of the E100/Aml samples were evaluated in simulated gastric and intestinal fluids. The facilitated solubility of the polymer in an acidic medium (pH = 1.2) was preserved in the filament form, with rapid and reproducible drug release from the polymer matrix. The saturation of the drug concentration in the medium occurred after 30 min of testing for E100/Aml models. A customized 3D part with geometry and fill control was also printed from E100/Aml filaments as proof of concept. Full article
(This article belongs to the Special Issue Drug Carriers Production Processes for Innovative Human Applications)
Show Figures

Figure 1

15 pages, 2853 KiB  
Article
The Formulation and Evaluation of Customized Prednisolone Gel Tablets Prepared by an Automated Extrusion-Based Material Deposition Method
by Marina Tihhonova, Andres Meos, Sari Airaksinen, Jaan Aruväli, Niklas Sandler Topelius, Jyrki Heinämäki and Urve Paaver
Pharmaceutics 2024, 16(12), 1532; https://doi.org/10.3390/pharmaceutics16121532 - 29 Nov 2024
Viewed by 1423
Abstract
Background/Objectives: An automated extrusion-based material deposition is a contemporary and rapid method for pharmaceutical dose-dispensing and preparing (printing) individualized solid dosage forms. The aim of this study was to investigate and gain knowledge of the feasibility of automated extrusion-based material deposition technology [...] Read more.
Background/Objectives: An automated extrusion-based material deposition is a contemporary and rapid method for pharmaceutical dose-dispensing and preparing (printing) individualized solid dosage forms. The aim of this study was to investigate and gain knowledge of the feasibility of automated extrusion-based material deposition technology in preparing customized prednisolone (PRD)-loaded gel tablets for veterinary applications (primarily for dogs and cats). Methods: The PRD loads of the extrusion-based deposited gel tablets were 0.5% and 1.0%, and the target weights of tablets were 0.250 g, 0.500 g, and 1.000 g. The effects of the material deposition processes on the physical solid state, in vitro dissolution, and the physicochemical stability of PRD gel tablets were investigated. Results: The small-sized gel tablets presented a uniform round shape with an exceptionally smooth outer surface texture. The actual average weight of the tablets (n = 10) was very close to the target weight, showing the precision of the process. We found that PRD was in a pseudopolymorphic sesquihydrate form (instead of an initial PRD crystalline form II) in the gel tablets. In all the immediate-release gel tablets studied, more than 70% of the drug load was released within 30 min. The soft texture and dimensions of gel tablets affected the dissolution behaviour in vitro, suggesting the need for further development and standardization of a dissolution test method for such gel tablets. A short-term storage stability study revealed that the content of PRD did not decrease within 3 months. Conclusions: Automated extrusion-based material deposition is a feasible method for the rapid preparation of gel tablets intended for veterinary applications. In addition, the present technology and gel tablets could be used in pediatric and personalized medicine where precise dosing is crucial. Full article
(This article belongs to the Special Issue Dosage Form Design for Oral Administration)
Show Figures

Figure 1

17 pages, 4609 KiB  
Article
Slow H2S-Releasing Donors and 3D Printable Arrays Cellular Models in Osteo-Differentiation of Mesenchymal Stem Cells for Personalized Therapies
by Ilaria Arciero, Silvia Buonvino and Sonia Melino
Biomolecules 2024, 14(11), 1380; https://doi.org/10.3390/biom14111380 - 30 Oct 2024
Cited by 1 | Viewed by 2008
Abstract
The effects of the hydrogen sulfide (H2S) slow-releasing donor, named GSGa, a glutathione-conjugate water-soluble garlic extract, on human mesenchymal stem cells (hMSCs) in both bidimensional (2D) and three-dimensional (3D) cultures were investigated, demonstrating increased expression of the antioxidant enzyme HO-1 and [...] Read more.
The effects of the hydrogen sulfide (H2S) slow-releasing donor, named GSGa, a glutathione-conjugate water-soluble garlic extract, on human mesenchymal stem cells (hMSCs) in both bidimensional (2D) and three-dimensional (3D) cultures were investigated, demonstrating increased expression of the antioxidant enzyme HO-1 and decreased expression of the pro-inflammatory cytokine interleukin-6 (IL-6). The administration of the H2S donor can therefore increase the expression of antioxidant enzymes, which may have potential therapeutic applications in osteoarthritis (OA). Moreover, GSGa was able to promote the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), but not of cardiac mesenchymal stem cells (cMSCs) in a 2D culture system. This result highlights the varying sensitivity of hMSCs to the H2S donor GSGa, suggesting that the induction of osteogenic differentiation in stem cells by chemical factors is dependent on the tissue of origin. Additionally, a 3D-printable mesenchymal stem cells–bone matrix array (MSCBM), designed to closely mimic the stiffness of bone tissue, was developed to serve as a versatile tool for evaluating the effects of drugs and stem cells on bone repair in chronic diseases, such as OA. We demonstrated that the osteogenic differentiation process in cMSCs can be induced just by simulating bone stiffness in a 3D system. The expression of osteocalcin, RUNX2, and antioxidant enzymes was also assessed after treating MSCs with GSGa and/or increasing the stiffness of the culture environment. The printability of the array may enable better customization of the cavities, enabling an accurate replication of real bone defects. This could optimize the BM array to mimic bone defects not only in terms of stiffness, but also in terms of shape. This culture system may enable a rapid screening of antioxidant and anti-inflammatory compounds, facilitating a more personalized approach to regenerative therapy. Full article
Show Figures

Graphical abstract

20 pages, 2552 KiB  
Review
Advances and Functional Integration of Hydrogel Composites as Drug Delivery Systems in Contemporary Dentistry
by Dragos Nicolae Fratila, Dragos Ioan Virvescu, Ionut Luchian, Monica Hancianu, Elena Raluca Baciu, Oana Butnaru and Dana Gabriela Budala
Gels 2024, 10(10), 661; https://doi.org/10.3390/gels10100661 - 16 Oct 2024
Cited by 2 | Viewed by 3205
Abstract
This study explores the recent advances of and functional insights into hydrogel composites, materials that have gained significant attention for their versatile applications across various fields, including contemporary dentistry. Hydrogels, known for their high water content and biocompatibility, are inherently soft but often [...] Read more.
This study explores the recent advances of and functional insights into hydrogel composites, materials that have gained significant attention for their versatile applications across various fields, including contemporary dentistry. Hydrogels, known for their high water content and biocompatibility, are inherently soft but often limited by mechanical fragility. Key areas of focus include the customization of hydrogel composites for biomedical applications, such as drug delivery systems, wound dressings, and tissue engineering scaffolds, where improved mechanical properties and bioactivity are critical. In dentistry, hydrogels are utilized for drug delivery systems targeting oral diseases, dental adhesives, and periodontal therapies due to their ability to adhere to the mucosa, provide localized treatment, and support tissue regeneration. Their unique properties, such as mucoadhesion, controlled drug release, and stimuli responsiveness, make them ideal candidates for treating oral conditions. This review highlights both experimental breakthroughs and theoretical insights into the structure–property relationships within hydrogel composites, aiming to guide future developments in the design and application of these multifunctional materials in dentistry. Ultimately, hydrogel composites represent a promising frontier for advancing materials science with far-reaching implications in healthcare, environmental technology, and beyond. Full article
Show Figures

Figure 1

Back to TopTop