Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,506)

Search Parameters:
Keywords = cultivar variation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1798 KB  
Article
Genetic Diversity of Prolamin Loci Related to Grain Quality in Durum Wheat (Triticum durum Desf.) in Kazakhstan
by Maral Utebayev, Svetlana Dashkevich, Oksana Kradetskaya, Irina Chilimova, Ruslan Zhylkybaev, Tatyana Zhigula, Tatyana Shelayeva, Gulmira Khassanova, Kulpash Bulatova, Vladimir Tsygankov, Marat Amangeldin and Yuri Shavrukov
Life 2026, 16(1), 157; https://doi.org/10.3390/life16010157 (registering DOI) - 17 Jan 2026
Abstract
The technological properties of durum wheat grain are determined by prolamins (gliadins and glutenins). Information on the allelic composition of key loci remains incomplete despite existing global studies examining prolamin variability. This highlighted the need to study these traits in durum wheat in [...] Read more.
The technological properties of durum wheat grain are determined by prolamins (gliadins and glutenins). Information on the allelic composition of key loci remains incomplete despite existing global studies examining prolamin variability. This highlighted the need to study these traits in durum wheat in Kazakhstan. The effects of specific gliadin components with high- and low-molecular-weight glutenin fractions on gluten quality are also not fully clarified. This study aimed to characterise allelic diversity at prolamin-coding loci and evaluate associated grain quality traits. Using native and denaturing SDS-electrophoresis, 181 tetraploid wheat accessions from Kazakhstan, an International germplasm collection, and 26 breeding lines were analysed for allelic variation and associations with protein content, gluten content, gluten index, and SDS-sedimentation. The γ45 gliadin component and Glu-A3a allele were positively associated with SDS-sedimentation and gluten index, while Glu-B3b had a negative effect. Distinct prolamin profiles were observed among accessions from different ecological and geographical locations. These results support the selection of superior durum wheat genotypes and enable the identification of favourable allele combinations at the Gli-1, Gli-2, Glu-1, and Glu-3 loci in cultivars from Kazakhstan. Comparison with global tetraploid wheat germplasm collections demonstrates unique genetic diversity in genotypes, providing a valuable basis for breeding programs aimed at improving grain and gluten quality in durum wheat in Kazakhstan and Central Asian countries. Full article
(This article belongs to the Special Issue Advances in Plant Biotechnology and Molecular Breeding)
Show Figures

Figure 1

21 pages, 779 KB  
Article
Vegetation Indices for Predicting Ripening-Associated Changes in Chlorophyll and Polyphenol Content: A Multi-Cultivar Assessment in Olive Germplasm
by Miriam Distefano, Giovanni Avola, Giosuè Giacoppo, Beniamino Gioli and Ezio Riggi
Remote Sens. 2026, 18(2), 269; https://doi.org/10.3390/rs18020269 - 14 Jan 2026
Viewed by 101
Abstract
Vegetation indices (VIs) enable rapid, non-destructive biochemical monitoring in olive fruits, yet their performance across diverse germplasm and ripening stages remains systematically uncharacterized. This exploratory screening systematically evaluated 87 VIs for predicting chlorophyll and polyphenol content across 31 cultivars at four ripening stages, [...] Read more.
Vegetation indices (VIs) enable rapid, non-destructive biochemical monitoring in olive fruits, yet their performance across diverse germplasm and ripening stages remains systematically uncharacterized. This exploratory screening systematically evaluated 87 VIs for predicting chlorophyll and polyphenol content across 31 cultivars at four ripening stages, prioritizing genetic diversity to establish species-level biochemical–spectral relationships through integration of hyperspectral data (380–1080 nm) with biochemical analyses. Modified Chlorophyll Absorption Ratio Index 3 (MCARI 3) and Transformed Chlorophyll Absorption Ratio Index (TCARI) achieved 91 strong correlations (|r| ≥ 0.9) across 124 cultivar-stage combinations. High-performing indices incorporated 550 nm with red/red-edge bands (670–710 nm) and non-linear formulations. Moderate inter-cultivar variability indicated that cultivar-specific calibrations may be necessary. Principal component analysis captured the totality of variance, revealing three biochemical clusters, high-chlorophyll cultivars (n = 5; 91.8 and 7385.6 mg kg−1 chlorophyll/polyphenols, respectively), typical-range cultivars (n = 22; 126.6 and 4016.8 mg kg−1), and elite cultivars (n = 5; 790.4 and 5799.8 mg kg−1), demonstrating VIs’ capacity for cultivar discrimination. Chlorophyll degradation exhibited conserved patterns, supporting universal tracking models. Conversely, polyphenol dynamics displayed marked genotype-dependency, with cultivars showing positive, negative, or minimal variation, yielding non-significant population-level effects, despite robust cultivar-specific trends. Full article
Show Figures

Figure 1

20 pages, 4578 KB  
Article
Genome-Wide Identification and Expression Analysis of LOX-HPL-ADH Pathway Genes Contributing to C6 Volatile Diversity in Chinese Plum (Prunus salicina)
by Menghan Wu, Gaigai Du, Mengmeng Zhang, Siyu Li, Yanke Geng, Yuan Wang, Danfeng Bai, Shaobin Yang, Gaopu Zhu, Fangdong Li and Taishan Li
Horticulturae 2026, 12(1), 85; https://doi.org/10.3390/horticulturae12010085 - 12 Jan 2026
Viewed by 114
Abstract
The characteristic green-note aroma of Chinese plum (Prunus salicina) is largely defined by C6 aldehydes and alcohols synthesized through the fatty acid pathway involving lipoxygenase (LOX), hydroperoxide lyase (HPL), and alcohol dehydrogenase (ADH). However, the LOX/HPL/ADH gene families and their potential [...] Read more.
The characteristic green-note aroma of Chinese plum (Prunus salicina) is largely defined by C6 aldehydes and alcohols synthesized through the fatty acid pathway involving lipoxygenase (LOX), hydroperoxide lyase (HPL), and alcohol dehydrogenase (ADH). However, the LOX/HPL/ADH gene families and their potential contributions to C6 volatile formation remain poorly characterized in Chinese plum. Here, we integrated genome-wide identification with cultivar-level volatile profiling and RT–qPCR expression analyses to link candidate genes with C6 volatile accumulation. We identified 8 PsLOX, 3 PsHPL, and 13 PsADH genes and classified them into 2, 1, and 3 subfamilies, respectively. Conserved motifs/domains were shared within each family, whereas gene-structure variation suggested functional divergence; segmental duplication was the main driver of family expansion. To explore their functional relevance to aroma biosynthesis, five major C6 aldehydes and alcohols were analyzed in ten cultivars using solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC–MS), revealing substantial diversity in green-note composition. Combined with reverse transcription quantitative polymerase chain reaction (qRT–PCR) expression profiling, low PsADH2.7 expression was associated with high hexanal content, whereas elevated PsLOX5 and PsADH2.2 expression corresponded to increased 1-hexanol accumulation. High 2-ethyl-1-hexanol levels were linked to increased PsLOX4.1 and PsHPL1.3 but decreased PsADH1.2 expression. In addition, (Z)-3-hexen-1-ol abundance showed strong positive correlations with PsLOX3.1, PsHPL1.2, and PsADH2.6 expression. This integrated genomic and expression–metabolite analysis highlights candidate genes potentially involved in C6 aldehyde/alcohol biosynthesis underlying the green-note aroma of Chinese plum and provides genetic targets for aroma-oriented breeding. Full article
Show Figures

Figure 1

14 pages, 7880 KB  
Article
Integrated Evaluation of Alkaline Tolerance in Soybean: Linking Germplasm Screening with Physiological, Biochemical, and Molecular Responses
by Yongguo Xue, Zichun Wei, Chengbo Zhang, Yudan Wang, Dan Cao, Xiaofei Tang, Yubo Yao, Wenjin He, Chao Chen, Zaib_un Nisa and Xinlei Liu
Plants 2026, 15(2), 222; https://doi.org/10.3390/plants15020222 - 10 Jan 2026
Viewed by 181
Abstract
Soybean (Glycine max L.) is an essential food and economic crop in China, yet its growth and yield are severely constrained by saline–alkali stress. A saline–alkali soil exacerbates root absorption barriers, leading to 30–50% yield losses. Understanding the mechanisms underlying alkali tolerance [...] Read more.
Soybean (Glycine max L.) is an essential food and economic crop in China, yet its growth and yield are severely constrained by saline–alkali stress. A saline–alkali soil exacerbates root absorption barriers, leading to 30–50% yield losses. Understanding the mechanisms underlying alkali tolerance is therefore crucial for developing stress-resilient soybean varieties and improving the productivity of saline–alkali land. In our previous study, we evaluated 99 soybean germplasms from Northeast China and obtained the alkali-tolerant varieties HN48 and HN69, along with the alkali-sensitive varieties HNWD4 and HN83. In this study, fifteen-day-old soybean seedlings were subjected to (30 mM NaHCO3) alkali stress for 72 h, and whole plants were sampled to assess their morphology and physiology, while leaf tissues were harvested for biochemical analysis. For transcriptomic analysis, soybean seedlings were exposed to alkali stress (50 mM NaHCO3, pH 9.0) for 6 h, and leaf and root tissues were harvested for RNA sequencing. The results showed that alkali-tolerant varieties mitigated these effects by suppressing excessive ROS generation by 55–63%, decreasing malondialdehyde (MDA) accumulation by 37–39%, and increasing photosynthetic efficiency by 18.3%, as well as accumulating more osmoprotectants and activating antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) under alkaline stress. Transcriptome analysis showed that the alkali-tolerant variety HN69 exhibited cultivar-specific enrichment of metabolism cytochrome P450, estrogen signaling, and GnRH signaling pathways under alkali stress. These results collectively indicate that alkali-tolerant soybean varieties adapt to alkali stress through coordinated multi-pathway responses, with differential pathway enrichment potentially underlying the variation in alkali tolerance between cultivars. Overall, this study elucidates the physiological and molecular mechanisms of alkali tolerance in soybean, providing a theoretical foundation for breeding stress-tolerant germplasms. Full article
Show Figures

Figure 1

14 pages, 5510 KB  
Article
Genome-Wide Association Analysis Identifies Agronomic Trait Loci in Quinoa
by Zhike Xu, Fucai Ma, Jiedong Li, Jiansheng Yu, Chengkai Liu, Yun Li, Baolong Liu, Xu Su, Dong Cao and Yunlong Liang
Agronomy 2026, 16(2), 175; https://doi.org/10.3390/agronomy16020175 - 10 Jan 2026
Viewed by 143
Abstract
Understanding the genetic basis of agronomic traits in quinoa adapted to the Qinghai–Tibet Plateau is essential for developing high-yield cultivars, as conventional breeding is constrained by limited molecular tools. In this study, 300 cultivated accessions were evaluated for five quantitative traits, and whole-genome [...] Read more.
Understanding the genetic basis of agronomic traits in quinoa adapted to the Qinghai–Tibet Plateau is essential for developing high-yield cultivars, as conventional breeding is constrained by limited molecular tools. In this study, 300 cultivated accessions were evaluated for five quantitative traits, and whole-genome resequencing generated 3.69 million high-quality SNPs. Population structure analysis and genome-wide association study (GWAS) were conducted, with integration of seed developmental transcriptomes to refine trait-associated loci. A highly admixed genetic background (K = 7) was revealed, and 11 significant QTLs across seven chromosomes were identified, involving genes related to metabolism, transport, and cell-wall formation. Among these, CesA4 (CQ042210) showed a strong association with thousand grain weight (TGW) and a distinct expression maximum at the early seed-filling stage. These results provide a genomic framework for understanding trait variation in plateau-adapted quinoa and highlight promising targets for marker-assisted breeding. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

22 pages, 2424 KB  
Article
Impact of Organic and Conventional Production Systems on Mineral, Chemical, Antioxidants, and Colorimetric Composition of Grape Pomace from Different Cultivars
by Daniela Freitas, Ana Rita F. Coelho, Ana Coelho Marques, João Dias, Olga Amaral, Manuela Lageiro and Manuela Simões
Sci 2026, 8(1), 12; https://doi.org/10.3390/sci8010012 - 9 Jan 2026
Viewed by 163
Abstract
The winemaking industry represents one of the most important sectors of the Mediterranean agrifood economy, generating large amounts of solid residues, especially grape pomace. The study aimed to evaluate during two consecutive harvest years the influence of the production system (conventional vs. organic) [...] Read more.
The winemaking industry represents one of the most important sectors of the Mediterranean agrifood economy, generating large amounts of solid residues, especially grape pomace. The study aimed to evaluate during two consecutive harvest years the influence of the production system (conventional vs. organic) and cultivar on the mineral, chemical, and antioxidant composition, as well as the colorimetric properties, of grape pomaces obtained from four Vitis vinifera L. cultivars in Alentejo-Portugal. The results showed that mineral composition was significantly affected by both production system and cultivar, with organic grape pomace showing higher K and Mn contents, whereas Ca and Cu showed consistently higher content under conventional. Protein content tended to increase under organic production, while fiber and fat were overall higher in conventional, particularly in the first year. Sugars displayed strong cultivar specificity, with Arinto showing the highest concentrations (30 to 40%), and considering all cultivars, total phenolic content ranged between 4000 ando 9000 mg GAE/100 g, while antioxidant capacity varied among cultivars and years. Colorimetric parameters were essentially influenced by cultivar and harvest year rather than production system. The PCA revealed that PC1 (44.06%) represented a gradient associated with mineral and antioxidant composition, while PC2 (21.26%) reflected minor variation in color and sugars, and the hierarchical clustering distinguished Syrah and Alicante Bouschet as the cultivars most responsive to production system, whereas Aragonez and Arinto exhibited greater compositional stability across years. Overall, the findings indicate that both cultivar and management practices (organic and conventional) influence the compositional profile of grape pomace, with organic showing a tendency to enhance K, Mn, protein, and antioxidant parameters, whereas conventional practices favored higher levels of Ca, Cu, and fiber. The results provide valuable insights for the valorization of grape pomace and the development of sustainable viticultural strategies in Mediterranean environments. Full article
Show Figures

Figure 1

22 pages, 10535 KB  
Article
Morphology of Chinese Chive and Onion (Allium; Amaryllidaceae) Crop Wild Relatives: Taxonomical Relations and Implications
by Min Su Jo, Ji Eun Kim, Ye Rin Chu, Gyu Young Chung and Chae Sun Na
Plants 2026, 15(2), 192; https://doi.org/10.3390/plants15020192 - 7 Jan 2026
Viewed by 303
Abstract
The genus Allium L. includes economically significant crops such as Chinese chives (Allium tuberosum Rottler ex Spreng.) and onions (Allium cepa L.), and is utilized in diverse agricultural applications, with numerous cultivars developed to date. However, these cultivars are facing a [...] Read more.
The genus Allium L. includes economically significant crops such as Chinese chives (Allium tuberosum Rottler ex Spreng.) and onions (Allium cepa L.), and is utilized in diverse agricultural applications, with numerous cultivars developed to date. However, these cultivars are facing a reduction in genetic diversity, raising concerns regarding their long-term sustainability. Crop wild relatives (CWRs), which possess a wide range of genetic traits, have recently gained attention as important genetic resources and priorities for conservation. In this study, the taxonomy of Allium species distributed in Korea is assessed using morphological characteristics. Two types of morphological analyses were conducted: macro-morphological traits were examined using stereomicroscopy and multi-spectral image analyses, while micro-morphological traits were analyzed using scanning electron microscopy. We detected significant interspecific and intraspecific variation in macro-morphological traits. Among the micro-morphological features, the seed outline on the x-axis and structural patterns of the testa and periclinal walls were identified as reliable diagnostic characters for subgenus classification. Moreover, micro-morphological evidence contributed to inferences about evolutionary trends within the genus Allium. Based on phylogenetic relationships between wild and cultivated taxa, we propose an updated framework for the CWR inventory of Allium. Full article
(This article belongs to the Special Issue Integrative Taxonomy, Systematics, and Morphology of Land Plants)
Show Figures

Figure 1

25 pages, 3776 KB  
Article
Multi-Season Genome-Wide Association Study Reveals Loci and Candidate Genes for Fruit Quality and Maturity Traits in Peach
by María Osorio, Arnau Fiol, Paulina Ballesta, Sebastián Ahumada, Pilar Marambio, Pamela Martínez-Carrasco, Rodrigo Infante and Igor Pacheco
Plants 2026, 15(2), 189; https://doi.org/10.3390/plants15020189 - 7 Jan 2026
Viewed by 257
Abstract
Peaches are a fruit crop with global importance due to their economic value. Fruit quality (e.g., weight, soluble solids content (SSC)) and phenology traits (e.g., maturity date) are essential for generating novel varieties. Nevertheless, modern germplasm’s narrow genetic diversity hampers breeding efforts to [...] Read more.
Peaches are a fruit crop with global importance due to their economic value. Fruit quality (e.g., weight, soluble solids content (SSC)) and phenology traits (e.g., maturity date) are essential for generating novel varieties. Nevertheless, modern germplasm’s narrow genetic diversity hampers breeding efforts to enhance these traits. To identify genetic markers helpful for marker-assisted breeding, this work leveraged a diverse panel of 140 peach commercial cultivars and advanced breeding lines phenotyped across three harvest seasons for the maturity date (MD), chlorophyll absorbance (IAD), SSC, and fruit weight (FW). Genotypic data were generated via ddRADseq, identifying 5861 SNPs. A rapid linkage disequilibrium decay (critical r2 = 0.308 at 950 kb) was determined, and a population structure analysis revealed two admixed genetic clusters, with phenotypic distributions influenced by seasonal environmental factors. A total of 599 marker–trait associations were detected by using single and multi-year analysis, and for each trait the surrounding genomic regions explored to identify potential candidate genes annotated with functions related to the trait under study, and expressed in peach fruits. This study highlights multiple loci potentially responsible for phenotypic variations in plant phenology and fruit quality, and provides molecular markers to assist peach breeding for fruit quality. Full article
(This article belongs to the Special Issue Advances in Rosaceae Fruit Genomics and Breeding)
Show Figures

Figure 1

16 pages, 1592 KB  
Article
Multi-Omics Reveals Protected Cultivation Improves Chinese Plum (Prunus salicina L.) Quality via Light-Regulated Sugar Metabolism
by Liangliang Cao, Xi Long, Xiaolou Zhu, Jiangong Wang, Weidong Xu, Qiang Lu, Zanyu Ruan, Jiashun Miao and Zhangliang Yao
Plants 2026, 15(1), 164; https://doi.org/10.3390/plants15010164 - 5 Jan 2026
Viewed by 253
Abstract
The Chinese plum (Prunus salicina L.), ‘Zuili’, is a geographically protected cultivar that is valued for its high polyphenol levels and distinctive flavor. Light availability strongly influences sugar accumulation and secondary metabolism in plum fruit, yet the molecular processes associated with quality [...] Read more.
The Chinese plum (Prunus salicina L.), ‘Zuili’, is a geographically protected cultivar that is valued for its high polyphenol levels and distinctive flavor. Light availability strongly influences sugar accumulation and secondary metabolism in plum fruit, yet the molecular processes associated with quality variation under protected cultivation remain unclear. Here, we compare three cultivation systems—multi-span greenhouse (M), retractable electric rain shelter (R), and conventional open field (CK)—to evaluate their effect on fruit quality using integrated transcriptomic and metabolomic analyses. Field trials showed that M treatment increased fruit sweetness by 28.10% versus CK (14.68 vs. 11.46 °Brix, p < 0.001) without yield loss and significantly improved vertical fruit diameter. RNA-seq analysis identified 7561 and 7962 upregulated genes in the M and R treatments compared to CK, respectively, with significant functional enrichment in pathways related to sucrose metabolism, light-response, and ethylene-mediated signaling. Untargeted metabolomic signaling identified 1373 metabolites, with shading treatments increasing the abundance of several sugar-conjugated compounds (e.g., epicatechin 3-O-(2-trans-cinnamoyl)-β-D-allopyranoside). Multi-omics integration revealed coordinated changes in gene expression and metabolite abundance, suggesting that controlled light environments are associated with the concurrent modulation of sugar metabolism and phenylpropanoid-related pathways. These patterns were supported by the upregulation of GT2-family glycosyltransferase genes and the accumulation of lignin-related flavonoid precursors, such as pinobanksin and pinobanksinol. Collectively, these results highlight statistically robust associations between light-regulated cultivation practices and fruit quality traits, providing a molecular framework for optimizing protected cultivation strategies to enhance both the sensory and nutritional attributes of P. salicina fruit without compromising yield. Full article
(This article belongs to the Special Issue Horticultural Plant Physiology and Molecular Biology—2nd Edition)
Show Figures

Figure 1

11 pages, 223 KB  
Article
Comparative Study on the Composition of Oil Bodies from High-Oleic Peanuts
by Lixia Zhang, Songli Wei, Xiaojing Sun, Xin Lu, Shangde Sun, Runfeng Du and Shanshan Guo
Foods 2026, 15(1), 177; https://doi.org/10.3390/foods15010177 - 5 Jan 2026
Viewed by 310
Abstract
Compositional heterogeneity of oil bodies (OB) from nine high-oleic peanut (HOP) cultivars was systematically characterized. The results demonstrated that nine OB samples exhibited variability in R, G, and B values (red, green, and blue color channels), with the B channel values significantly differing [...] Read more.
Compositional heterogeneity of oil bodies (OB) from nine high-oleic peanut (HOP) cultivars was systematically characterized. The results demonstrated that nine OB samples exhibited variability in R, G, and B values (red, green, and blue color channels), with the B channel values significantly differing among cultivars, while no significant color variation was observed in their overall appearance. Fats and proteins dominated the dry matter composition of OB, consistent with typical plant OB structural profiles. The high-fat OB of cultivars J572-O, J6-O, Z215-O, and H985-O exhibited outstanding efficiency in loading lipophilic bioactive compounds. OBs from J16-O, G37-O, Z215-O, J572-O, Y37-O, and Y65-O had a distinctive fatty acid profile: high-oleic acid and monounsaturated fatty acids (MUFAs), with reduced linoleic acid, palmitoleic acid, and saturated fatty acids (SFAs). All OB samples contained four tocopherol isomers (α-, β-, γ-, δ-), with α-tocopherol (5.07–12.59 mg/100 g) and γ-tocopherol (6.36–14.81 mg/100 g) as the predominant forms. Essential amino acids (EAAs) and hydrophobic amino acids were detected, with leucine, phenylalanine, and valine being highly abundant. TEAA/TAA and TEAA/TNEAA ratios complied with FAO/WHO standards. J16-O stood out with a balanced fatty acid profile, high tocopherols, and quality protein, making it a promising candidate for functional foods. Full article
(This article belongs to the Section Food Analytical Methods)
23 pages, 3256 KB  
Article
Genetic–Geographic–Chemical Framework of Polyporus umbellatus Reveals Lineage-Specific Chemotypes for Elite Medicinal Line Breeding
by Youyan Liu, Shoujian Li, Liu Liu, Bing Li and Shunxing Guo
J. Fungi 2026, 12(1), 39; https://doi.org/10.3390/jof12010039 - 3 Jan 2026
Viewed by 378
Abstract
Polyporus umbellatus is a valuable fungus with both dietary and medicinal applications. However, heterogeneous germplasm and chemical variability constrain its sustainable use. To elucidate the drivers of this variation, whole-genome resequencing and metabolic profiling were integrated. Genome-wide analysis of representative accessions revealed six [...] Read more.
Polyporus umbellatus is a valuable fungus with both dietary and medicinal applications. However, heterogeneous germplasm and chemical variability constrain its sustainable use. To elucidate the drivers of this variation, whole-genome resequencing and metabolic profiling were integrated. Genome-wide analysis of representative accessions revealed six distinct genetic clusters across China, identifying the Qinling–Daba Mountains as a putative center of diversity. Population analysis indicated severe genetic erosion with significant heterozygote deficits, likely driven by inbreeding and long-term clonal propagation. Multivariate analysis demonstrated that genetic lineage, rather than traditional commercial morphotypes (Zhushiling and Jishiling), is the primary determinant of metabolite accumulation. Specific lineages were identified as superior germplasm candidates: Group 2 consistently exhibited the highest genetic potential for accumulating steroids, whereas Group 4 attained the highest polysaccharide yield. Although the global genetic–chemical correlation was weak, implying environmental plasticity, the distinct clustering of superior lineages confirms that core accumulation patterns are genetically canalized. These findings advocate for shifting quality control from morphological grading to molecular-assisted selection. Ultimately, this framework provides an evidence-based foundation for urgent in situ conservation to restore genetic diversity and facilitates precision breeding of high-efficacy cultivars. Full article
(This article belongs to the Special Issue Edible and Medicinal Macrofungi, 4th Edition)
Show Figures

Graphical abstract

24 pages, 3393 KB  
Article
Genotype–Environment Interaction in Shaping the Agronomic Performance of Silage Maize Varieties Cultivated in Organic Farming Systems
by Katarzyna Marcinkowska, Karolina Kolańska, Konrad Banaś, Agnieszka Łacka, Tomasz Lenartowicz, Piotr Szulc and Henryk Bujak
Agriculture 2026, 16(1), 123; https://doi.org/10.3390/agriculture16010123 - 3 Jan 2026
Viewed by 246
Abstract
Organic production systems impose strong environmental constraints on silage maize, yet the relative contributions of genotype, environment and their interaction (G × E) to key performance traits remain insufficiently resolved. This study evaluated six maize cultivars across 11 organically managed environments (location × [...] Read more.
Organic production systems impose strong environmental constraints on silage maize, yet the relative contributions of genotype, environment and their interaction (G × E) to key performance traits remain insufficiently resolved. This study evaluated six maize cultivars across 11 organically managed environments (location × year combinations) in Poland, assessing weed infestation, plant height, fresh matter yield, dry matter content and dry matter yield. Genotype × environment interaction was explicitly analyzed using AMMI-based models, and cultivar adaptability and stability were evaluated using complementary indices. Environmental effects consistently dominated all traits, explaining 78–91% of total variation, while G × E interactions, though smaller, were significant and altered cultivar rankings. Weed infestation ranged widely across environments, from below 10% to over 90%, and was almost entirely environment-driven. Yield-related traits followed a strong precipitation gradient, with Pawłowice and Śrem showing the highest biomass potential. SM Perseus produced the greatest dry matter yields (13.53 t·ha−1), whereas SM Mieszko combined high dry matter content (37.73%) with outstanding stability. Mega-environment analysis identified distinct adaptive niches, confirming that no genotype performed consistently best across all conditions. These findings close a key knowledge gap regarding cultivar performance under organic management and demonstrate the necessity of multi-environment evaluation that integrates performance, stability and adaptability analyses to support site-specific cultivar recommendations that enhance biomass productivity and silage quality in ecologically managed maize systems. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

18 pages, 2219 KB  
Article
Supplementary Light Intensity and Harvest Date Affect Midrib Oxidative Pinking and Related Metabolites in Two Romaine Lettuce Cultivars with Contrasting Discolouration Sensitivities
by Muhamad Hazwan Yahya, Martin Chadwick and Carol Wagstaff
Horticulturae 2026, 12(1), 57; https://doi.org/10.3390/horticulturae12010057 - 1 Jan 2026
Viewed by 171
Abstract
This study elucidates the variations in phenolic acids, soluble sugars, and pinking development of midribs of two cultivars of Romaine lettuce (Keona—high pinking and Icarus—low pinking) under two light intensities (high L1—558 and low L2—244 µmol m−2 s−1) harvested at [...] Read more.
This study elucidates the variations in phenolic acids, soluble sugars, and pinking development of midribs of two cultivars of Romaine lettuce (Keona—high pinking and Icarus—low pinking) under two light intensities (high L1—558 and low L2—244 µmol m−2 s−1) harvested at two harvest dates (M1—42 and M2—49 days after transplanting, DAT). The pinking index of Keona was higher than that of Icarus on 8 days of storage (5 °C). The concentrations of cinnamic acid were reduced in most treatments for both cultivars during storage, except for Keona grown in L2 with M2 harvest. Upon storage, the concentrations of coumaric acid in Keona were similar regardless of light intensities and harvest dates. Coumaric acid and caffeic acid concentrations in Icarus in L1 harvested at M2 were the highest. Low light intensity with M1 harvest enhanced the concentration of chlorogenic acid in Keona, but a similar situation reduced its content in Icarus during storage. Icarus contained higher initial concentrations of glucose under both light intensities, regardless of harvest dates, compared to Keona. In conclusion, high pinking was associated with high phenolic acids except for cinnamic acid. High light intensities and more advanced harvests increased the pinking of Keona but not of the Icarus. Full article
(This article belongs to the Special Issue Horticultural Crops Responses to LED Lighting)
Show Figures

Figure 1

18 pages, 896 KB  
Article
Morphological and Biochemical Attributes of Brassica cretica Populations Grown Under Drought Tolerance Conditions
by Theodora Ntanasi, Efthalia Stathi, Ioannis Karavidas, George P. Spyrou, Evangelos Giannothanasis, Maria-Eleftheria Zografaki, Panayiotis Trigas, Eleni Tani and Georgia Ntatsi
Horticulturae 2026, 12(1), 53; https://doi.org/10.3390/horticulturae12010053 - 31 Dec 2025
Viewed by 402
Abstract
Drought stress is a major constraint on crop productivity in the Mediterranean region. Brassica crops are particularly valued in this region for their adaptability, nutritional benefits, and economic importance in sustainable farming systems. However, their productivity is highly sensitive to water deficits, necessitating [...] Read more.
Drought stress is a major constraint on crop productivity in the Mediterranean region. Brassica crops are particularly valued in this region for their adaptability, nutritional benefits, and economic importance in sustainable farming systems. However, their productivity is highly sensitive to water deficits, necessitating the identification of drought-resilient genotypes. This study investigated the responses of five wild Brassica cretica populations and a commercial Brassica oleracea cultivar to a 50% reduction in irrigation, evaluating key physiological traits, leaf nutrient composition, and antioxidant activity. The experiment was conducted in the greenhouse facilities of the Laboratory of Vegetable Production, Agricultural University of Athens. The results revealed significant variation in drought tolerance among the tested populations. Specifically, an ecotype of B. cretica subsp. cretica (C: Akrokorinthos) and B. cretica subsp. laconica (E) showed substantial reductions in biomass, leaf area, and leaf number, whereas B. cretica subsp. aegaea (A: Manikia and B: Ymittos) and another ecotype of B. cretica subsp. cretica (D: Lasithi) maintained stable growth under water-limited conditions. Water deficit also significantly impacted leaf mineral composition, increasing NO3 and Na+ levels while decreasing P, Zn, and Mn. Additionally, drought stress enhanced antioxidant capacity and secondary metabolite production, as indicated by elevated ferric reducing antioxidant power, Trolox equivalent antioxidant capacity, total phenolic content, and total flavonoid content. Notably, the two studied populations of B. cretica subsp. aegaea (A: Manikia, B: Ymittos) and the population of B. cretica subsp. cretica from Lasithi (Crete) (D) exhibit promising drought tolerance, suggesting their potential for cultivation or breeding in water-limited environments. This research contributes to the broader effort of identifying favorable traits in crop wild relatives and to utilize these valuable genetic resources to develop climate-resilient crops for Mediterranean agriculture, where sustainable water use is critical for food security. Full article
Show Figures

Figure 1

15 pages, 2163 KB  
Article
Metabolomic Insights into MYMV Resistance: Biochemical Complexity in Mung Bean Cultivars
by Sudha Manickam, Veera Ranjani Rajagopalan, Madhumitha Balasubramaniam, Karthikeyan Adhimoolam, Senthil Natesan and Raveendran Muthurajan
Pathogens 2026, 15(1), 46; https://doi.org/10.3390/pathogens15010046 - 31 Dec 2025
Viewed by 344
Abstract
Yellow Mosaic Disease (YMD) caused by mungbean yellow mosaic virus (MYMV, begomovirus) is one of the main causes of low mungbean (Vigna radiata L.) productivity, primarily in South Asia. Agroinoculation screening for MYMV resistance in mungbean cultivar VGGRU 1, an interspecific derivative [...] Read more.
Yellow Mosaic Disease (YMD) caused by mungbean yellow mosaic virus (MYMV, begomovirus) is one of the main causes of low mungbean (Vigna radiata L.) productivity, primarily in South Asia. Agroinoculation screening for MYMV resistance in mungbean cultivar VGGRU 1, an interspecific derivative of mungbean × rice bean and VRM (Gg)1 across replications, revealed VGGRU1 as highly resistant to MYMV infection. Gas chromatography mass spectrometry analysis was performed on the methanolic leaf extracts of susceptible and resistant genotypes, along with necessary controls. The metabolite profiling of the susceptible and resistant genotypes, along with controls, identified 121 discriminant metabolites belonging to 24 different classes of metabolites. A maximum number of 27 metabolites were accumulated in agroinoculated VGGRU1 alone. Metabolite profiles of VGGRU1 and VRM1 were clustered hierarchically and revealed substantial variations between the genotypes. Fold change revealed the upregulation of amino acids and phenol in the resistant genotype. The resistant genotype, VGGRU1, showed significantly higher levels of key defense-related metabolites, such as amino acids and phenolics. In this study, 18 significant VIP metabolites were identified, differentiating the resistant VGGRU1 and susceptible VRM (Gg)1 genotypes. Full article
(This article belongs to the Section Immunological Responses and Immune Defense Mechanisms)
Show Figures

Figure 1

Back to TopTop