GGE Biplot Analysis for the Assessment and Selection of Bread Wheat Genotypes Under Organic and Low-Input Stress Environments
Abstract
1. Introduction
2. Materials and Methods
2.1. Genetic Material
2.1.1. Starting Genetic Material
2.1.2. Parent Evaluation
2.1.3. Crosses
2.1.4. Advancement and Early Evaluation of Segregating Generations (F1–F3)
2.1.5. Advanced Generation Evaluation (F4–F5) and Development of Upgraded Landraces
2.2. Evaluated Traits and Environmental Conditions
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, L.; Zheng, Y.; Wang, Y.; Wang, S.; Wang, T.; Wang, C.; Chen, Y.; Zhang, K.; Zhang, N.; Dong, Z.; et al. A HST1-like Gene Controls Tiller Angle through Regulating Endogenous Auxin in Common Wheat. Plant Biotechnol. J. 2023, 21, 122–135. [Google Scholar] [CrossRef]
- Christian, M.M.; Shimelis, H.; Laing, M.D.; Tsilo, T.J.; Mathew, I. Breeding for Silicon-Use Efficiency, Protein Content and Drought Tolerance in Bread Wheat (Triticum aestivum L.): A Review. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2022, 72, 17–29. [Google Scholar] [CrossRef]
- Peng, J.H.; Sun, D.; Nevo, E. Domestication Evolution, Genetics and Genomics in Wheat. Mol. Breed. 2011, 28, 281–301. [Google Scholar] [CrossRef]
- Beres, B.L.; Rahmani, E.; Clarke, J.M.; Grassini, P.; Pozniak, C.J.; Geddes, C.M.; Porker, K.D.; May, W.E.; Ransom, J.K. A Systematic Review of Durum Wheat: Enhancing Production Systems by Exploring Genotype, Environment, and Management (G × E × M) Synergies. Front. Plant Sci. 2020, 11, 568657. [Google Scholar] [CrossRef]
- Rempelos, L.; Wang, J.; Sufar, E.K.; Almuayrifi, M.S.B.; Knutt, D.; Leifert, H.; Leifert, A.; Wilkinson, A.; Shotton, P.; Hasanaliyeva, G.; et al. Breeding Bread-Making Wheat Varieties for Organic Farming Systems: The Need to Target Productivity, Robustness, Resource Use Efficiency and Grain Quality Traits. Foods 2023, 12, 1209. [Google Scholar] [CrossRef]
- OECD-FAO. OECD-FAO Agricultural Outlook 2022–2031; OECD Publishing: Paris, France; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Lammerts van Bueren, E.T.; Jones, S.S.; Tamm, L.; Murphy, K.M.; Myers, J.R.; Leifert, C.; Messmer, M.M. The Need to Breed Crop Varieties Suitable for Organic Farming, Using Wheat, Tomato and Broccoli as Examples: A Review. NJAS—Wagening. J. Life Sci. 2011, 58, 193–205. [Google Scholar] [CrossRef]
- Wolfe, M.S.; Baresel, J.P.; Desclaux, D.; Goldringer, I.; Hoad, S.; Kovacs, G.; Löschenberger, F.; Miedaner, T.; Østergård, H.; Lammerts van Bueren, E.T. Developments in Breeding Cereals for Organic Agriculture. Euphytica 2008, 163, 323–346. [Google Scholar] [CrossRef]
- Asif, M.; Yang, R.-C.; Navabi, A.; Iqbal, M.; Kamran, A.; Lara, E.P.; Randhawa, H.; Pozniak, C.; Spaner, D. Mapping QTL, Selection Differentials, and the Effect of Rht-B1 under Organic and Conventionally Managed Systems in the Attila × CDC Go Spring Wheat Mapping Population. Crop Sci. 2015, 55, 1129–1142. [Google Scholar] [CrossRef]
- Newton, A.C.; Akar, T.; Baresel, J.P.; Bebeli, P.J.; Bettencourt, E.; Bladenopoulos, K.V.; Czembor, J.H.; Fasoula, D.A.; Katsiotis, A.; Koutis, K.; et al. Cereal Landraces for Sustainable Agriculture. A Review. Agron. Sustain. Dev. 2010, 30, 237–269. [Google Scholar] [CrossRef]
- Bladenopoulos, K.V.; Ninou, E.G.; Tsochatzis, E.D.; Mylonas, I.G. Organic Breeding and Cultivation of Barley. Effects on Physical and Chemical Properties. In Barley; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2014; pp. 1–20. ISBN 978-1-62948-904-9. [Google Scholar]
- Lopes, M.S.; El-Basyoni, I.; Baenziger, P.S.; Singh, S.; Royo, C.; Ozbek, K.; Aktas, H.; Ozer, E.; Ozdemir, F.; Manickavelu, A.; et al. Exploiting Genetic Diversity from Landraces in Wheat Breeding for Adaptation to Climate Change. J. Exp. Bot. 2015, 66, 3477–3486. [Google Scholar] [CrossRef]
- Zuev, E.V.; Lebedeva, T.V.; Yakovleva, O.V.; Kolesova, M.A.; Brykova, A.N.; Lysenko, N.S.; Tyryshkin, L.G. Genetic Diversity for Effective Resistance in Wheat Landraces from Ethiopia and Eritrea to Fungal Diseases and Toxic Aluminum Ions. Plants 2024, 13, 1166. [Google Scholar] [CrossRef]
- Kokhmetova, A.; Bolatbekova, A.; Zeleneva, Y.; Malysheva, A.; Bastaubayeva, S.; Bakhytuly, K.; Dutbayev, Y.; Tsygankov, V. Identification of Wheat Septoria tritici Resistance Genes in Wheat Germplasm Using Molecular Markers. Plants 2024, 13, 1113. [Google Scholar] [CrossRef]
- IFOAM. The IFOAM Norms. Available online: https://www.ifoam.bio/our-work/how/standards-certification/organic-guarantee-system/ifoam-norms (accessed on 20 May 2024).
- Crespo-Herrera, L.A.; Garkava-Gustavsson, L.; Åhman, I. A Systematic Review of Rye (Secale cereale L.) as a Source of Resistance to Pathogens and Pests in Wheat (Triticum aestivum L.). Hereditas 2017, 154, 14. [Google Scholar] [CrossRef]
- Ninou, E.; Tsivelika, N.; Sistanis, I.; Katsenios, N.; Korpetis, E.; Vazaneli, E.; Papathanasiou, F.; Didos, S.; Argiriou, A.; Mylonas, I. Assessment of Durum Wheat Cultivars’ Adaptability to Mediterranean Environments Using G × E Interaction Analysis. Agronomy 2024, 14, 102. [Google Scholar] [CrossRef]
- Li, W.; Yan, Z.-H.; Wei, Y.-M.; Lan, X.-J.; Zheng, Y.-L. Evaluation of Genotype × Environment Interactions in Chinese Spring Wheat by the AMMI Model, Correlation and Path Analysis. J. Agron. Crop Sci. 2006, 192, 221–227. [Google Scholar] [CrossRef]
- Yan, W. GGEbiplot—A Windows Application for Graphical Analysis of Multienvironment Trial Data and Other Types of Two-Way Data. Agron. J. 2001, 93, 1111–1118. [Google Scholar] [CrossRef]
- Yan, W. Singular-Value Partitioning in Biplot Analysis of Multienvironment Trial Data. Agron. J. 2002, 94, 990–996. [Google Scholar] [CrossRef]
- Andersen, M.M.; Landes, X.; Xiang, W.; Anyshchenko, A.; Falhof, J.; Østerberg, J.T.; Olsen, L.I.; Edenbrandt, A.K.; Vedel, S.E.; Thorsen, B.J.; et al. Feasibility of New Breeding Techniques for Organic Farming. Trends Plant Sci. 2015, 20, 426–434. [Google Scholar] [CrossRef]
- Murphy, K.M.; Campbell, K.G.; Lyon, S.R.; Jones, S.S. Evidence of Varietal Adaptation to Organic Farming Systems. Field Crop. Res. 2007, 102, 172–177. [Google Scholar] [CrossRef]
- Korpetis, E.; Ninou, E.; Mylonas, I.; Ouzounidou, G.; Xynias, I.N.; Mavromatis, A.G. Bread Wheat Landraces Adaptability to Low-Input Agriculture. Plants 2023, 12, 2561. [Google Scholar] [CrossRef]
- Fasoulas, A.C.; Fasoula, V.A. Honeycomb selection designs. Plant Breed. Rev. 1995, 13, 87–139. [Google Scholar]
- Ninou, E.; Korpetis, E.; Cook, K.M. Evaluation of the phytodiversity of local landraces of the genus Triticum using morphological indicators based on the Regulation of the Community Plant Variety Office (CPVO). In Proceedings of the 14th Panhellenic Scientific Conference of the Hellenic Botanical Society; Hellenic Botanical Society: Patras, Greece, 2016; p. 16. (In Greek) [Google Scholar]
- Kirchmann, H.; Kätterer, T.; Bergström, L.; Börjesson, G.; Bolinder, M. Flaws and Criteria for Design and Evaluation of Comparative Organic and Conventional Cropping Systems. Field Crop. Res. 2016, 186, 99–106. [Google Scholar] [CrossRef]
- Payne, R. GenStat. WIREs Comput. Stat. 2009, 1, 255–258. [Google Scholar] [CrossRef]
- Baenziger, P.S.; Russell, W.K.; Graef, G.L.; Campbell, B.T. Improving Lives: 50 Years of Crop Breeding, Genetics, and Cytology (C-1). Crop Sci. 2006, 46, 2230–2244. [Google Scholar] [CrossRef]
- Chalbi, A.; Chikh-Rouhou, H.; Mezghani, N.; Slim, A.; Fayos, O.; Bel-Kadhi, M.S.; Garcés-Claver, A. Genetic Diversity Analysis of Onion (Allium cepa L.) from the Arid Region of Tunisia Using Phenotypic Traits and SSR Markers. Horticulturae 2023, 9, 1098. [Google Scholar] [CrossRef]
- Chikh-Rouhou, H.; Kienbaum, L.; Gharib, A.H.A.M.; Fayos, O.; Garcés-Claver, A. Combining Ability and Hybrid Breeding in Tunisian Melon (Cucumis melo L.) for Fruit Traits. Horticulturae 2024, 10, 724. [Google Scholar] [CrossRef]
- Shehab El Deen, M.T.; Darwish, M.A.H.; Ahmed, S.M.; Yassin, M.M.M. Genetic Analysis and Heritability of Some Agronomic Traits in Some Bread Wheat: Insights for Breeding Improvement. J. Plant Prod. 2025, 16, 457–464. [Google Scholar] [CrossRef]
- Dwivedi, S.L.; Ceccarelli, S.; Blair, M.W.; Upadhyaya, H.D.; Are, A.K.; Ortiz, R. Landrace Germplasm for Improving Yield and Abiotic Stress Adaptation. Trends Plant Sci. 2016, 21, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Mylonas, I.; Stavrakoudis, D.; Katsantonis, D.; Korpetis, E. Chapter 1—Better Farming Practices to Combat Climate Change. In Climate Change and Food Security with Emphasis on Wheat; Ozturk, M., Gul, A., Eds.; Academic Press: St. Louis, MO, USA, 2020; pp. 1–29. ISBN 978-0-12-819527-7. [Google Scholar]
- Jaradat, A.A. Wheat Landraces: A Mini Review. Emir. J. Food Agric. 2013, 25, 20–29. [Google Scholar] [CrossRef]
- Casañas, F.; Simó, J.; Casals, J.; Prohens, J. Toward an Evolved Concept of Landrace. Front. Plant Sci. 2017, 8, 145. [Google Scholar] [CrossRef]
- Martínez-Moreno, F.; Solís, I.; Noguero, D.; Blanco, A.; Özberk, İ.; Nsarellah, N.; Elias, E.; Mylonas, I.; Soriano, J.M. Durum Wheat in the Mediterranean Rim: Historical Evolution and Genetic Resources. Genet. Resour. Crop Evol. 2020, 67, 1415–1436. [Google Scholar] [CrossRef]
- Zeven, A.C. Landraces: A Review of Definitions and Classifications. Euphytica 1998, 104, 127–139. [Google Scholar] [CrossRef]
- Xynias, I.N.; Mylonas, I.; Korpetis, E.G.; Ninou, E.; Tsaballa, A.; Avdikos, I.D.; Mavromatis, A.G. Durum Wheat Breeding in the Mediterranean Region: Current Status and Future Prospects. Agronomy 2020, 10, 432. [Google Scholar] [CrossRef]
- Zencirci, N.; Baloch, F.S.; Habyarimana, E.; Chung, G. Wheat Landraces; Springer Nature: London, UK, 2021; ISBN 978-3-030-77388-5. [Google Scholar]
- Cheng, S.; Feng, C.; Wingen, L.U.; Cheng, H.; Riche, A.B.; Jiang, M.; Leverington-Waite, M.; Huang, Z.; Collier, S.; Orford, S.; et al. Harnessing Landrace Diversity Empowers Wheat Breeding. Nature 2024, 632, 823–831. [Google Scholar] [CrossRef]
- Marone, D.; Russo, M.A.; Mores, A.; Ficco, D.B.M.; Laidò, G.; Mastrangelo, A.M.; Borrelli, G.M. Importance of Landraces in Cereal Breeding for Stress Tolerance. Plants 2021, 10, 1267. [Google Scholar] [CrossRef]
- Yannam, V.R.R.; Lopes, M.; Guzman, C.; Soriano, J.M. Uncovering the Genetic Basis for Quality Traits in the Mediterranean Old Wheat Germplasm and Phenotypic and Genomic Prediction Assessment by Cross-Validation Test. Front. Plant Sci. 2023, 14, 1127357. [Google Scholar] [CrossRef]
- Royo, C.; Soriano, J.M.; Rufo, R.; Guzmán, C. Are the Agronomic Performance and Grain Quality Characteristics of Bread Wheat Mediterranean Landraces Related to the Climate Prevalent in Their Area of Origin? J. Cereal Sci. 2022, 105, 103478. [Google Scholar] [CrossRef]
- Baresel, J.P.; Bülow, L.; Finckh, M.R.; Frese, L.; Knapp, S.; Schmidhalter, U.; Weedon, O. Performance and Evolutionary Adaptation of Heterogeneous Wheat Populations. Euphytica 2022, 218, 137. [Google Scholar] [CrossRef]
- Vindras-Fouillet, C.; Goldringer, I.; van Frank, G.; Dewalque, M.; Colin, A.; Montaz, H.; Berthellot, J.-F.; Baltassat, R.; Dalmasso, C. Sensory Analyses and Nutritional Qualities of Wheat Population Varieties Developed by Participatory Breeding. Agronomy 2021, 11, 2117. [Google Scholar] [CrossRef]
- Smutná, P.; Mylonas, I.; Tokatlidis, I.S. The Use of Stability Statistics to Analyze Genotype × Environments Interaction in Rainfed Wheat Under Diverse Agroecosystems. Int. J. Plant Prod. 2021, 15, 261–271. [Google Scholar] [CrossRef]
- Mylonas, I.; Sinapidou, E.; Remoundakis, E.; Sistanis, I.; Pankou, C.; Ninou, E.; Papadopoulos, I.; Papathanasiou, F.; Lithourgidis, A.; Gekas, F.; et al. Improved Plant Yield Efficiency Alleviates the Erratic Optimum Density in Maize. Agron. J. 2020, 112, 1690–1701. [Google Scholar] [CrossRef]
- El Baouchi, A.; Ibriz, M.; Dreisigacker, S.; Lopes, M.S.; Sanchez-Garcia, M. Dissection of the Genetic Basis of Genotype by Environment Interactions for Morphological Traits and Protein Content in Winter Wheat Panel Grown in Morocco and Spain. Plants 2024, 13, 1477. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.; Basandrai, D.; Kaur, H.; Kaur, J.; Basandrai, A.K.; Basu, U.; Singh, S.; Alsakkaf, W.A.A.; Ali, H.M. Genotype by Environment Interaction Analysis for Resistance against Powdery Mildew and Yellow Rust in Some Promising Exotic Wheats. BMC Plant Biol. 2025, 25, 786. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, N.W. Genotype (G), Environment (E) and GE Components of Crop Yields 1981. Available online: https://typeset.io/papers/genotype-g-environment-e-and-ge-components-of-crop-yields-16fxf6i72q (accessed on 20 May 2024).
- Baker, R.J. Tests for Crossover Genotype-Environmental Interactions. Can. J. Plant Sci. 1988, 68, 405–410. [Google Scholar] [CrossRef]
- Koutis, K.; Mavromatis, A.; Baxevanos, D.; Koutsika, M. Multienvironmental Evaluation of Wheat Landraces by GGE Biplot Analysis for Organic Breeding. Agric. Sci. 2012, 3, 66–74. [Google Scholar] [CrossRef]
- Sinapidou, E.; Pankou, C.; Gekas, F.; Sistanis, I.; Tzantarmas, C.; Tokamani, M.; Mylonas, I.; Papadopoulos, I.; Kargiotidou, A.; Ninou, E.; et al. Plant Yield Efficiency by Homeostasis as Selection Tool at Ultra-Low Density. A Comparative Study with Common Stability Measures in Maize. Agronomy 2020, 10, 1203. [Google Scholar] [CrossRef]
- European Commission. Organic Action Plan. Available online: https://agriculture.ec.europa.eu/farming/organic-farming/organic-action-plan_en (accessed on 21 May 2024).
- Zörb, C.; Ludewig, U.; Hawkesford, M.J. Perspective on Wheat Yield and Quality with Reduced Nitrogen Supply. Trends Plant Sci. 2018, 23, 1029–1037. [Google Scholar] [CrossRef]
- Marzario, S.; Sica, R.; Taranto, F.; Fania, F.; Esposito, S.; De Vita, P.; Gioia, T.; Logozzo, G. Phenotypic Evolution in Durum Wheat (Triticum durum Desf.) Based on SNPs, Morphological Traits, UPOV Descriptors and Kernel-Related Traits. Front. Plant Sci. 2023, 14, 1206560. [Google Scholar] [CrossRef]
- Sandro, P.; Kucek, L.K.; Sorrells, M.E.; Dawson, J.C.; Gutierrez, L. Developing High-Quality Value-Added Cereals for Organic Systems in the US Upper Midwest: Hard Red Winter Wheat (Triticum aestivum L.) Breeding. Theor. Appl. Genet. 2022, 135, 4005–4027. [Google Scholar] [CrossRef]
- Singh, C.; Yadav, S.; Khare, V.; Gupta, V.; Patial, M.; Kumar, S.; Mishra, C.N.; Tyagi, B.S.; Gupta, A.; Sharma, A.K.; et al. Wheat Drought Tolerance: Unveiling a Synergistic Future with Conventional and Molecular Breeding Strategies. Plants 2025, 14, 1053. [Google Scholar] [CrossRef]
- Herrera, J.M.; Levy Häner, L.; Mascher, F.; Hiltbrunner, J.; Fossati, D.; Brabant, C.; Charles, R.; Pellet, D. Lessons From 20 Years of Studies of Wheat Genotypes in Multiple Environments and Under Contrasting Production Systems. Front. Plant Sci. 2020, 10, 1745. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, K.S.; Mihalyov, P.D.; Lewien, M.J.; Pumphrey, M.O.; Carter, A.H. Genomic Selection and Genome-Wide Association Studies for Grain Protein Content Stability in a Nested Association Mapping Population of Wheat. Agronomy 2021, 11, 2528. [Google Scholar] [CrossRef]


| Landraces | Origin | Commercial Cultivars |
|---|---|---|
| Atheras Kerkyras 185 | Corfu | Accor |
| Zoulitsa Arkadias | Arkadia | Africa |
| 18 Kontopouli 16 | Limnos | Panifor |
| 4 Kontopouli | Limnos | Yecora E’ |
| Tsipoura Samou | Samos | |
| Mavragani Aetoloakarnanias | Aetoloakarnania | |
| Mavragani Argolidas | Argolida | |
| Hasiko Kritis | Crete | |
| Asprostaro Larisas | Larisa | |
| Xilokastro Lamias | Lamia |
| Male Plants (Pollen Donors) | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Landraces | Commercial Cultivars | |||||||||
| Atheras | Zoulitsa | Mavragani | Xilokastro | Yecora E | Accor | Africa | Panifor | |||
| Female plants | Landraces | Atheras | - | - | - | - | x * | x | x | x |
| Zoulitsa | - | - | - | - | x | x | x | x | ||
| Mavragani | - | - | - | - | x | x | x | x | ||
| Xilokastro | - | - | - | - | x | x | x | x | ||
| Commercial cultivars | Yecora E’ | x | x | x | x | - | - | - | - | |
| Accor | x | x | x | x | - | - | - | - | ||
| Africa | x | x | x | x | - | - | - | - | ||
| Panifor | x | x | x | x | - | - | - | - | ||
| Descriptor | Conventional | Organic |
|---|---|---|
| Planting rate (seeds/m2) | ~400 | ~400 |
| Seed Treatment | None | None |
| Tillage | Yes | Yes |
| Starter Fertilizer (source) | 250 Kg.ha−1 (20-10-0) | None |
| Green manure | None | Incorporation of vetch in the previous year |
| Weed Control | Iodosulfuron-methyl-sodium + mesosulfuron-methyl + thiencarbazone-methyl | Weeding by hand |
| Plant Disease Control | None | None |
| Conventional | Organic | |||
|---|---|---|---|---|
| Soil Characteristics | 2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 |
| Textural Class | L | L | L | L |
| Sand (%) | 40 | 38 | 48 | 42 |
| Clay (%) | 22 | 22 | 18 | 22 |
| Silt (%) | 38 | 40 | 34 | 36 |
| pH | 7.91 | 7.96 | 7.85 | 7.91 |
| EC (mS/cm) | 0.513 | 0.422 | 0.792 | 0.568 |
| Organic matter (%) | 1.68 | 1.51 | 2.15 | 2.59 |
| CaCO3 (%) | 2.5 | 3.5 | 5.3 | 4.4 |
| NO3 (ppm) | 57.9 | 48.0 | 132.8 | 111 |
| Nitrogen nitrate | 13.08 | 10.83 | 29.99 | 20.11 |
| P (ppm) | 12.44 | 18.78 | 35.29 | 38.19 |
| K (ppm) | 279 | 267 | 1128 | 779 |
| Mg2+ exchangeable (ppm) | 254 | 493 | 290 | 268 |
| Ca2+ exchangeable (ppm) | >2000 | >2000 | >2000 | >2000 |
| Fe (ppm) | 3.54 | 5.90 | 3.75 | 3.25 |
| Zn (ppm) | 0.45 | 1.06 | 1.27 | 0.97 |
| Mn (ppm) | 5.62 | 5.05 | 7.16 | 7.85 |
| Cu (ppm) | 1.49 | 2.02 | 2.48 | 2.48 |
| B (ppm) | 0.12 | 0.12 | 0.30 | 0.42 |
| Conventional | Organic | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| 2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 | ||||||
| Source of Variation | df | ||||||||
| Genotype | 8 | ** | ** | ** | NS | ||||
| Blocks | 3 | ** | NS | NS | NS | ||||
| Error | 24 | ||||||||
| Genotypes | |||||||||
| X1. Africa × Atheras (O) | 2.5 | † abcv | 2.6 | de | 2.3 | a | 4.2 | a | |
| X2. Atheras × Africa (O) | 3.2 | a | 3.7 | abc | 1.7 | ab | 1.8 | a | |
| X3. Atheras × Accor (O) | 2.0 | c | 4.5 | ab | 1.5 | ab | 3.0 | a | |
| X4. Zoulitsa (O) | 2.1 | bc | 2.7 | cde | 1.5 | ab | 2.1 | a | |
| X5. Africa × Atheras (C) | 2.9 | abc | 2.6 | de | 2.1 | ab | 3.4 | a | |
| X6. Atheras × Africa (C) | 2.4 | abc | 3.3 | cd | 2.0 | ab | 2.4 | a | |
| X7. Atheras × Accor (C) | 3.1 | ab | 3.4 | bcd | 1.5 | ab | 2.8 | a | |
| X8. Zoulitsa (C) | 2.6 | abc | 2.1 | e | 1.4 | ab | 2.0 | a | |
| X9. Yecora E’ | 1.9 | c | 4.6 | a | 1.3 | b | 3.0 | a | |
| LSD | 0.57 | 0.58 | 0.50 | 1.38 | |||||
| CV% | 17.39 | 13.54 | 22.69 | 38.91 | |||||
| Mean | 2.50 | 3.26 | 1.7 | 2.71 | |||||
| Over Environments | Over Years | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 2018–2019 | 2019–2020 | Conventional | Organic | ||||||||
| Source of Variation | df | Source of Variation | df | ||||||||
| Genotype | 8 | ** | ** | Genotype | 8 | NS | NS | ||||
| Environment | 1 | ** | ** | Year | 1 | NS | ** | ||||
| Blocks | 3 | NS | NS | Blocks | 3 | NS | NS | ||||
| Genotype × Environment | 8 | * | ** | Genotype × Year | 8 | ** | NS | ||||
| Error | 51 | Error | 51 | ||||||||
| Genotypes | |||||||||||
| X1. Africa × Atheras (O) | 2.4 | † ab | 3.4 | ab | 2.6 | bc | 3.2 | a | |||
| X2. Atheras × Africa (O) | 2.4 | ab | 2.7 | abc | 3.4 | a | 1.7 | b | |||
| X3. Atheras × Accor (O) | 1.7 | bc | 3.7 | a | 3.2 | ab | 2.2 | ab | |||
| X4. Zoulitsa (O) | 1.8 | abc | 2.4 | bc | 2.4 | c | 1.8 | b | |||
| X5. Africa × Atheras (C) | 2.5 | a | 3.0 | abc | 2.7 | abc | 2.7 | ab | |||
| X6. Atheras × Africa (C) | 2.2 | abc | 2.8 | abc | 2.8 | abc | 2.2 | ab | |||
| X7. Atheras × Accor (C) | 2.3 | abc | 3.1 | abc | 3.2 | ab | 2.1 | ab | |||
| X8. Zoulitsa (C) | 2.0 | abc | 2.0 | c | 2.3 | c | 1.7 | b | |||
| X9. Yecora E’ | 1.6 | c | 3.8 | a | 3.2 | ab | 2.1 | ab | |||
| LSD | 0.58 | 1.02 | 0.60 | 0.99 | |||||||
| CV% | 21.9 | 26.81 | 16.47 | 35.42 | |||||||
| Mean | 2.10 | 2.99 | 2.88 | 2.20 | |||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Korpetis, E.; Ninou, E.; Mylonas, I.; Katsantonis, D.; Tsivelika, N.; Xynias, I.N.; Polidoros, A.N.; Roupakias, D.; Mavromatis, A.G. GGE Biplot Analysis for the Assessment and Selection of Bread Wheat Genotypes Under Organic and Low-Input Stress Environments. Agriculture 2026, 16, 146. https://doi.org/10.3390/agriculture16020146
Korpetis E, Ninou E, Mylonas I, Katsantonis D, Tsivelika N, Xynias IN, Polidoros AN, Roupakias D, Mavromatis AG. GGE Biplot Analysis for the Assessment and Selection of Bread Wheat Genotypes Under Organic and Low-Input Stress Environments. Agriculture. 2026; 16(2):146. https://doi.org/10.3390/agriculture16020146
Chicago/Turabian StyleKorpetis, Evangelos, Elissavet Ninou, Ioannis Mylonas, Dimitrios Katsantonis, Nektaria Tsivelika, Ioannis N. Xynias, Alexios N. Polidoros, Dimitrios Roupakias, and Athanasios G. Mavromatis. 2026. "GGE Biplot Analysis for the Assessment and Selection of Bread Wheat Genotypes Under Organic and Low-Input Stress Environments" Agriculture 16, no. 2: 146. https://doi.org/10.3390/agriculture16020146
APA StyleKorpetis, E., Ninou, E., Mylonas, I., Katsantonis, D., Tsivelika, N., Xynias, I. N., Polidoros, A. N., Roupakias, D., & Mavromatis, A. G. (2026). GGE Biplot Analysis for the Assessment and Selection of Bread Wheat Genotypes Under Organic and Low-Input Stress Environments. Agriculture, 16(2), 146. https://doi.org/10.3390/agriculture16020146

