Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = curcumin release platform

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3976 KiB  
Article
SGLT2 Inhibitors and Curcumin Co-loaded Liposomal Formulations as Synergistic Delivery Systems for Heart Failure Therapy
by Bianca-Ștefania Profire, Florentina Geanina Lupașcu, Alexandru Sava, Ioana-Andreea Turin-Moleavin, Dana Bejan, Cristian Stătescu, Victorița Șorodoc, Radu-Andy Sascău, Laurențiu Șorodoc, Mariana Pinteala and Lenuța Profire
Pharmaceutics 2025, 17(8), 969; https://doi.org/10.3390/pharmaceutics17080969 - 26 Jul 2025
Viewed by 412
Abstract
Background/Objectives: As novel synergistic strategy for heart failure (HF), this study explores the formulation and characterization of liposomal systems co-loaded with SGLT2 inhibitors (dapagliflozin—DAPA and empagliflozin—EMPA) and curcumin (Cur). Methods: To enhance liposomal membrane stability and achieve sustained, controlled drug release, [...] Read more.
Background/Objectives: As novel synergistic strategy for heart failure (HF), this study explores the formulation and characterization of liposomal systems co-loaded with SGLT2 inhibitors (dapagliflozin—DAPA and empagliflozin—EMPA) and curcumin (Cur). Methods: To enhance liposomal membrane stability and achieve sustained, controlled drug release, oleanolic acid (OA) was incorporated into the lipid bilayer, while the liposomal surface was coated with polyvinylpyrrolidone (PVP). Results: The resulting liposomes exhibited favorable physico-chemical properties (particle size ~170 nm, low PDI, negative zeta potential), high encapsulation efficiencies (up to 97%), and spherical morphology as confirmed by STEM. XRD and DSC analyses indicated successful API incorporation and amorphization within the lipid matrix, while PVP coating provided slight improvements in thermal stability. Trehalose proved to be an effective cryoprotectant, preserving liposome integrity after freeze-drying. In vitro release studies demonstrated sustained and delayed drug release, especially in PVP-coated and OA-containing formulations. Conclusions: All these findings highlight the promise of PVP-coated, OA-stabilized liposomal formulations co-loaded with SGLT2 inhibitors and Cur as biocompatible, multifunctional platforms for targeted HF therapy. Full article
Show Figures

Graphical abstract

21 pages, 2401 KiB  
Article
Co-Formulation of Iron Oxide and PLGA Nanoparticles to Deliver Curcumin and IFNα for Synergistic Anticancer Activity in A375 Melanoma Skin Cancer Cells
by Magdi Abobaker, Mershen Govender and Yahya E. Choonara
Pharmaceutics 2025, 17(7), 860; https://doi.org/10.3390/pharmaceutics17070860 - 30 Jun 2025
Viewed by 341
Abstract
Background/Objectives: Skin cancer remains a significant global health issue, driving the development of new treatment strategies to improve clinical outcomes and prevent recurrence. Traditional monotherapies often face obstacles such as bioactive resistance, prompting interest in combination therapies that enhance efficacy, while minimizing [...] Read more.
Background/Objectives: Skin cancer remains a significant global health issue, driving the development of new treatment strategies to improve clinical outcomes and prevent recurrence. Traditional monotherapies often face obstacles such as bioactive resistance, prompting interest in combination therapies that enhance efficacy, while minimizing side effects. This study investigated the use of a co-nanoparticle approach of iron oxide nanoparticles (NPs) surface-functionalized with curcumin (Cur-FeONPs) delivered with prolonged-release interferon alpha (IFNα)-loaded PLGA NPs (IFNα-PLGANPs) for the synergistic treatment of malignant melanoma tested in A375 cells. Methods: Extensive in vitro characterization studies of the Cur-FeONPs and IFNα-PLGANPs were performed, including zeta-size profiling, morphological studies, and structural validation, in addition to cytotoxicity assessments on A375 melanoma and NIH-3T3 fibroblast cells. Results: The Cur-FeONP and IFNα-PLGANPs synthesis processes yielded NPs with an average size of 111.0 nm and 97.0 nm, respectively. Morphological and structural validation studies determined the successful synthesis of the nanoparticulate systems, with cell viability analyses displaying significant cytotoxicity against A375 melanoma cells for the combination treatment, when compared to the individual platforms, with a minimal effect on NIH-3T3 fibroblast cells. Conclusions: The results of this study present a promising synergistic approach for enhanced anticancer activity in A375 melanoma skin cancer cells, providing a potential platform for future preclinical and clinical studies. Full article
Show Figures

Figure 1

26 pages, 8375 KiB  
Article
Water-Soluble Formulations of Curcumin and Eugenol Produced by Spray Drying
by Iskra Z. Koleva, Katya Kamenova, Petar D. Petrov and Christo T. Tzachev
Pharmaceuticals 2025, 18(7), 944; https://doi.org/10.3390/ph18070944 - 23 Jun 2025
Viewed by 561
Abstract
Background/Objectives: In this study, we present a green, scalable platform for the production of water-dispersible powders co-encapsulating the lipophilic bioactives curcumin (Cur) and eugenol (Eug) within the amphiphilic polymer Soluplus® (SP) via low-temperature spray drying. Methods: The amount of Cur [...] Read more.
Background/Objectives: In this study, we present a green, scalable platform for the production of water-dispersible powders co-encapsulating the lipophilic bioactives curcumin (Cur) and eugenol (Eug) within the amphiphilic polymer Soluplus® (SP) via low-temperature spray drying. Methods: The amount of Cur (1%, 5%, and 10%) and Eug (5%, 10%, 15%, and 20%) was varied to achieve single- and double-loaded water-soluble powders with the maximum amount of active substances. The powders containing a higher loading of Cur, 5% and 10% (and Eug), were obtained from water/ethanol mixtures (2:1 and 5:1 v/v ratio), while the formulation with 1% of Cur was spray-dried by using water as a solvent. Results: By leveraging aqueous or aqueous–ethanolic feed systems, we achieved high loading of the bioactive substances—up to 10% Cur and 20% Eug (w/w)—while minimizing organic solvent use. Myo-inositol was incorporated as a stabilizing excipient to modulate particle morphology, improve powder flowability, and enhance redispersibility. Physicochemical characterization revealed nanoscale micellization (53–127 nm), amorphization of both actives as confirmed by XRD and DSC, and the absence of crystalline residue. Encapsulation efficiencies exceeded 95% for Cur and 93% for Eug. Dissolution tests demonstrated a rapid release from the 5% Cur/5% Eug formulation (>85% in 5 min), while higher-loaded single-formulations showed progressively slower release (up to 45 min). Conclusions: This work demonstrates a robust and environmentally responsible encapsulation strategy, suitable for delivering poorly water-soluble phytochemicals with potential applications in oral nutraceuticals and pharmaceutical dosage forms. Full article
Show Figures

Figure 1

24 pages, 11557 KiB  
Article
pH-Sensitive Chitosan-Based Hydrogels Trap Poloxamer Micelles as a Dual-Encapsulating Responsive System for the Loading and Delivery of Curcumin
by Alejandra E. Herrera-Alonso, Daniela F. Rodríguez-Chávez, Alberto Toxqui-Terán, José F. Rubio-Valle, José E. Martín-Alfonso, Samuel Longoria-García, Hugo L. Gallardo-Blanco, Celia N. Sánchez-Domínguez and Margarita Sánchez-Domínguez
Polymers 2025, 17(10), 1335; https://doi.org/10.3390/polym17101335 - 14 May 2025
Cited by 1 | Viewed by 896
Abstract
pH-sensitive hydrogels are important soft biomaterials as they mimic biological organisms by altering their properties in response to small pH changes in biological fluids. In this work, novel chitosan (Cs) hydrogels were developed using an innovative dual curcumin (Cur) encapsulation system. Cur was [...] Read more.
pH-sensitive hydrogels are important soft biomaterials as they mimic biological organisms by altering their properties in response to small pH changes in biological fluids. In this work, novel chitosan (Cs) hydrogels were developed using an innovative dual curcumin (Cur) encapsulation system. Cur was loaded into poloxamer 407 micelles and incorporated into citric acid (CA) cross-linked Cs hydrogels using a central composite design. The hydrogels were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), rheological tests, and in vitro experiments, such as hemolysis and cytotoxicity assays. FTIR confirmed cross-linking between Cs and CA, while DSC suggested interactions between Cur-loaded micelles and the hydrogel matrix. Rheological analysis revealed gel-like behavior, with G′ consistently higher than G, and temperature influenced hydrogel properties. SEM showed a denser network when Cur-loaded micelles were incorporated, slowing Cur release. At physiological pH (7.4), 75% of Cur was released after 7 days, while 84% was released at pH 5.5, showing pH-responsive behavior. Cytotoxicity tests showed over 80% viability of VERO CCL-81 cells (0.2–20 ppm hydrogel). This dual-encapsulation system provides a simple and effective platform for loading lipophilic drugs into pH-responsive hydrogels. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

18 pages, 3720 KiB  
Article
Study of Polyethylene Oxide-b-Poly(ε-caprolactone-ran-δ-valerolactone) Amphiphilic Architectures and Their Effects on Self-Assembly as a Drug Carrier
by Chaoqun Wang, Tong Wu, Yidi Li, Jie Liu, Yanshai Wang, Kefeng Wang, Yang Li and Xuefei Leng
Polymers 2025, 17(8), 1030; https://doi.org/10.3390/polym17081030 - 10 Apr 2025
Viewed by 415
Abstract
Amphiphilic block copolymers with complex topologies (e.g., star and brush topologies) have attracted significant attention in drug delivery owing to their superior performance over linear micelles. However, their precise synthesis and structure–property relationships require further investigation. In this study, hydroxylated polybutadiene with adjustable [...] Read more.
Amphiphilic block copolymers with complex topologies (e.g., star and brush topologies) have attracted significant attention in drug delivery owing to their superior performance over linear micelles. However, their precise synthesis and structure–property relationships require further investigation. In this study, hydroxylated polybutadiene with adjustable topology and hydroxyl group density was employed as a macroinitiator to synthesize well-defined amphiphilic poly (ethylene oxide)-b-poly(ε-caprolactone-ran-δ-valerolactone) (PEO-b-P(CL-ran-VL)) copolymers via ring-opening polymerization (ROP). A series of linear, star, linear–comb, and star–comb copolymers were prepared as curcumin-loaded micellar carriers for the study. The self-assembly behavior, drug encapsulation efficiency, and in vitro release profiles of these copolymers in aqueous environments were systematically investigated. The results demonstrated that increasing the branch length of star–comb copolymers effectively reduced micelle size from 143 to 96 nm and enhanced drug encapsulation efficiency from 27.3% to 39.8%. Notably, the star–comb architecture exhibited 1.2-fold higher curcumin encapsulation efficiency than the linear counterparts. Furthermore, the optimized star–comb nanoparticles displayed sustained release kinetics (73.38% release over 15 days), outperforming conventional linear micelles. This study establishes a quantitative structure–property relationship between copolymer topology and drug delivery performance, providing a molecular design platform for programmable nanocarriers tailored to diverse therapeutic requirements of various diseases. Full article
Show Figures

Graphical abstract

27 pages, 3045 KiB  
Review
Curcumin in Ophthalmology: Mechanisms, Challenges, and Emerging Opportunities
by Adriana Ribeiro, Daniele Oliveira and Helena Cabral-Marques
Molecules 2025, 30(3), 457; https://doi.org/10.3390/molecules30030457 - 21 Jan 2025
Cited by 4 | Viewed by 3425
Abstract
Ocular diseases affecting the anterior and posterior segments of the eye are major causes of global vision impairment. Curcumin, a natural polyphenol, exhibits anti-inflammatory, antioxidant, antibacterial, and neuroprotective properties, making it a promising candidate for ocular therapy. However, its clinical use is hindered [...] Read more.
Ocular diseases affecting the anterior and posterior segments of the eye are major causes of global vision impairment. Curcumin, a natural polyphenol, exhibits anti-inflammatory, antioxidant, antibacterial, and neuroprotective properties, making it a promising candidate for ocular therapy. However, its clinical use is hindered by low aqueous solubility, poor bioavailability, and rapid systemic elimination. This review comprehensively highlights advances in curcumin delivery systems aimed at overcoming these challenges. Emerging platforms, including proniosomal gels, transferosomes, and cyclodextrin complexes, have improved solubility, permeability, and ocular retention. Nanoparticle-based carriers, such as hybrid hydrogels and biodegradable nanoparticles, enable sustained release and targeted delivery, supporting treatments for posterior segment diseases like diabetic retinopathy and age-related macular degeneration. For anterior segment conditions, including keratitis and dry eye syndrome, cyclodextrin-based complexes and mucoadhesive systems enhance corneal permeability and drug retention. Mechanistically, curcumin modulates key pathways, such as NF-κB and TLR4, reducing oxidative stress, angiogenesis, and apoptosis. Emerging strategies like photodynamic therapy and neuroprotective approaches broaden their application to eyelid conditions and neuroinflammatory ocular diseases. These advancements address curcumin’s pharmacokinetic limitations, supporting its clinical translation into ophthalmic therapies. This work underscores curcumin’s potential in ocular disease management and advocates clinical trials to validate its safety, efficacy, and therapeutic relevance. Full article
(This article belongs to the Special Issue Curcumin and Its Derivatives)
Show Figures

Figure 1

12 pages, 1987 KiB  
Article
Prilling as an Effective Tool for Manufacturing Submicrometric and Nanometric PLGA Particles for Controlled Drug Delivery to Wounds: Stability and Curcumin Release
by Chiara De Soricellis, Chiara Amante, Paola Russo, Rita Patrizia Aquino and Pasquale Del Gaudio
Pharmaceutics 2025, 17(1), 129; https://doi.org/10.3390/pharmaceutics17010129 - 17 Jan 2025
Cited by 1 | Viewed by 1162
Abstract
Background/Objectives: This study investigates for the first time the use of the prilling technique in combination with solvent evaporation to produce nano- and submicrometric PLGA particles to deliver properly an active pharmaceutical ingredient. Curcumin (CCM), a hydrophobic compound classified under BCS (Biopharmaceutics Classification [...] Read more.
Background/Objectives: This study investigates for the first time the use of the prilling technique in combination with solvent evaporation to produce nano- and submicrometric PLGA particles to deliver properly an active pharmaceutical ingredient. Curcumin (CCM), a hydrophobic compound classified under BCS (Biopharmaceutics Classification System) class IV, was selected as the model drug. Methods: Key process parameters, including polymer concentration, solvent type, nozzle size, and surfactant levels, were optimized to obtain stable particles with a narrow size distribution determined by DLS analysis. Results: Particles mean diameter (d50) 316 and 452 nm, depending on drug-loaded cargo as Curcumin-loaded PLGA nanoparticles demonstrated high encapsulation efficiency, assessed via HPLC analysis, stability, and controlled release profiles. In vitro studies revealed a faster release for lower drug loadings (90% release in 6 h) compared to sustained release over 7 days for higher-loaded nanoparticles, attributed to polymer degradation and drug-polymer interactions on the surface of the particles, as confirmed by FTIR analyses. Conclusions: These findings underline the potential of this scalable technique for biomedical applications, offering a versatile platform for designing drug delivery systems with tailored release characteristics. Full article
Show Figures

Figure 1

15 pages, 6112 KiB  
Article
Self-Exfoliated Guanidinium Covalent Organic Nanosheets as High-Capacity Curcumin Carrier
by Archita Sharma, Dhavan Sharma, Hengyu Lin, Hongcai (Joe) Zhou and Feng Zhao
Biomimetics 2024, 9(11), 709; https://doi.org/10.3390/biomimetics9110709 - 19 Nov 2024
Viewed by 1310
Abstract
Drug administration is commonly used to treat chronic wounds but faces challenges such as poor bioavailability, instability, and uncontrollable release. Existing drug delivery platforms are limited by chemical instability, poor functionality, complex synthesis, and toxic by-products. Presently, research efforts are focused on developing [...] Read more.
Drug administration is commonly used to treat chronic wounds but faces challenges such as poor bioavailability, instability, and uncontrollable release. Existing drug delivery platforms are limited by chemical instability, poor functionality, complex synthesis, and toxic by-products. Presently, research efforts are focused on developing novel drug carriers to enhance drug efficacy. Guanidinium Covalent Organic Nanosheets (gCONs) offer promising alternatives due to their high porosity, surface area, loading capacity, and ability to provide controlled, sustained, and target-specific drug delivery. Herein, we successfully synthesized self-exfoliated gCONs using a Schiff base condensation reaction and embedded curcumin (CUR), a polyphenolic pleiotropic drug with antioxidant and anti-inflammatory properties, via the wet impregnation method. The BET porosimeter exhibited the filling of gCON pores with CUR. Morphological investigations revealed the formation of sheet-like structures in gCON. Culturing human dermal fibroblasts (hDFs) on gCON demonstrated cytocompatibility even at a concentration as high as 1000 µg/mL. Drug release studies demonstrated a controlled and sustained release of CUR over an extended period of 5 days, facilitated by the high loading capacity of gCON. Furthermore, the inherent antioxidant and anti-inflammatory properties of CUR were preserved after loading into the gCON, underscoring the potential of CUR-loaded gCON formulation for effective therapeutic applications. Conclusively, this study provides fundamental information relevant to the performance of gCONs as a drug delivery system and the synergistic effect of CUR and CONs addressing issues like drug bioavailability and instability. Full article
(This article belongs to the Special Issue Biomimetic Drug Delivery Systems 2024)
Show Figures

Graphical abstract

15 pages, 2568 KiB  
Article
Remote-Controlled Activation of the Release through Drug-Loaded Magnetic Electrospun Fibers
by Richard Ziegler, Shaista Ilyas, Sanjay Mathur, Gerardo F. Goya and Jesús Antonio Fuentes-García
Fibers 2024, 12(6), 48; https://doi.org/10.3390/fib12060048 - 3 Jun 2024
Cited by 2 | Viewed by 2419
Abstract
The integration of magnetic nanoparticles within fibrillar structures represents an interesting avenue for the remotely controlled release of therapeutic agents. This work presents a novel drug release platform based on electrospun magnetic fibers (EMFs) combining drugs, magnetic nanoparticles (MNPs) and mesoporous silica nanoparticles [...] Read more.
The integration of magnetic nanoparticles within fibrillar structures represents an interesting avenue for the remotely controlled release of therapeutic agents. This work presents a novel drug release platform based on electrospun magnetic fibers (EMFs) combining drugs, magnetic nanoparticles (MNPs) and mesoporous silica nanoparticles (MSNs) for controlled drug delivery via alternating magnetic fields (AMF). The platform was demonstrated to be versatile and effective for hydrophilic ketorolac (KET) and hydrophobic curcumin (CUR) encapsulation and the major response observed for AMF-triggered release was reached using drug-loaded MSNs within the fibers, providing fine control over drug release patterns. The EMFs exhibited excellent inductive heating capabilities, showing a temperature increase of ∆T up to 8 °C within a 5 min AMF pulse. The system is shown to be promising for applications like transdermal pain management, oncological drug delivery, tissue engineering, and wound healing, enabling precise control over drug release in both spatial and temporal dimensions. The findings of this study offer valuable insights into the development of the next generation of smart drug delivery systems, based in multifunctional materials that can be remotely regulated and potentially revolutionize the field of nanomedicine. Full article
Show Figures

Graphical abstract

16 pages, 2077 KiB  
Article
Design and Development of a Polymeric-Based Curcumin Nanoparticle for Drug Delivery Enhancement and Potential Incorporation into Nerve Conduits
by Giuliana Gan Giannelli, Edwin Davidson, Jorge Pereira and Swadeshmukul Santra
Molecules 2024, 29(10), 2281; https://doi.org/10.3390/molecules29102281 - 12 May 2024
Cited by 5 | Viewed by 2159
Abstract
Peripheral nerve injuries (PNI) impact millions of individuals in the United States, prompting thousands of nerve repair procedures annually. Nerve conduits (NC) are commonly utilized to treat nerve injuries under 3 cm but larger gaps still pose a challenge for successful peripheral nerve [...] Read more.
Peripheral nerve injuries (PNI) impact millions of individuals in the United States, prompting thousands of nerve repair procedures annually. Nerve conduits (NC) are commonly utilized to treat nerve injuries under 3 cm but larger gaps still pose a challenge for successful peripheral nerve regeneration (PNR) and functional recovery. This is partly attributed to the absence of bioactive agents such as stem cells or growth factors in FDA-approved conduits due to safety, harvesting, and reproducibility concerns. Therefore, curcumin, a bioactive phytochemical, has emerged as a promising alternative bioactive agent due to its ability to enhance PNR and overcome said challenges. However, its hydrophobicity and rapid degradation in aqueous solutions are considerable limitations. In this work, a nanoscale delivery platform with tannic acid (TA) and polyvinylpyrrolidone (PVP) was developed to encapsulate curcumin for increased colloidal and chemical stability. The curcumin nanoparticles (CurNPs) demonstrate significantly improved stability in water, reduced degradation rates, and controlled release kinetics when compared to free curcumin. Further, cell studies show that the CurNP is biocompatible when introduced to neuronal cells (SH-SY5Y), rat Schwann cells (RSC-S16), and murine macrophages (J774 A.1) at 5 μM, 5 μM, and 10 μM of curcumin, respectively. As a result of these improved physicochemical properties, confocal fluorescence microscopy revealed superior delivery of curcumin into these cells when in the form of CurNPs compared to its free form. A hydrogen peroxide-based oxidative stress study also demonstrated the CurNP’s potential to protect J774 A.1 cells against excessive oxidative stress. Overall, this study provides evidence for the suitability of CurNPs to be used as a bioactive agent in NC applications. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Graphical abstract

16 pages, 4630 KiB  
Article
Chitosan/Virgin Coconut Oil-Based Emulsions Doped with Photosensitive Curcumin Loaded Capsules: A Functional Carrier to Topical Treatment
by Luísa C. Rodrigues, Adriana P. Ribeiro, Simone S. Silva and Rui L. Reis
Polymers 2024, 16(5), 641; https://doi.org/10.3390/polym16050641 - 27 Feb 2024
Cited by 2 | Viewed by 2169
Abstract
In recent years, there has been a growing interest in developing smart drug delivery systems based on natural resources combined with stimulus-sensitive elements. This trend aims to formulate innovative and sustainable delivery platforms tailored for topical applications. This work proposed the use of [...] Read more.
In recent years, there has been a growing interest in developing smart drug delivery systems based on natural resources combined with stimulus-sensitive elements. This trend aims to formulate innovative and sustainable delivery platforms tailored for topical applications. This work proposed the use of layer-by-layer (LbL) methodology to fabricate biocompatible photo-responsive multilayer systems. These systems are composed of a polyoxometalate inorganic salt (POM) ([NaP5W30O110]14−) and a natural origin polymer, chitosan (CHT). Curcumin (CUR), a natural bioactive compound, was incorporated to enhance the functionality of these systems during the formation of hollow capsules. The capsules produced, with sizes between 2–5µm (SEM), were further dispersed into CHT/VCO (virgin coconut oil) emulsion solutions that were casted into molds and dried at 37 °C for 48 h. The system presented a higher water uptake in PBS than in acidic conditions, still significantly lower than that earlier reported to other CHT/VCO-based systems. The drug release profile is not significantly influenced by the medium pH reaching a maximum of 37% ± 1% after 48 h. The antioxidant performance of the designed structures was further studied, suggesting a synergistic beneficial effect resulting from CUR, POM, and VCO individual bioactivities. The increased amount of those excipients released to the media over time promoted an increase in the antioxidant activity of the system, reaching a maximum of 38.1% ± 0.1% after 48 h. This work represents a promising step towards developing advanced, sustainable drug delivery systems for topical applications. Full article
(This article belongs to the Special Issue Advanced Biopolymer-Based Composites)
Show Figures

Graphical abstract

54 pages, 15641 KiB  
Review
Novel Therapeutic Hybrid Systems Using Hydrogels and Nanotechnology: A Focus on Nanoemulgels for the Treatment of Skin Diseases
by Kamil Sghier, Maja Mur, Francisco Veiga, Ana Cláudia Paiva-Santos and Patrícia C. Pires
Gels 2024, 10(1), 45; https://doi.org/10.3390/gels10010045 - 6 Jan 2024
Cited by 16 | Viewed by 5512
Abstract
Topical and transdermal drug delivery are advantageous administration routes, especially when treating diseases and conditions with a skin etiology. Nevertheless, conventional dosage forms often lead to low therapeutic efficacy, safety issues, and patient noncompliance. To tackle these issues, novel topical and transdermal platforms [...] Read more.
Topical and transdermal drug delivery are advantageous administration routes, especially when treating diseases and conditions with a skin etiology. Nevertheless, conventional dosage forms often lead to low therapeutic efficacy, safety issues, and patient noncompliance. To tackle these issues, novel topical and transdermal platforms involving nanotechnology have been developed. This review focuses on the latest advances regarding the development of nanoemulgels for skin application, encapsulating a wide variety of molecules, including already marketed drugs (miconazole, ketoconazole, fusidic acid, imiquimod, meloxicam), repurposed marketed drugs (atorvastatin, omeprazole, leflunomide), natural-derived compounds (eucalyptol, naringenin, thymoquinone, curcumin, chrysin, brucine, capsaicin), and other synthetic molecules (ebselen, tocotrienols, retinyl palmitate), for wound healing, skin and skin appendage infections, skin inflammatory diseases, skin cancer, neuropathy, or anti-aging purposes. Developed formulations revealed adequate droplet size, PDI, viscosity, spreadability, pH, stability, drug release, and drug permeation and/or retention capacity, having more advantageous characteristics than current marketed formulations. In vitro and/or in vivo studies established the safety and efficacy of the developed formulations, confirming their therapeutic potential, and making them promising platforms for the replacement of current therapies, or as possible adjuvant treatments, which might someday effectively reach the market to help fight highly incident skin or systemic diseases and conditions. Full article
(This article belongs to the Special Issue Design of Polymeric Hydrogels Biomaterials)
Show Figures

Graphical abstract

18 pages, 4995 KiB  
Article
Curcumin-Loaded RH60/F127 Mixed Micelles: Characterization, Biopharmaceutical Characters and Anti-Inflammatory Modulation of Airway Inflammation
by Xinli Wang, Yanyan Wang, Tao Tang, Guowei Zhao, Wei Dong, Qiuxiang Li and Xinli Liang
Pharmaceutics 2023, 15(12), 2710; https://doi.org/10.3390/pharmaceutics15122710 - 30 Nov 2023
Cited by 4 | Viewed by 1571
Abstract
Curcumin’s ability to impact chronic inflammatory conditions, such as metabolic syndrome and arthritis, has been widely researched; however, its poor bioavailability limits its clinical application. The present study is focused on the development of curcumin-loaded polymeric nanomicelles as a drug delivery system with [...] Read more.
Curcumin’s ability to impact chronic inflammatory conditions, such as metabolic syndrome and arthritis, has been widely researched; however, its poor bioavailability limits its clinical application. The present study is focused on the development of curcumin-loaded polymeric nanomicelles as a drug delivery system with anti-inflammatory effects. Curcumin was loaded in PEG-60 hydrogenated castor oil and puronic F127 mixed nanomicelles (Cur-RH60/F127-MMs). Cur-RH60/F127-MMs was prepared using the thin film dispersion method. The morphology and releasing characteristics of nanomicelles were evaluated. The uptake and permeability of Cur-RH60/F127-MMs were investigated using RAW264.7 and Caco-2 cells, and their bioavailability and in vivo/vitro anti-inflammatory activity were also evaluated. The results showed that Cur-RH60/F127-MMs have regular sphericity, possess an average diameter smaller than 20 nm, and high encapsulation efficiency for curcumin (89.43%). Cur-RH60/F127-MMs significantly increased the cumulative release of curcumin in vitro and uptake by cells (p < 0.01). The oral bioavailability of Cur-RH60/F127-MMs was much higher than that of curcumin-active pharmaceutical ingredients (Cur-API) (about 9.24-fold). The treatment of cell lines with Cur-RH60/F127-MMs exerted a significantly stronger anti-inflammatory effect compared to Cur-API. In addition, Cur-RH60/F127-MMs significantly reduced OVA-induced airway hyperresponsiveness and inflammation in an in vivo experimental asthma model. In conclusion, this study reveals the possibility of formulating a new drug delivery system for curcumin, in particular nanosized micellar aqueous dispersion, which could be considered a perspective platform for the application of curcumin in inflammatory diseases of the airways. Full article
(This article belongs to the Special Issue Polymer-Based Delivery System)
Show Figures

Graphical abstract

24 pages, 4373 KiB  
Article
Encapsulation in Oxygen-Loaded Nanobubbles Enhances the Antimicrobial Effectiveness of Photoactivated Curcumin
by Zunaira Munir, Chiara Molinar, Giuliana Banche, Monica Argenziano, Greta Magnano, Lorenza Cavallo, Narcisa Mandras, Roberta Cavalli and Caterina Guiot
Int. J. Mol. Sci. 2023, 24(21), 15595; https://doi.org/10.3390/ijms242115595 - 26 Oct 2023
Cited by 5 | Viewed by 2310
Abstract
In both healthcare and agriculture, antibiotic resistance is an alarming issue. Biocompatible and biodegradable ingredients (e.g., curcumin) are given priority in “green” criteria supported by the Next Generation EU platform. The solubility and stability of curcumin would be significantly improved if it were [...] Read more.
In both healthcare and agriculture, antibiotic resistance is an alarming issue. Biocompatible and biodegradable ingredients (e.g., curcumin) are given priority in “green” criteria supported by the Next Generation EU platform. The solubility and stability of curcumin would be significantly improved if it were enclosed in nanobubbles (NB), and photoactivation with the correct wavelength of light can increase its antibacterial efficacy. A continuous release of curcumin over a prolonged period was provided by using innovative chitosan-shelled carriers, i.e., curcumin-containing nanobubbles (Curc-CS-NBs) and oxygen-loaded curcumin-containing nanobubbles (Curc-Oxy-CS-NBs). The results demonstrated that after photoactivation, both types of NBs exhibited increased effectiveness. For Staphylococcus aureus, the minimum inhibitory concentration (MIC) for Curc-CS-NBs remained at 46 µg/mL following photodynamic activation, whereas it drastically dropped to 12 µg/mL for Curc-Oxy-CS-NBs. Enterococcus faecalis shows a decreased MIC for Curc-CS-NB and Curc-Oxy-CS-NB (23 and 46 µg/mL, respectively). All bacterial strains were more effectively killed by NBs that had both oxygen and LED irradiation. A combination of Curc-Oxy-CS-NB and photodynamic stimulation led to a killing of microorganisms due to ROS-induced bacterial membrane leakage. This approach was particularly effective against Escherichia coli. In conclusion, this work shows that Curc-CS-NBs and Curc-Oxy-CS-exhibit extremely powerful antibacterial properties and represent a potential strategy to prevent antibiotic resistance and encourage the use of eco-friendly substitutes in agriculture and healthcare. Full article
(This article belongs to the Special Issue Natural Compounds in Health and Disease)
Show Figures

Figure 1

16 pages, 6573 KiB  
Article
Porous Microgels for Delivery of Curcumin: Microfluidics-Based Fabrication and Cytotoxicity Evaluation
by Sinem Orbay, Rana Sanyal and Amitav Sanyal
Micromachines 2023, 14(10), 1969; https://doi.org/10.3390/mi14101969 - 22 Oct 2023
Cited by 3 | Viewed by 2297
Abstract
Polymeric microgels, fabricated via microfluidic techniques, have garnered significant interest as versatile drug delivery carriers. Despite the advances, the loading and release of hydrophobic drugs such as curcumin from polymeric microgels is not trivial. Herein, we report that effective drug loading can be [...] Read more.
Polymeric microgels, fabricated via microfluidic techniques, have garnered significant interest as versatile drug delivery carriers. Despite the advances, the loading and release of hydrophobic drugs such as curcumin from polymeric microgels is not trivial. Herein, we report that effective drug loading can be achieved by the design of porous particles and the use of supramolecular cyclodextrin-based curcumin complexes. The fabrication of porous microgels through the judicious choice of chemical precursors under flow conditions was established. The evaluation of the curcumin loading dependence on the porosity of the microgels was performed. Microgels with higher porosity exhibited better curcumin loading compared to those with lower porosity. Curcumin-loaded microgels released the drug, which, upon internalization by U87 MG human glioma cancer cells, induced cytotoxicity. The findings reported here provide valuable insights for the development of tailored drug delivery systems using a microfluidics-based platform and outline a strategy for the effective delivery of hydrophobic therapeutic agents such as curcumin through supramolecular complexation. Full article
(This article belongs to the Special Issue Feature Papers of Micromachines in Biology and Biomedicine 2023)
Show Figures

Figure 1

Back to TopTop