Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,694)

Search Parameters:
Keywords = cultivar selection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 9338 KB  
Review
Biotechnological Strategies to Enhance Maize Resilience Under Climate Change
by Kyung-Hee Kim, Donghwa Park and Byung-Moo Lee
Biology 2026, 15(2), 161; https://doi.org/10.3390/biology15020161 - 16 Jan 2026
Abstract
Maize (Zea mays L.), a vital crop for global food and economic security, faces intensifying biotic and abiotic stresses driven by climate change, including drought, heat, and erratic rainfall. This review synthesizes emerging biotechnology-driven strategies designed to enhance maize resilience under these [...] Read more.
Maize (Zea mays L.), a vital crop for global food and economic security, faces intensifying biotic and abiotic stresses driven by climate change, including drought, heat, and erratic rainfall. This review synthesizes emerging biotechnology-driven strategies designed to enhance maize resilience under these shifting environmental conditions. We present an integrated framework that encompasses CRISPR/Cas9 and next-generation genome editing, Genomic Selection (GS), Environmental Genomic Selection (EGS), and multi-omics platforms—spanning transcriptomics, proteomics, metabolomics, and epigenomics. These approaches have significantly deepened our understanding of complex stress-adaptive traits and genotype-by-environment interactions, revealing precise targets for breeding climate-resilient cultivars. Furthermore, we highlight enabling technologies such as high-throughput phenotyping, artificial intelligence (AI), and nanoparticle-based gene delivery—including novel in planta and transformation-free protocols—that are accelerating translational breeding. Despite these technical breakthroughs, barriers such as genotype-dependent transformation efficiency, regulatory landscapes, and implementation costs in resource-limited settings remain. Bridging the gap between laboratory innovation and field deployment will require coordinated policy support and global collaboration. By integrating molecular breakthroughs with practical deployment strategies, this review offers a comprehensive roadmap for developing sustainable, climate-resilient maize varieties to meet future agricultural demands. Full article
Show Figures

Figure 1

24 pages, 7087 KB  
Article
Modulation of Sorghum-Associated Fungal Communities by Trichoderma Bioinoculants: Insights from ITS Amplicon Sequencing
by Mariana Petkova, Stefan Shilev, Ivelina Neykova and Angel Angelov
Agronomy 2026, 16(2), 217; https://doi.org/10.3390/agronomy16020217 - 16 Jan 2026
Abstract
Sorghum (Sorghum bicolor L. Moench) is a major cereal crop cultivated in semi-arid regions, but its yield is often constrained by soilborne fungal pathogens that affect plant growth and grain quality. This study explored how Trichoderma-based bioinoculants restructure the structure and [...] Read more.
Sorghum (Sorghum bicolor L. Moench) is a major cereal crop cultivated in semi-arid regions, but its yield is often constrained by soilborne fungal pathogens that affect plant growth and grain quality. This study explored how Trichoderma-based bioinoculants restructure the structure and functional composition of fungal communities in distinct sorghum compartments (soil, root, seed, and stem) using ITS amplicon sequencing. Two cultivars, Kalatur and Foehn, were evaluated under control and inoculated conditions. Alpha diversity indices revealed that inoculation reduced overall fungal richness and evenness, particularly in seed and stem tissues, while selectively enhancing beneficial taxa. Beta diversity analyses (PERMANOVA, p < 0.01) confirmed significant treatment-driven shifts in community composition. LEfSe analysis identified Trichoderma and Mortierella as biomarkers of inoculated samples, whereas Fusarium, Alternaria, and Penicillium predominated in controls. The enrichment of saprotrophic and symbiotrophic taxa in treated samples, coupled with the decline of pathogenic genera, indicates a transition toward functionally beneficial microbial assemblages. These results demonstrate that Trichoderma bioinoculants not only suppress fungal pathogens but also promote the establishment of beneficial ecological groups contributing to plant and soil health. The present work provides insight into the mechanisms through which microbial inoculants modulate host-associated fungal communities, supporting their use as sustainable tools for crop protection and microbiome management in sorghum-based agroecosystems. Full article
(This article belongs to the Special Issue Research Progress on Pathogenicity of Fungi in Crops—2nd Edition)
Show Figures

Figure 1

22 pages, 5855 KB  
Article
Exploring the Peanut Viromes Across 15 Cultivars in Korea
by Sang-Min Kim, Ki Wook Kwon, Yeonhwa Jo, Hoseong Choi, Jisoo Park, Jin-Sung Hong, Bong Choon Lee and Won Kyong Cho
Int. J. Mol. Sci. 2026, 27(2), 890; https://doi.org/10.3390/ijms27020890 - 15 Jan 2026
Abstract
This study explores the virome of fifteen peanut cultivars in Korea. Through RNA sequencing, 305 viral contigs associated with cucumber mosaic virus (CMV), peanut mottle virus (PeMoV), bean common mosaic virus (BCMV), and brassica yellows virus (BrYV) were identified, with CMV notably prevalent [...] Read more.
This study explores the virome of fifteen peanut cultivars in Korea. Through RNA sequencing, 305 viral contigs associated with cucumber mosaic virus (CMV), peanut mottle virus (PeMoV), bean common mosaic virus (BCMV), and brassica yellows virus (BrYV) were identified, with CMV notably prevalent across samples. Evaluation of viral abundance using viral reads and TPM values revealed CMV dominance in reads and PeMoV prominence in normalized values in select samples. Complete genomes of BCMV, PeMoV, BrYV, and CMV segments were assembled, enabling phylogenetic analysis that uncovered genetic relationships among viral isolates. RT-PCR confirmed BCMV, CMV, and PeMoV presence. Genetic diversity within BCMV was evident through single-nucleotide polymorphism (SNP) analysis, displaying diverse patterns and correlations with viral reads. This study discusses the implications for peanut cultivation, stressing the importance of ongoing research to manage viral diseases. It forms a foundational resource for future investigations into peanut virology, guiding strategies for disease management in peanut crops. Full article
(This article belongs to the Collection Feature Papers in Molecular Plant Sciences)
Show Figures

Figure 1

18 pages, 5328 KB  
Article
Responses of Leaf Nutrient Dynamics, Soil Nutrients, and Microbial Community Composition to Different Trichosanthes kirilowii Maxim. Varieties
by Fengyun Xiang, Tianya Liu, Mengchen Yang, Zheng Zhang, Qian Yang and Jifu Li
Horticulturae 2026, 12(1), 91; https://doi.org/10.3390/horticulturae12010091 - 15 Jan 2026
Abstract
To investigate the effects of different Trichosanthes kirilowii Maxim. varieties on leaf nutrients, soil nutrients, and microbial community composition, this study selected Yuelou No. 3 and Huiji No. 2, two major cultivars from the primary production area of Shishou City. The two varieties [...] Read more.
To investigate the effects of different Trichosanthes kirilowii Maxim. varieties on leaf nutrients, soil nutrients, and microbial community composition, this study selected Yuelou No. 3 and Huiji No. 2, two major cultivars from the primary production area of Shishou City. The two varieties were cultivated at different locations under standardized agronomic management practices, and a systematic comparative analysis was carried out over a 10-month sampling period from March to December 2024. The analysis encompassed their leaf nutrients (total nitrogen, total phosphorus, total potassium, and relative chlorophyll content), soil nutrients (organic matter, alkali-hydrolyzable nitrogen, available phosphorus, and available potassium), and microbial community characteristics. The results revealed significant varietal differences in leaf nutrient content: the average total phosphorus content of Yuelou No. 3 (0.44%) was higher than that of Huiji No. 2 (0.39%), while Huiji No. 2 exhibited higher total nitrogen (3.73%), total potassium (3.86%), and SPAD (44.72). Leaf nutrient content in both varieties followed a pattern of nitrogen > potassium > phosphorus, with peak phosphorus and potassium demand occurring earlier in Yuelou No. 3. Additionally, Yuelou No. 3 contained higher organic matter (12.73 g/kg) and alkali-hydrolyzable nitrogen (103.02 mg/kg), while Huiji No. 2 showed enhanced soil pH (7.02), available phosphorus (6.96 mg/kg), and available potassium (180.00 mg/kg). Soil available nutrient dynamics displayed a pattern of slow change during the early stage, a rapid increase during the middle stage, and stabilization in the later stage. Microbial analysis revealed no significant differences in alpha diversity between the two varieties, although Yuelou No. 3 showed marginally higher diversity indices during early to mid-growth stages. In contrast, beta diversity showed significant separation in PCoA space. Proteobacteria, Acidobacteria, and Ascomycota were the dominant microbial phyla. Dominant genera included Kaistobacter, Mortierella, and Neocosmospora, among others, with variety-specific relative abundances. Redundancy analysis further supported the variety-specific influence of soil physicochemical properties on microbial community structure, with available phosphorus, available potassium, and alkali-hydrolyzable nitrogen identified as key factors shaping community composition. This study provides a theoretical basis for understanding the impact of different Trichosanthes kirilowii Maxim. varieties on soil–plant–microbe interactions and suggests potential directions for future research on fertilization and management strategies tailored to varietal differences. Full article
Show Figures

Figure 1

12 pages, 1874 KB  
Article
Novel Wx Gene Functional Markers for High-Resistant Starch Rice Breeding
by Jie Ouyang, Zichao Zhu, Yusheng Guan, Qianlong Huang, Tao Huang, Shun Zang and Chuxiang Pan
Genes 2026, 17(1), 89; https://doi.org/10.3390/genes17010089 - 14 Jan 2026
Viewed by 19
Abstract
Background/Objectives: Chemical methods for quantifying resistant starch (RS) in rice are labor-intensive, costly, and lack high repeatability, creating a bottleneck in breeding. This study aimed to develop specific, codominant molecular markers for the Wx gene to enable rapid and accurate genotype screening [...] Read more.
Background/Objectives: Chemical methods for quantifying resistant starch (RS) in rice are labor-intensive, costly, and lack high repeatability, creating a bottleneck in breeding. This study aimed to develop specific, codominant molecular markers for the Wx gene to enable rapid and accurate genotype screening for RS content, thereby accelerating the development of high-RS rice varieties. Methods: Based on sequence alignment of the Wx gene in rice varieties with divergent RS content, a key single-nucleotide polymorphism was targeted. Two sets of tetra-primer amplification refractory mutation system polymerase chain reaction (ARMS-PCR) markers, T-Wx9-RS1 and T-Wx9-RS2, were designed. These markers were used to genotype diverse rice varieties and F4 segregating populations, with results validated against standard chemical assays. Results: Sequence analysis identified a critical T → C base mutation at position 202 of the ninth exon in high-RS varieties. The developed ARMS-PCR markers successfully and consistently distinguished all three possible genotypes (homozygous mutant, homozygous wild-type, and heterozygous). The genotyping results showed complete concordance with the phenotypes determined by chemical methods. Conclusions: The developed molecular markers, T-Wx9-RS1 and T-Wx9-RS2, provide a rapid, reliable, and cost-effective tool for marker-assisted selection of high resistant starch content in rice. Their implementation can significantly enhance screening efficiency and expedite the breeding pipeline for novel, nutritionally improved rice cultivars. Full article
(This article belongs to the Special Issue Research on Genetics and Breeding of Rice)
Show Figures

Figure 1

17 pages, 3222 KB  
Article
Antioxidant Defense and Transcriptional Reprogramming Account for the Differential Cold Tolerance of Two Japonica Rice Cultivars During Germination Under Low-Temperature Stress
by Ziting Gao, Yulu Shi, Yu Wang, Qingrui Zhang, Qingwang Su, Xiao Han and Fenglou Ling
Genes 2026, 17(1), 83; https://doi.org/10.3390/genes17010083 - 13 Jan 2026
Viewed by 185
Abstract
Background: Low-temperature stress represents a significant constraint on rice production, especially during the germination stage. Consequently, comprehending the mechanisms underlying cold tolerance is of utmost importance for the breeding of resilient rice varieties. This research systematically examined the phenotypic and physiological responses of [...] Read more.
Background: Low-temperature stress represents a significant constraint on rice production, especially during the germination stage. Consequently, comprehending the mechanisms underlying cold tolerance is of utmost importance for the breeding of resilient rice varieties. This research systematically examined the phenotypic and physiological responses of a cold-tolerant cultivar (JND815) and a cold-sensitive cultivar (Jiyu Japonica) to low-temperature stress (15 °C) during the germination process. Methods: Following a 17-day incubation period, physiological analyses were conducted. Transcriptomic analysis was performed to identify differentially expressed genes (DEGs), which were further subjected to KEGG enrichment analysis and Gene Ontology (GO) annotation. Additionally, the expression trends of selected cold-responsive DEGs were verified via qRT-PCR. Results: Following a 17-day incubation period, physiological analyses indicated that, in comparison to the control group (28 °C), the stress treatment notably reduced the activities of superoxide dismutase (SOD) and catalase (CAT), while increasing the activity of peroxidase (POD) and the content of malondialdehyde (MDA). Significantly, JND815 accumulated a substantially lower amount of MDA than Jiyu Japonica, suggesting superior membrane stability and oxidative stress tolerance. Transcriptomic analysis identified 11,234 and 14,164 differentially expressed genes (DEGs) in JND815 and Jiyu Japonica, respectively. KEGG enrichment analysis demonstrated that these DEGs were significantly associated with phenylpropanoid biosynthesis and carbon metabolism, and Gene Ontology (GO) annotation classified them into biological processes, cellular components, and molecular functions. The expression trends of six cold-responsive DEGs were verified by qRT-PCR to be consistent with the transcriptomic data. Conclusions: These findings offer insights into the molecular mechanisms of the low-temperature response during rice germination and lay a foundation for the genetic improvement of cold-tolerant rice varieties. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

20 pages, 2452 KB  
Article
Simulation Study on the Yield Reduction Risk of Late Sowing Winter Wheat and the Compensation Effect of Soil Moisture in the North China Plain
by Chen Cheng, Jintao Yan, Yue Lyu, Shunjie Tang, Shaoqing Chen, Xianguan Chen, Lu Wu and Zhihong Gong
Agriculture 2026, 16(2), 183; https://doi.org/10.3390/agriculture16020183 - 11 Jan 2026
Viewed by 240
Abstract
The North China Plain, a major grain production base in China, is facing the chronic threat of climate-change-induced delays in winter wheat sowing, with late sowing constraining yields by shortening the pre-winter growth period, and soil moisture at sowing potentially serving as a [...] Read more.
The North China Plain, a major grain production base in China, is facing the chronic threat of climate-change-induced delays in winter wheat sowing, with late sowing constraining yields by shortening the pre-winter growth period, and soil moisture at sowing potentially serving as a key factor to alleviate late-sowing losses. However, previous studies have mostly independently analyzed the effects of sowing time or water stress, and there is still a lack of systematic quantitative evaluation on how the interaction effects between the two determine long-term yield potential and risk. To fill this gap, this study aims to quantify, in the context of long-term climate change, the independent and interactive effects of different sowing dates and baseline soil moisture on the growth, yield, and production risk of winter wheat in the North China Plain, and to propose regionally adaptive management strategies. We selected three representative stations—Beijing (BJ), Wuqiao (WQ), and Zhengzhou (ZZ)—and, using long-term meteorological data (1981–2025) and field trial data, undertook local calibration and validation of the APSIM-Wheat model. Based on the validated model, we simulated 20 management scenarios comprising four sowing dates and five baseline soil moisture levels to examine the responses of phenology, aboveground dry matter, and yield, and further defined yield-reduction risk probability and expected yield loss indicators to assess long-term production risk. The results show that the APSIM-Wheat model can reliably simulate the winter wheat growing period (RMSE 4.6 days), yield (RMSE 727.1 kg ha−1), and soil moisture dynamics for the North China Plain. Long-term trend analysis indicates that cumulative rainfall and the number of rainy days within the conventional sowing window have risen at all three sites. Delayed sowing leads to substantial yield reductions; specifically, compared with S1, the S4 treatment yields about 6.9%, 16.2%, and 16.0% less at BJ, WQ, and ZZ, respectively. Moreover, increasing the baseline soil moisture can effectively compensate for the losses caused by late sowing, although the effect is regionally heterogeneous. In BJ and WQ, raising the baseline moisture to a high level (P85) continues to promote biomass accumulation, whereas in ZZ this promotion diminishes as growth progresses. The risk assessment indicates that increasing baseline moisture can notably reduce the probability of yield loss; for example, in BJ under S4, elevating the baseline moisture from P45 to P85 can reduce risk from 93.2% to 0%. However, in ZZ, even the optimal management (S1P85) still carries a 22.7% risk of yield reduction, and under late sowing (S4P85) the risk reaches 68.2%, suggesting that moisture management alone cannot fully overcome late-sowing constraints in this region. Optimizing baseline soil moisture management is an effective adaptive strategy to mitigate late-sowing losses in winter wheat across the North China Plain, but the optimal approach must be region-specific: for BJ and WQ, irrigation should raise baseline moisture to high levels (P75-P85); for ZZ, the key lies in ensuring baseline moisture crosses a critical threshold (P65) and should be coupled with cultivar selection and fertilizer management to stabilize yields. The study thus provides a scientific basis for regionally differentiated adaptation of winter wheat in the North China Plain to address climate change and achieve stable production gains. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

20 pages, 5080 KB  
Article
Physiological and Biochemical Analysis of Coffea arabica Cultivars in the Early Stage of Development Subjected to Water Stress for the Selection of Cultivars Adapted to Drought
by Jhon Edler Lopez-Merino, Eyner Huaman, Jorge Alberto Condori-Apfata and Manuel Oliva-Cruz
Stresses 2026, 6(1), 2; https://doi.org/10.3390/stresses6010002 - 9 Jan 2026
Viewed by 149
Abstract
Drought events intensified by climate change severely compromise the physiological stability and productivity of Coffea arabica, particularly in rainfed systems, underscoring the need to identify cultivars with greater functional resilience. This study evaluated the physiological, nutritional and biochemical responses of seedlings from [...] Read more.
Drought events intensified by climate change severely compromise the physiological stability and productivity of Coffea arabica, particularly in rainfed systems, underscoring the need to identify cultivars with greater functional resilience. This study evaluated the physiological, nutritional and biochemical responses of seedlings from ten cultivars subjected to adequate irrigation (AW), severe water deficit (SWD) and rehydration (RI). Water potential, gas exchange, oxidative stress markers, stomatal traits and foliar macro- and micronutrients were quantified. Most cultivars exhibited pronounced reductions in the pre-dawn leaf water potential (Ψpd), photosynthesis (A), stomatal conductance (gs) and transpiration (E), together with increases in oxidative stress indicators under SWD. In contrast, Obatá amarillo, Castillo, and Arará maintained greater hydraulic stability, more efficient stomatal regulation, higher water-use efficiency, and lower oxidative stress, accompanied by a more effective post-stress recovery after RI. Regarding nutrient dynamics, Geisha, Castillo, and Arará showed higher K+ accumulation, while Catimor bolo presented elevated Ca2+, P, and Fe2+ contents, elements associated with metabolic reactivation and structural recovery after stress. Geisha and Marsellesa displayed an adaptive, recovery-driven resilience strategy following drought stress. Overall, the findings identify Obatá amarillo, Castillo, and Arará as the most drought-tolerant cultivars, highlighting their potential relevance for breeding programs aimed at improving drought resilience in coffee. Full article
(This article belongs to the Section Plant and Photoautotrophic Stresses)
Show Figures

Graphical abstract

21 pages, 3882 KB  
Article
Construction of a Nocturnal Low-Temperature Tolerance Index for Strawberry and Its Correlation with Yield
by Hongbo Cui, Qingyan Han, Yanni Liu, Qian Zhang, Jun Liu, Jianfeng Wang and Huanyu Zhang
Horticulturae 2026, 12(1), 81; https://doi.org/10.3390/horticulturae12010081 - 9 Jan 2026
Viewed by 133
Abstract
Strawberry is widely cultivated due to its short growth cycle, high yield, and significant profits. In high-latitude cold regions, the planting area of overwintering strawberry has expanded rapidly in recent years. However, although daytime temperatures inside solar greenhouses rise quickly with solar radiation, [...] Read more.
Strawberry is widely cultivated due to its short growth cycle, high yield, and significant profits. In high-latitude cold regions, the planting area of overwintering strawberry has expanded rapidly in recent years. However, although daytime temperatures inside solar greenhouses rise quickly with solar radiation, plants are frequently subjected to persistent nocturnal low-temperature stress (nocturnal temperature below 10 °C). This stress restricts photosynthesis, delays growth, and markedly reduces yield. Therefore, accurately evaluating the tolerance of strawberry varieties to low nocturnal temperatures is crucial for unheated overwintering production in cold regions. This study selected Snow White, Benihoppe, and Kaorino as experimental materials for overwintering cultivation trials in a typical cold-region solar greenhouse. We measured and analyzed growth and development, photosynthetic characteristics, phenological traits, and fruit yield. Based on photosynthetic physiology and phenotypic traits, we constructed the Photosynthesis–Fluorescence Index (PFI), the Production–Phenotype Index (PPI), and the Nocturnal Cold Tolerance Index (NCTI). The results showed that Kaorino exhibited significantly higher values in all three indices compared with Benihoppe and Snow White. After exposure to low night temperatures, Kaorino exhibited rapid photosynthetic induction, strong maintenance of PSII activity, vigorous growth, early maturation, and high yield. Moreover, all three composite indices were strongly and positively correlated with total yield (R2 > 0.97), demonstrating their effectiveness in distinguishing the nocturnal low-temperature tolerance of strawberry cultivars. These composite indices provide a scientifically robust method for selecting suitable cultivars for unheated overwinter strawberry production in high-latitude cold regions. Full article
(This article belongs to the Section Vegetable Production Systems)
Show Figures

Figure 1

20 pages, 1860 KB  
Article
Population Structure of Genotypes and Genome-Wide Association Studies of Cannabinoids and Terpenes Synthesis in Hemp (Cannabis sativa L.)
by Marjeta Eržen, Andreja Čerenak, Tjaša Cesar and Jernej Jakše
Plants 2026, 15(2), 202; https://doi.org/10.3390/plants15020202 - 8 Jan 2026
Viewed by 213
Abstract
Hemp (Cannabis sativa L.) is one of the oldest cultivated plants in the world. It is a wind-pollinated and heterozygous species, and diverse phenotypes can occur within population varieties. In our study, three different hemp varieties—(‘Carmagnola Selected’ (CS), ‘Tiborszallasi’ (TS) and ‘Finola [...] Read more.
Hemp (Cannabis sativa L.) is one of the oldest cultivated plants in the world. It is a wind-pollinated and heterozygous species, and diverse phenotypes can occur within population varieties. In our study, three different hemp varieties—(‘Carmagnola Selected’ (CS), ‘Tiborszallasi’ (TS) and ‘Finola selection’ (FS))—were grown. Based on visual characteristics, two, five and four phenotypes were identified within CS, TS and FS, respectively. According to Cannabis sativa L. transcriptome data from the Sequence Read Archive (SRA), 4631 single-nucleotide polymorphism (SNP) positions were identified to develop capture probes. DNA was isolated from 171 plants representing selected phenotypes of three cultivars. Next-generation sequencing (NGS) libraries were constructed and hybridized with capture probes for target enrichment. The population structure of the samples was analyzed using SNP data for each genotype. Based on genotype profiles, CS formed a single cluster, while TS and FS were each grouped into two clusters, with phenotypes randomly distributed among them. The GWAS results were visualized using Manhattan plots. Fourteen significant SNPs surpassing the false discovery rate (FDR) of 0.01 were identified for delta-9-tetrahydrocannabinol (delta-9-THC). For cannabigerol (CBG), 12 significant SNPs were detected, and for myrcene, one SNP exceeded the 0.01 FDR threshold. However, plausible genes located 1000 bp to the left and right of the SNP position were identified for all significant SNPs. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

17 pages, 1684 KB  
Article
The Effect of Light Intensity on the Photosynthetic Parameters of Tomato Rootstocks
by Kristina Laužikė, Tanzila Rafique, Vitalis Laužikas and Astrit Balliu
Agronomy 2026, 16(2), 154; https://doi.org/10.3390/agronomy16020154 - 7 Jan 2026
Viewed by 419
Abstract
The quality and yield of grafted tomato seedlings are significantly influenced by the selection of high-quality and robust rootstocks. The effectiveness of these rootstocks is dependent on various environmental factors and genetic traits. One of the most critical factors in cultivation is light, [...] Read more.
The quality and yield of grafted tomato seedlings are significantly influenced by the selection of high-quality and robust rootstocks. The effectiveness of these rootstocks is dependent on various environmental factors and genetic traits. One of the most critical factors in cultivation is light, as its intensity plays a vital role in seedling growth, overall development, metabolic processes, the efficiency of the photosynthetic system, and other essential plant functions. The aim of this study was to investigate the changes in the photosynthetic system activity and the growth of tomato rootstocks depending on the light intensity. The study was conducted at the Institute of Horticulture, Lithuanian Center for Agricultural and Forestry Sciences, focusing on four tomato rootstock varieties grown in a controlled environment. The plants were grown at a temperature of +23/19 °C and a relative humidity of 55–60%, under different levels of illumination (high-pressure sodium lamps), PPFD: 150, 250 and 350 ± 10 µmol m−2 s−1. The results indicated that optimal growth and biomass accumulation occurred at around 250 µmol m−2 s−1, with the most significant growth observed in the rootstocks ‘Auroch’ and ‘Goldrake’. Higher light intensities, specifically at 350 µmol m−2 s−1, did not consistently enhance growth and could even lead to a reduction in leaf area and overall growth in some cultivars such as ‘Auroch’ and ‘TOR23901’. Although photosynthetic parameters improved with increased light intensity up to 350 µmol m−2 s−1, these enhancements did not translate into additional growth benefits. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

26 pages, 4361 KB  
Article
Multifaceted Characterization of Olive-Associated Endophytic Fungi with Potential Applications in Growth Promotion and Disease Management
by Tasos-Nektarios Spantidos, Dimitra Douka, Panagiotis Katinakis and Anastasia Venieraki
Appl. Sci. 2026, 16(2), 624; https://doi.org/10.3390/app16020624 - 7 Jan 2026
Viewed by 313
Abstract
The olive tree hosts diverse endophytic fungi that may contribute to plant protection and growth. In this study, a preliminary screening of olive-associated fungal endophytes was conducted. A total of 67 fungal endophytes were isolated from the leaves and roots of the Greek [...] Read more.
The olive tree hosts diverse endophytic fungi that may contribute to plant protection and growth. In this study, a preliminary screening of olive-associated fungal endophytes was conducted. A total of 67 fungal endophytes were isolated from the leaves and roots of the Greek cultivars Amfissa and Kalamon and identified using morphological and molecular approaches; 28 representative strains were selected for functional evaluation. Dual culture assays revealed substantial antagonistic activity against major phytopathogens, with growth inhibition ranging from 19.05% to 100%. Notably, strains F.KALl.8 and F.AMFr.15 showed the strongest suppression across pathogens. Interaction phenotyping revealed all major interaction types (A, B, C) and subtype C1/C2, with several strains producing pigmentation zone lines or hyphal ridges at contact sites. The assessment of plant growth-related effects using Arabidopsis thaliana as a model system showed that three strains (F.AMFr.15, F.KALr.4, F.KALr.38A) significantly increased seedling biomass (up to ~16% above the control), whereas nine strains caused severe growth reduction and disease symptoms. Beneficial strains also altered root architecture, inhibiting primary root elongation while inducing extensive lateral root formation. Collectively, these findings highlight the functional diversity of olive-associated fungal endophytes and identify promising candidate strains, particularly F.AMFr.15 (identified as Clonostachys sp.), for further host-specific validation as potential biological control and plant growth-promoting agents. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

16 pages, 735 KB  
Article
GGE Biplot Analysis for the Assessment and Selection of Bread Wheat Genotypes Under Organic and Low-Input Stress Environments
by Evangelos Korpetis, Elissavet Ninou, Ioannis Mylonas, Dimitrios Katsantonis, Nektaria Tsivelika, Ioannis N. Xynias, Alexios N. Polidoros, Dimitrios Roupakias and Athanasios G. Mavromatis
Agriculture 2026, 16(2), 146; https://doi.org/10.3390/agriculture16020146 - 7 Jan 2026
Viewed by 227
Abstract
Bread wheat variety development suited to organic farming conditions remains a major challenge mainly because of the high breeding costs involved and the few cultivars adapted to low-input systems. The present work explores whether early generation selection needs to take place under organic [...] Read more.
Bread wheat variety development suited to organic farming conditions remains a major challenge mainly because of the high breeding costs involved and the few cultivars adapted to low-input systems. The present work explores whether early generation selection needs to take place under organic conditions for subsequent adaptation or whether conventional testing at an early stage could be adequate. A diverse set of crosses involving Greek landraces and commercial cultivars were developed and advanced by honeycomb pedigree selection under both organic and conventional environments. Subsequently, F4 progenies and an upgraded landrace were evaluated over two years in neighboring organic and conventional trials. Both statistical and GGE biplot analyses revealed significant genotype × environment interactions. The results clearly indicate that early selection under organic conditions did not provide a consistent advantage for subsequent performance under organic management compared with conventional early selection. Genotypes derived from the Africa × Atheras cross consistently showed the highest and most stable yields across the two environments, irrespective of the early selection environment. These results indicate that genetic background and landrace-derived diversity are more important than the early selection environment for the expression of performance. A staged breeding strategy involving initial selection in conventional management followed by multi-environment testing in organic conditions can provide a cost-effective approach to developing resilient, high-yielding wheat cultivars suitable for organic farming systems, which are typically characterized by low-input management practices, and in tune with the EU targets for expanded organic farming. Full article
Show Figures

Figure 1

15 pages, 2753 KB  
Article
Tolerance and Antioxidant Activity of Watermelon Cultivars Pre-Treated with Stress Attenuators and Subjected to Water Deficit
by Moadir de Sousa Leite, Salvador Barros Torres, Clarisse Pereira Benedito, Kleane Targino Oliveira Pereira, Maria Valdiglezia de Mesquita Arruda, Roseane Rodrigues de Oliveira, Giovanna Dias de Sousa, Cynthia Cavalcanti de Albuquerque, Marciana Bizerra de Morais, Charline Zaratin Alves, Givanildo Zildo da Silva, Emerson de Medeiros Sousa, Pablo Ferreira da Silva, Cibele Chalita Martins and Francisco Vanies da Silva Sá
Plants 2026, 15(2), 184; https://doi.org/10.3390/plants15020184 - 7 Jan 2026
Viewed by 146
Abstract
This study aimed to evaluate the effect of stress attenuators on the tolerance and antioxidant activity of watermelon cultivars under water deficit. The experiment was conducted in two stages, Stage I corresponding to water deficit levels (N1 = 0; N2 = −0.1; N3 [...] Read more.
This study aimed to evaluate the effect of stress attenuators on the tolerance and antioxidant activity of watermelon cultivars under water deficit. The experiment was conducted in two stages, Stage I corresponding to water deficit levels (N1 = 0; N2 = −0.1; N3 = −0.2 MPa) and six watermelon cultivars. Stage II comprises two cultivars selected in Stage I (one sensitive and one tolerant) and the combination of water restriction with attenuators (T1 = 0.0 MPa (control), T2 = −0.2 MPa (water deficit), T3 = −0.2 MPa + hydropriming, T4 = −0.2 MPa + gibberellic acid, T5 = −0.2 MPa + salicylic acid, and T6 = −0.2 MPa + hydrogen peroxide). The concentration and exposure times of the attenuators were determined through preliminary tests. In Stage I, physiological and biochemical analyses were performed. In Stage II, in addition to these tests, hydrogen peroxide content, malondialdehyde levels, and the activity of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) were assessed. Water deficit impaired germination and seedling vigor of watermelon, with Crimson Sweet, Omaru, Charleston Gray, and Congo being the most sensitive cultivars, while Fairfax was the most tolerant. For Crimson Sweet, pre-germination treatments reduced oxidative stress and enhanced tolerance by stimulating antioxidant enzyme activity, with GA and H2O2 providing the most effective results. For Fairfax, greater tolerance was associated with osmotic adjustment through the accumulation of compatible solutes, a mechanism further enhanced by the use of attenuators. Full article
Show Figures

Figure 1

11 pages, 1368 KB  
Article
Genetic Diversity Analysis of Cotton Cultivars Using a 40K Liquid Chip in Northern Xinjiang
by Zhihong Zheng, Ningshan Wang, Shangkun Jin, Kewei Ning, Guoli Feng, Haiqiang Gao, Zhanfeng Si, Tianzhen Zhang and Nijiang Ai
Int. J. Mol. Sci. 2026, 27(1), 545; https://doi.org/10.3390/ijms27010545 - 5 Jan 2026
Viewed by 186
Abstract
Genetic diversity and kinship information of cotton germplasm resources are fundamental to breeding, providing a theoretical basis for the rational selection of hybrid parents and further breeding of new varieties with high yield, high quality, and multi-resistance. This study utilized cotton varieties that [...] Read more.
Genetic diversity and kinship information of cotton germplasm resources are fundamental to breeding, providing a theoretical basis for the rational selection of hybrid parents and further breeding of new varieties with high yield, high quality, and multi-resistance. This study utilized cotton varieties that have been used for variety improvement or are widely planted in the Northern Xinjiang cotton region as materials. Genotyping was performed using the ZJU CottonSNP40K chip to analyze genetic diversity and kinship relationships. A total of 26,852 high-quality SNP markers were obtained, including 15,222 SNPs in subgenome A and 11,630 SNPs in subgenome D. The number of SNPs per chromosome ranged from 547 (A04) to 2168 (A08). Based on phylogenetic tree and principal component analysis, the 83 materials were clustered into 3 major subgroups. Group I contained varieties introduced from the former Soviet Union and the United States, which have become important parents for cotton breeding in Northern Xinjiang. Among them, as many as 27 varieties were derived and selected from the introduced US variety ‘Beiersinuo’ as a parent. While playing an important role in cotton breeding in Northern Xinjiang, this has also led to the current situation where the genetic base of Northern Xinjiang varieties is relatively narrow (average kinship coefficient 0.72). It clarifies the significant role of introduced American variety ‘Beiersinuo’ in the breeding of Northern Xinjiang cultivars and provides theoretical guidance for broadening the genetic base of Northern Xinjiang cotton varieties. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop