Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,251)

Search Parameters:
Keywords = cue responsivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1792 KiB  
Review
The Response Mechanism of Soil Microbial Carbon Use Efficiency to Land-Use Change: A Review
by Zongkun Li and Dandan Qi
Sustainability 2025, 17(15), 7023; https://doi.org/10.3390/su17157023 (registering DOI) - 2 Aug 2025
Abstract
Microbial carbon use efficiency (CUE) is an important indicator of soil organic carbon accumulation and loss and a key parameter in biogeochemical cycling models. Its regulatory mechanism is highly dependent on microbial communities and their dynamic mediation of abiotic factors. Land-use change (e.g., [...] Read more.
Microbial carbon use efficiency (CUE) is an important indicator of soil organic carbon accumulation and loss and a key parameter in biogeochemical cycling models. Its regulatory mechanism is highly dependent on microbial communities and their dynamic mediation of abiotic factors. Land-use change (e.g., agricultural expansion, deforestation, urbanization) profoundly alter carbon input patterns and soil physicochemical properties, further exacerbating the complexity and uncertainty of CUE. Existing carbon cycle models often neglect microbial ecological processes, resulting in an incomplete understanding of how microbial traits interact with environmental factors to regulate CUE. This paper provides a comprehensive review of the microbial regulation mechanisms of CUE under land-use change and systematically explores how microorganisms drive organic carbon allocation through community compositions, interspecies interactions, and environmental adaptability, with particular emphasis on the synergistic response between microbial communities and abiotic factors. We found that the buffering effect of microbial communities on abiotic factors during land-use change is a key factor determining CUE change patterns. This review not only provides a theoretical framework for clarifying the microbial-dominated carbon turnover mechanism but also lays a scientific foundation for the precise implementation of sustainable land management and carbon neutrality goals. Full article
(This article belongs to the Special Issue Soil Ecology and Carbon Cycle)
Show Figures

Figure 1

34 pages, 1227 KiB  
Review
Beyond Cutting: CRISPR-Driven Synthetic Biology Toolkit for Next-Generation Microalgal Metabolic Engineering
by Limin Yang and Qian Lu
Int. J. Mol. Sci. 2025, 26(15), 7470; https://doi.org/10.3390/ijms26157470 (registering DOI) - 2 Aug 2025
Abstract
Microalgae, with their unparalleled capabilities for sunlight-driven growth, CO2 fixation, and synthesis of diverse high-value compounds, represent sustainable cell factories for a circular bioeconomy. However, industrial deployment has been hindered by biological constraints and the inadequacy of conventional genetic tools. The advent [...] Read more.
Microalgae, with their unparalleled capabilities for sunlight-driven growth, CO2 fixation, and synthesis of diverse high-value compounds, represent sustainable cell factories for a circular bioeconomy. However, industrial deployment has been hindered by biological constraints and the inadequacy of conventional genetic tools. The advent of CRISPR-Cas systems initially provided precise gene editing via targeted DNA cleavage. This review argues that the true transformative potential lies in moving decisively beyond cutting to harness CRISPR as a versatile synthetic biology “Swiss Army Knife”. We synthesize the rapid evolution of CRISPR-derived tools—including transcriptional modulators (CRISPRa/i), epigenome editors, base/prime editors, multiplexed systems, and biosensor-integrated logic gates—and their revolutionary applications in microalgal engineering. These tools enable tunable gene expression, stable epigenetic reprogramming, DSB-free nucleotide-level precision editing, coordinated rewiring of complex metabolic networks, and dynamic, autonomous control in response to environmental cues. We critically evaluate their deployment to enhance photosynthesis, boost lipid/biofuel production, engineer high-value compound pathways (carotenoids, PUFAs, proteins), improve stress resilience, and optimize carbon utilization. Persistent challenges—species-specific tool optimization, delivery efficiency, genetic stability, scalability, and biosafety—are analyzed, alongside emerging solutions and future directions integrating AI, automation, and multi-omics. The strategic integration of this CRISPR toolkit unlocks the potential to engineer robust, high-productivity microalgal cell factories, finally realizing their promise as sustainable platforms for next-generation biomanufacturing. Full article
(This article belongs to the Special Issue Developing Methods and Molecular Basis in Plant Biotechnology)
Show Figures

Figure 1

15 pages, 2026 KiB  
Article
Behavioral Effects of Food-Based and Olfactory Enrichment in Zoo-Housed Binturongs: An Exploratory Study
by Courtney Archer, Joselyn Hoyt, Emma Loy, Emma Marthaler, Abigail Richardson, Katie Hall, Madison Bacon and Rielle Perttu
J. Zool. Bot. Gard. 2025, 6(3), 38; https://doi.org/10.3390/jzbg6030038 - 29 Jul 2025
Viewed by 161
Abstract
Environmental enrichment is essential for promoting species-specific behaviors and enhancing the welfare of zoo-housed animals. This study examined the behavioral responses of two juvenile male binturongs (Arctictis binturong) at the Minnesota Zoo to three enrichment stimuli: lavender oil (olfactory), thawed fish [...] Read more.
Environmental enrichment is essential for promoting species-specific behaviors and enhancing the welfare of zoo-housed animals. This study examined the behavioral responses of two juvenile male binturongs (Arctictis binturong) at the Minnesota Zoo to three enrichment stimuli: lavender oil (olfactory), thawed fish (olfactory and dietary), and hard-boiled egg (olfactory and dietary). Their behaviors were recorded using scan sampling before and after enrichment exposure, focusing on locomotion, foraging, resting, and visitor visibility. Food-based enrichments, particularly the hard-boiled egg, significantly increased foraging behavior, while lavender oil and thawed fish produced minimal behavioral changes. Locomotion and visibility remained stable across the conditions, although a slight increase in resting was observed with lavender oil. No evidence of scent-marking disruption was noted, and individual differences appeared to influence inactivity levels. These findings highlight the potential of biologically relevant, food-based enrichment to stimulate natural behaviors in binturongs and emphasize the importance of species-specific enrichment strategies. Future research should explore a broader range of olfactory cues, assess long-term behavioral responses, and incorporate physiological measures to further evaluate enrichment impacts on binturong welfare. Full article
Show Figures

Figure 1

13 pages, 986 KiB  
Article
Enhanced Cross-Audiovisual Perception in High-Level Martial Arts Routine Athletes Stems from Increased Automatic Processing Capacity
by Xiaohan Wang, Zeshuai Wang, Ya Gao, Wu Jiang, Zikang Meng, Tianxin Gu, Zonghao Zhang, Haoping Yang and Li Luo
Behav. Sci. 2025, 15(8), 1028; https://doi.org/10.3390/bs15081028 - 29 Jul 2025
Viewed by 151
Abstract
Multisensory integration is crucial for effective cognitive functioning, especially in complex tasks such as those requiring rapid audiovisual information processing. High-level martial arts routine athletes, trained in integrating visual and auditory cues for performance, may exhibit superior abilities in cross-audiovisual integration. This study [...] Read more.
Multisensory integration is crucial for effective cognitive functioning, especially in complex tasks such as those requiring rapid audiovisual information processing. High-level martial arts routine athletes, trained in integrating visual and auditory cues for performance, may exhibit superior abilities in cross-audiovisual integration. This study aimed to explore whether these athletes demonstrate an expert advantage effect in audiovisual integration, particularly focusing on whether this advantage is due to enhanced automatic auditory processing. A total of 165 participants (81 male, 84 female) were included in three experiments. Experiment 1 (n = 63) used a cross-audiovisual Rapid Serial Visual Presentation (RSVP) paradigm to compare the martial arts routine athlete group (n = 31) with a control group (n = 33) in tasks requiring target stimulus identification under audiovisual congruent and incongruent conditions. Experiment 2 (n = 52) manipulated the synchronicity of auditory stimuli to differentiate between audiovisual integration and auditory alerting effects. Experiment 3 (n = 50) combined surprise and post-surprise tests to investigate the role of automatic auditory processing in this expert advantage. Experiment 1 revealed that martial arts routine athletes outperformed the control group, especially in semantically incongruent conditions, with significantly higher accuracy at both lag3 (p < 0.001, 95% CI = [0.165, 0.275]) and lag8 (p < 0.001, 95% CI = [0.242, 0.435]). Experiment 2 found no significant difference between groups in response to the manipulation of auditory stimulus synchronicity, ruling out an alerting effect. In Experiment 3, martial arts routine athletes demonstrated better performance in reporting unexpected auditory stimuli during the surprise test, indicating enhanced automatic processing capacity. Additionally, a significant improvement in working memory re-selection was observed in the martial arts routine group. The expert advantage effect observed in martial arts routine athletes is attributable to enhanced cross-audiovisual integration, independent of an auditory alerting mechanism. Long-term training improves the efficiency of working memory re-selection and the ability to inhibit conflicting information, suggesting that the expanded capacity for automatic auditory processing underpins their multisensory integration advantage. Full article
(This article belongs to the Section Cognition)
Show Figures

Figure 1

18 pages, 301 KiB  
Review
Restoring a Healthy Relationship with Food by Decoupling Stress and Eating: A Translational Review of Nutrition and Mental Health
by Alison Warren and Leigh A. Frame
Nutrients 2025, 17(15), 2466; https://doi.org/10.3390/nu17152466 - 29 Jul 2025
Viewed by 334
Abstract
Psychological stress and dietary behavior are interdependent forces that greatly influence mental and physical health. Thus, both what and how we eat impact our well-being. Maladaptive eating patterns, such as eating in response to emotional cues rather than physiological hunger, have become increasingly [...] Read more.
Psychological stress and dietary behavior are interdependent forces that greatly influence mental and physical health. Thus, both what and how we eat impact our well-being. Maladaptive eating patterns, such as eating in response to emotional cues rather than physiological hunger, have become increasingly common amid modern stressors and an ultra-processed food environment. This narrative review synthesizes interdisciplinary findings from nutritional psychiatry, microbiome science, and behavioral nutrition to explore how stress physiology, gut–brain interactions, and dietary quality shape emotional regulation and eating behavior. It highlights mechanisms (e.g., HPA-axis dysregulation, blunted interoception, and inflammatory and epigenetic pathways) and examines the evidence for mindful and intuitive eating; phytochemical-rich, whole-food dietary patterns; and the emerging role of precision nutrition. Trauma-informed approaches, cultural foodways, structural barriers to healthy eating, and clinical implementation strategies (e.g., interprofessional collaboration) are considered in the context of public health equity to support sustainable mental wellness through dietary interventions. Ultimately, restoring a healthy relationship with food positions nutrition not only as sustenance but as a modifiable regulator of affect, cognition, and stress resilience, central to mental and physical well-being. Full article
(This article belongs to the Special Issue The Interdependence of Nutrition and Mental Well-Being)
25 pages, 4277 KiB  
Article
C2H2 Zinc Finger Proteins GIS2 and ZFP8 Regulate Trichome Development via Hormone Signaling in Arabidopsis
by Muhammad Umair Yasin, Lili Sun, Chunyan Yang, Bohan Liu and Yinbo Gan
Int. J. Mol. Sci. 2025, 26(15), 7265; https://doi.org/10.3390/ijms26157265 - 27 Jul 2025
Viewed by 197
Abstract
Trichomes are specialized epidermal structures that protect plants from environmental stresses, regulated by transcription factors integrating hormonal and environmental cues. This study investigates the roles of two C2H2 zinc finger proteins, GIS2 and ZFP8, in regulating trichome patterning in Arabidopsis thaliana. [...] Read more.
Trichomes are specialized epidermal structures that protect plants from environmental stresses, regulated by transcription factors integrating hormonal and environmental cues. This study investigates the roles of two C2H2 zinc finger proteins, GIS2 and ZFP8, in regulating trichome patterning in Arabidopsis thaliana. Using dexamethasone-inducible overexpression lines, transcriptomic profiling, and chromatin immunoprecipitation, we identified 142 GIS2- and 138 ZFP8-associated candidate genes involved in sterol metabolism, senescence, and stress responses. GIS2 positively and directly regulated the expression of SQE5, linked to sterol biosynthesis and drought tolerance, and repressed SEN1, a senescence marker associated with abscisic acid and phosphate signaling. ZFP8 modulated stress-related target genes, including PR-4 and SPL15, with partial functional overlap between GIS family members. Spatially, GIS2 functions in inflorescence trichomes via integrating gibberellin-cytokinin pathways, while ZFP8 influences leaf trichomes through cytokinin and abscisic acid signal. Gibberellin treatment stabilized GIS2 protein and induced SQE5 expression, whereas SEN1 repression was gibberellin-independent. Chromatin immunoprecipitation and DEX-CHX experiment confirmed GIS2 binding to SQE5 and SEN1 promoters at conserved C2H2 motifs. These findings highlight hormone-mediated transcriptional regulation of trichome development by GIS2 and ZFP8, offering mechanistic insight into signal integration. The results provide a foundation for future crop improvement strategies targeting trichome-associated stress resilience. Full article
Show Figures

Figure 1

27 pages, 3211 KiB  
Article
Hybrid Deep Learning-Reinforcement Learning for Adaptive Human-Robot Task Allocation in Industry 5.0
by Claudio Urrea
Systems 2025, 13(8), 631; https://doi.org/10.3390/systems13080631 - 26 Jul 2025
Viewed by 440
Abstract
Human-Robot Collaboration (HRC) is pivotal for flexible, worker-centric manufacturing in Industry 5.0, yet dynamic task allocation remains difficult because operator states—fatigue and skill—fluctuate abruptly. I address this gap with a hybrid framework that couples real-time perception and double-estimating reinforcement learning. A Convolutional Neural [...] Read more.
Human-Robot Collaboration (HRC) is pivotal for flexible, worker-centric manufacturing in Industry 5.0, yet dynamic task allocation remains difficult because operator states—fatigue and skill—fluctuate abruptly. I address this gap with a hybrid framework that couples real-time perception and double-estimating reinforcement learning. A Convolutional Neural Network (CNN) classifies nine fatigue–skill combinations from synthetic physiological cues (heart-rate, blink rate, posture, wrist acceleration); its outputs feed a Double Deep Q-Network (DDQN) whose state vector also includes task-queue and robot-status features. The DDQN optimises a multi-objective reward balancing throughput, workload and safety and executes at 10 Hz within a closed-loop pipeline implemented in MATLAB R2025a and RoboDK v5.9. Benchmarking on a 1000-episode HRC dataset (2500 allocations·episode−1) shows the hybrid CNN+DDQN controller raises throughput to 60.48 ± 0.08 tasks·min−1 (+21% vs. rule-based, +12% vs. SARSA, +8% vs. Dueling DQN, +5% vs. PPO), trims operator fatigue by 7% and sustains 99.9% collision-free operation (one-way ANOVA, p < 0.05; post-hoc power 1 − β = 0.87). Visual analyses confirm responsive task reallocation as fatigue rises or skill varies. The approach outperforms strong baselines (PPO, A3C, Dueling DQN) by mitigating Q-value over-estimation through double learning, providing robust policies under stochastic human states and offering a reproducible blueprint for multi-robot, Industry 5.0 factories. Future work will validate the controller on a physical Doosan H2017 cell and incorporate fairness constraints to avoid workload bias across multiple operators. Full article
(This article belongs to the Section Systems Engineering)
Show Figures

Figure 1

53 pages, 5030 KiB  
Review
Molecular Engineering of Recombinant Protein Hydrogels: Programmable Design and Biomedical Applications
by He Zhang, Jiangning Wang, Jiaona Wei, Xueqi Fu, Junfeng Ma and Jing Chen
Gels 2025, 11(8), 579; https://doi.org/10.3390/gels11080579 - 26 Jul 2025
Viewed by 581
Abstract
Recombinant protein hydrogels have emerged as transformative biomaterials that overcome the bioinertness and unpredictable degradation of traditional synthetic systems by leveraging genetically engineered backbones, such as elastin-like polypeptides, SF, and resilin-like polypeptides, to replicate extracellular matrix (ECM) dynamics and enable programmable functionality. Constructed [...] Read more.
Recombinant protein hydrogels have emerged as transformative biomaterials that overcome the bioinertness and unpredictable degradation of traditional synthetic systems by leveraging genetically engineered backbones, such as elastin-like polypeptides, SF, and resilin-like polypeptides, to replicate extracellular matrix (ECM) dynamics and enable programmable functionality. Constructed through a hierarchical crosslinking strategy, these hydrogels integrate reversible physical interactions with covalent crosslinking approaches, collectively endowing the system with mechanical strength, environmental responsiveness, and controlled degradation behavior. Critically, molecular engineering strategies serve as the cornerstone for functional precision: domain-directed self-assembly exploits coiled-coil or β-sheet motifs to orchestrate hierarchical organization, while modular fusion of bioactive motifs through genetic encoding or site-specific conjugation enables dynamic control over cellular interactions and therapeutic release. Such engineered designs underpin advanced applications, including immunomodulatory scaffolds for diabetic wound regeneration, tumor-microenvironment-responsive drug depots, and shear-thinning bioinks for vascularized bioprinting, by synergizing material properties with biological cues. By uniting synthetic biology with materials science, recombinant hydrogels deliver unprecedented flexibility in tuning physical and biological properties. This review synthesizes emerging crosslinking paradigms and molecular strategies, offering a framework for engineering next-generation, adaptive biomaterials poised to address complex challenges in regenerative medicine and beyond. Full article
(This article belongs to the Special Issue Recent Advances in Protein Gels)
Show Figures

Figure 1

30 pages, 4113 KiB  
Article
Genetic Variation Associated with Leaf Phenology in Pedunculate Oak (Quercus robur L.) Implicates Pathogens, Herbivores, and Heat Stress as Selective Drivers
by Jonatan Isaksson, Marcus Hall, Iryna Rula, Markus Franzén, Anders Forsman and Johanna Sunde
Forests 2025, 16(8), 1233; https://doi.org/10.3390/f16081233 - 26 Jul 2025
Viewed by 297
Abstract
Leaf phenology of trees responds to temperature and photoperiod cues, mediated by underlying genes and plasticity. However, uncertainties remain regarding how smaller-scale phenological variation in cold-limited regions has been affected by modified selection pressures from herbivores, pathogens, and climate conditions, and whether this [...] Read more.
Leaf phenology of trees responds to temperature and photoperiod cues, mediated by underlying genes and plasticity. However, uncertainties remain regarding how smaller-scale phenological variation in cold-limited regions has been affected by modified selection pressures from herbivores, pathogens, and climate conditions, and whether this leaves genetic signatures allowing for projections of future responses. We investigated environmental correlates and genetic variation putatively associated with spring and autumn leaf phenology in northern range margin oak (Quercus robur L.) populations in Sweden (55.6° N–60.8° N). Results suggested that budburst occurred later at higher latitudes and in locations with colder spring (April) temperatures, whereas leaf senescence occurred earlier at higher latitudes. Several candidate loci associated with phenology were identified (n = 40 for budburst and 47 for leaf senescence), and significant associations between these loci and latitude were detected. Functions associated with some of the candidate loci, as identified in previous studies, included host defence and heat stress tolerance. The proportion of polymorphic candidate loci associated with budburst decreased with increasing latitude, towards the range margin. Overall, the Swedish oak population seems to comprise genetic diversity in phenology-related traits that may provide resilience to a rapidly changing climate. Full article
(This article belongs to the Special Issue Woody Plant Phenology in a Changing Climate, 2nd Edition)
Show Figures

Figure 1

17 pages, 1706 KiB  
Article
Root-Emitted Volatile Organic Compounds from Daucus carota Modulate Chemotaxis in Phasmarhabditis and Oscheius Nematodes
by Emre Sen, Tamás Lakatos, Tímea Tóth, Stanislav Trdan and Žiga Laznik
Agronomy 2025, 15(8), 1793; https://doi.org/10.3390/agronomy15081793 - 25 Jul 2025
Viewed by 696
Abstract
Root-emitted volatile organic compounds (VOCs) play a critical role in below-ground ecological interactions by mediating communication between plants, pests, and their natural enemies. This study investigates the chemotactic behavior of three slug-parasitic nematode species—Phasmarhabditis papillosa, Oscheius myriophilus, and Oscheius onirici [...] Read more.
Root-emitted volatile organic compounds (VOCs) play a critical role in below-ground ecological interactions by mediating communication between plants, pests, and their natural enemies. This study investigates the chemotactic behavior of three slug-parasitic nematode species—Phasmarhabditis papillosa, Oscheius myriophilus, and Oscheius onirici—in response to four carrot (Daucus carota) root-derived VOCs: α-pinene, terpinolene, bornyl acetate, and 2-ethyl-1-hexanol. Using a modified Petri dish assay, infective juveniles (IJs) were exposed to each compound across four concentrations (pure, 1000 ppm, 10 ppm, and 0.03 ppm), and their directional movement was quantified using a chemotaxis index (CI). The results revealed strong species-specific and concentration-dependent patterns. O. myriophilus exhibited the highest motility and repellency, particularly toward bornyl acetate and terpinolene, indicating its potential for use in VOC-guided biocontrol strategies. O. onirici showed moderate but consistent attraction to most VOCs, while P. papillosa exhibited generally weak or repellent responses, especially at higher concentrations. None of the compounds tested functioned as strong attractants (CI ≥ 0.2), suggesting that plant-derived VOCs alone may not be sufficient to direct nematode recruitment under field conditions. However, their integration with other biotic cues could enhance nematode-based “lure-and-infect” systems for sustainable slug control in carrot cropping systems. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

20 pages, 4310 KiB  
Article
Training Rarámuri Criollo Cattle to Virtual Fencing in a Chaparral Rangeland
by Sara E. Campa Madrid, Andres R. Perea, Micah Funk, Maximiliano J. Spetter, Mehmet Bakir, Jeremy Walker, Rick E. Estell, Brandon Smythe, Sergio Soto-Navarro, Sheri A. Spiegal, Brandon T. Bestelmeyer and Santiago A. Utsumi
Animals 2025, 15(15), 2178; https://doi.org/10.3390/ani15152178 - 24 Jul 2025
Viewed by 484
Abstract
Virtual fencing (VF) offers a promising alternative to conventional or electrified fences for managing livestock grazing distribution. This study evaluated the behavioral responses of 25 Rarámuri Criollo cows fitted with Nofence® collars in Pine Valley, CA, USA. The VF system was deployed [...] Read more.
Virtual fencing (VF) offers a promising alternative to conventional or electrified fences for managing livestock grazing distribution. This study evaluated the behavioral responses of 25 Rarámuri Criollo cows fitted with Nofence® collars in Pine Valley, CA, USA. The VF system was deployed in chaparral rangeland pastures. The study included a 14-day training phase followed by an 18-day testing phase. The collar-recorded variables, including audio warnings and electric pulses, animal movement, and daily typical behavior patterns of cows classified into a High or Low virtual fence response group, were compared using repeated-measure analyses with mixed models. During training, High-response cows (i.e., resistant responders) received more audio warnings and electric pulses, while Low-response cows (i.e., active responders) had fewer audio warnings and electric pulses, explored smaller areas, and exhibited lower mobility. Despite these differences, both groups showed a time-dependent decrease in the pulse-to-warning ratio, indicating increased reliance on audio cues and reduced need for electrical stimulation to achieve similar containment rates. In the testing phase, both groups maintained high containment with minimal reinforcement. The study found that Rarámuri Criollo cows can effectively adapt to virtual fencing technology, achieving over 99% containment rate while displaying typical diurnal patterns for grazing, resting, or traveling behavior. These findings support the technical feasibility of using virtual fencing in chaparral rangelands and underscore the importance of accounting for individual behavioral variability in behavior-based containment systems. Full article
Show Figures

Figure 1

29 pages, 687 KiB  
Article
Digital Persuasion in the Classroom: Middle School Students’ Perceptions of Neuromarketing and Screen-Based Advertising
by Stefanos Balaskas, Christos Zotos, Lamprini Lourida and Kyriakos Komis
Digital 2025, 5(3), 28; https://doi.org/10.3390/digital5030028 - 22 Jul 2025
Viewed by 215
Abstract
As digital marketing becomes more targeted and interactive, it is more critical to understand how young audiences perceive and react to compelling content. This research examines the extent to which consumer responses are affected by neuromarketing knowledge, interest, and screen-based advert exposure for [...] Read more.
As digital marketing becomes more targeted and interactive, it is more critical to understand how young audiences perceive and react to compelling content. This research examines the extent to which consumer responses are affected by neuromarketing knowledge, interest, and screen-based advert exposure for middle school kids. Based on responses from 244 Greek adolescents aged 12–15 years, Partial Least Squares Structural Equation Modeling (PLS-SEM) was employed to investigate direct and mediated influences on purchase intentions with advertisement skepticism and persuasion knowledge as mediating factors. Results indicate that exposure and recognition have a significant influence on intentions both by means of cognitive as well as attitudinal processes, while interest only increases skepticism but not interaction. Multi-group analysis yielded significant differences according to age and experience, referring to the development path of advertising literacy. The results provide strong cues to educators, policymakers, and marketers who want to develop media-critical competencies among adolescents in an ever-shaping digital age. Full article
Show Figures

Figure 1

18 pages, 798 KiB  
Study Protocol
Prejudice, Proxemic Space, and Social Odor: The Representation of the ‘Outsider’ Through an Evolutionary Metaverse Psychology Perspective
by Sara Invitto, Francesca Ferraioli, Andrea Schito, Giulia Costanzo, Chiara Lucifora, Assunta Pompili, Carmelo Mario Vicario and Giuseppe Curcio
Brain Sci. 2025, 15(8), 779; https://doi.org/10.3390/brainsci15080779 - 22 Jul 2025
Viewed by 230
Abstract
Prejudices, particularly those related to social biases, are shaped by various cognitive and sensory mechanisms. This study investigates the interaction between olfactory perception and propensity and implicit or explicit prejudices through three experimental protocols in a metaverse condition. Experiment 1 examines the impact [...] Read more.
Prejudices, particularly those related to social biases, are shaped by various cognitive and sensory mechanisms. This study investigates the interaction between olfactory perception and propensity and implicit or explicit prejudices through three experimental protocols in a metaverse condition. Experiment 1 examines the impact of five different odors on proxemic behavior when interacting with individuals from stigmatized social groups. Experiment 2 integrates electroencephalography (EEG) to analyze the neural correlates of prejudice-related responses to olfactory stimuli. Experiment 3 explores implicit biases through the Implicit Association Test (IAT) in relation to different fragrances, without employing virtual reality. The proposed protocol is expected to demonstrate a significant relationship between olfactory cues, linked to social relationships, and implicit or explicit prejudices, with variations based on individual differences. These insights will contribute to psychological, neuroscientific, and social interventions, offering new perspectives on the unconscious mechanisms of bias formation. Additionally, this study highlights the potential of virtual reality and olfactory stimuli as innovative tools for studying and addressing social biases in controlled environments. Full article
(This article belongs to the Special Issue New Horizons in Multisensory Perception and Processing—2nd Edition)
Show Figures

Figure 1

35 pages, 7934 KiB  
Article
Analyzing Diagnostic Reasoning of Vision–Language Models via Zero-Shot Chain-of-Thought Prompting in Medical Visual Question Answering
by Fatema Tuj Johora Faria, Laith H. Baniata, Ahyoung Choi and Sangwoo Kang
Mathematics 2025, 13(14), 2322; https://doi.org/10.3390/math13142322 - 21 Jul 2025
Viewed by 662
Abstract
Medical Visual Question Answering (MedVQA) lies at the intersection of computer vision, natural language processing, and clinical decision-making, aiming to generate accurate responses from medical images paired with complex inquiries. Despite recent advances in vision–language models (VLMs), their use in healthcare remains limited [...] Read more.
Medical Visual Question Answering (MedVQA) lies at the intersection of computer vision, natural language processing, and clinical decision-making, aiming to generate accurate responses from medical images paired with complex inquiries. Despite recent advances in vision–language models (VLMs), their use in healthcare remains limited by a lack of interpretability and a tendency to produce direct, unexplainable outputs. This opacity undermines their reliability in medical settings, where transparency and justification are critically important. To address this limitation, we propose a zero-shot chain-of-thought prompting framework that guides VLMs to perform multi-step reasoning before arriving at an answer. By encouraging the model to break down the problem, analyze both visual and contextual cues, and construct a stepwise explanation, the approach makes the reasoning process explicit and clinically meaningful. We evaluate the framework on the PMC-VQA benchmark, which includes authentic radiological images and expert-level prompts. In a comparative analysis of three leading VLMs, Gemini 2.5 Pro achieved the highest accuracy (72.48%), followed by Claude 3.5 Sonnet (69.00%) and GPT-4o Mini (67.33%). The results demonstrate that chain-of-thought prompting significantly improves both reasoning transparency and performance in MedVQA tasks. Full article
(This article belongs to the Special Issue Mathematical Foundations in NLP: Applications and Challenges)
Show Figures

Figure 1

20 pages, 1220 KiB  
Article
Color and Attractant Preferences of the Black Fig Fly, Silba adipata: Implications for Monitoring and Mass Trapping of This Invasive Pest
by Ricardo Díaz-del-Castillo, Guadalupe Córdova-García, Diana Pérez-Staples, Andrea Birke, Trevor Williams and Rodrigo Lasa
Insects 2025, 16(7), 732; https://doi.org/10.3390/insects16070732 - 17 Jul 2025
Viewed by 460
Abstract
The black fig fly, Silba adipata (Diptera: Lonchaeidae), is an invasive pest recently introduced to Mexico, where it has rapidly spread across fig-producing regions. Despite its economic importance, effective monitoring strategies remain poorly studied. The present study evaluated the response of S. adipata [...] Read more.
The black fig fly, Silba adipata (Diptera: Lonchaeidae), is an invasive pest recently introduced to Mexico, where it has rapidly spread across fig-producing regions. Despite its economic importance, effective monitoring strategies remain poorly studied. The present study evaluated the response of S. adipata adults to visual (color) and olfactory (attractant) cues under laboratory and field conditions in fig orchards. No significant color preferences were observed in laboratory choice tests using nine colors or in field trials using traps of four different colors. In the laboratory, traps containing 2% ammonium sulfate solution, torula yeast + borax, or Captor + borax, captured similar numbers of flies, whereas CeraTrap® was less attractive. Traps containing 2% ammonium sulfate were more effective than 2% ammonium acetate, though attraction was comparable when ammonium acetate was diluted to 0.2% or 0.02%. In the field, torula yeast + borax and 2% ammonium sulfate mixed with fig latex outperformed the 2% ammonium sulfate solution alone, although seasonal variation influenced trap performance. A high proportion of field-captured females were sexually immature. Torula yeast + borax attracted high numbers of non-target insects and other lonchaeid species, which reduced its specificity. In contrast, traps containing fig latex mixtures showed higher selectivity, although some S. adipata adults could not be sexed due to specimen degradation. These findings highlight the value of torula yeast pellets and 2% ammonium sulfate plus fig latex for monitoring this pest, but merit validation in field studies performed over the entire crop cycle across both wet and dry seasons. Future studies should evaluate other proteins, ammonium salt combinations and fig latex volatiles in order to develop effective and selective monitoring or mass trapping tools targeted at this invasive pest. Full article
(This article belongs to the Special Issue Surveillance and Management of Invasive Insects)
Show Figures

Figure 1

Back to TopTop