Enhanced Cross-Audiovisual Perception in High-Level Martial Arts Routine Athletes Stems from Increased Automatic Processing Capacity
Abstract
1. Introduction
2. Experiment 1
2.1. Method
2.1.1. Participants
2.1.2. Apparatus, Stimuli, and Experimental Setup
2.1.3. Experimental Procedures and Design
2.1.4. Statistical Analysis
2.2. Results
3. Experiment 2
3.1. Method
3.1.1. Participants
3.1.2. Apparatus, Stimuli, and Experimental Setup
3.1.3. Experimental Procedures and Design
3.1.4. Statistical Analysis
3.2. Results
4. Experiment 3
4.1. Method
4.1.1. Participants
4.1.2. Apparatus, Stimuli, and Experimental Setup
4.1.3. Experimental Procedures and Design
4.1.4. Statistical Analysis
4.2. Results
5. General Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alsius, A., Navarra, J., Campbell, R., & Soto-Faraco, S. (2005). Audiovisual integration of speech falters under high attention demands. Current Biology, 15(9), 839–843. [Google Scholar] [CrossRef] [PubMed]
- Asakawa, K., Tanaka, A., Sakamoto, S., Iwaya, Y., & Suzuki, Y. (2011). Audiovisual synchrony perception of simplified speech sounds heard as speech and non-speech. Acoustical Science and Technology, 32(3), 125–128. [Google Scholar] [CrossRef]
- Awh, E., Vogel, E. K., & Oh, S. H. (2006). Interactions between attention and working memory. Neuroscience, 139(1), 201–208. [Google Scholar] [CrossRef]
- Dupuy, O., Ludyga, S., Ortega, F. B., Hillman, C. H., Erickson, K. I., Herold, F., Kamijo, K., Wang, C., Morris, T. P., Brown, B., Esteban-Cornejo, I., Solis-Urra, P., Bosquet, L., Gerber, M., Mekari, S., Berryman, N., Bherer, L., Rattray, B., Liu-Ambrose, T., … Cheval, B. (2024). Do not underestimate the cognitive benefits of exercise. Nature Human Behaviour, 8(8), 1460–1463. [Google Scholar] [CrossRef]
- Faul, F., Erdfelder, E., Lang, A., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. [Google Scholar] [CrossRef]
- Fong, M. C., Hui, N. Y., Fung, E. S. W., Chu, P. C. K., & Wang, W. S. (2018). Conflict monitoring in multi-sensory flanker tasks: Effects of cross-modal distractors on the N2 component. Neuroscience Letters, 670, 31–35. [Google Scholar] [CrossRef]
- Howe, P. D. L., & Lee, S. B. W. (2021). Attribute amnesia in the auditory domain. Perception, 50(7), 664–671. [Google Scholar] [CrossRef]
- Hu, Z., Zhang, R., Zhang, Q., Liu, Q., & Li, H. (2012). Neural correlates of audiovisual integration of semantic category information. Brain and Language, 121(1), 70–75. [Google Scholar] [CrossRef]
- Jolicoeur, P. (1999). Concurrent response-selection demands modulate the attentional blink. Journal of Experimental Psychology: Human Perception and Performance, 25(4), 1097–1113. [Google Scholar] [CrossRef]
- Korobeynikov, G., Cynarski, W., Kokun, O., & Sergienko, U. (2021). Link between neurodynamics and cognitive functions among athletes practicing different martial arts. Revista Iberoamericana De Psicologia Del Ejercicio Y El Deporte, 16, 8–10. [Google Scholar]
- Kreyenmeier, P., Schroeger, A., Cañal-Bruland, R., Raab, M., & Spering, M. (2023). Rapid audiovisual integration guides predictive actions. ENeuro, 10(8), 123–134. [Google Scholar] [CrossRef] [PubMed]
- Li, Y., Long, J., Huang, B., Yu, T., Wu, W., Li, P., Fang, F., & Sun, P. (2016). Selective audiovisual semantic integration enabled by feature-selective attention. Scientific Reports, 6(1), 18914. [Google Scholar] [CrossRef] [PubMed]
- Lunn, J., Sjoblom, A., Ward, J., Soto-Faraco, S., & Forster, S. (2019). Multisensory enhancement of attention depends on whether you are already paying attention. Cognition, 187, 38–49. [Google Scholar] [CrossRef]
- Marti, S., Sigman, M., & Dehaene, S. (2012). A shared cortical bottleneck underlying attentional blink and psychological refractory period. Neuroimage, 59, 2883–2898. [Google Scholar] [CrossRef]
- Menzel, C., Hayn-Leichsenring, G. U., Redies, C., Németh, K., & Kovács, G. (2017). When noise is beneficial for sensory encoding: Noise adaptation can improve face processing. Brain and Cognition, 117, 73–83. [Google Scholar] [CrossRef]
- Sanchez-Lopez, A., De Raedt, R., van Put, J., & Koster, E. H. W. (2019). A novel process-based approach to improve resilience: Effects of computerized Mouse-Based (gaze)Contingent Attention Training (MCAT) on reappraisal and rumination. Behaviour Research and Therapy, 118, 110–120. [Google Scholar] [CrossRef]
- Sanchez-Lopez, J., Silva-Pereyra, J., & Fernandez, T. (2016). Sustained attention in skilled and novice martial arts athletes: A study of event-related potentials and current sources. PeerJ, 4, e1614. [Google Scholar] [CrossRef]
- Sasin, E., Markov, Y., & Fougnie, D. (2023). Meaningful objects avoid attribute amnesia due to incidental long-term memories. Scientific Reports, 13(1), 14464. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, K. L., Raymond, J. E., & Arnell, K. M. (1994). Attention to visual pattern information produces the attentional blink in rapid serial visual presentation. Journal of Experimental Psychology: Human Perception and Performance, 20(2), 357–371. [Google Scholar] [CrossRef]
- Wang, A., Qian, Q., Zhao, C., Tang, X., & Zhang, M. (2022). Modal-based attention modulates attentional blink. Attention, Perception, & Psychophysics, 84(2), 372–382. [Google Scholar] [CrossRef]
- Xi, Y., Li, Q., Gao, N., Li, G., Lin, W., & Wu, J. (2020). Co-stimulation-removed audiovisual semantic integration and modulation of attention: An event-related potential study. International Journal of Psychophysiology, 151, 7–17. [Google Scholar] [CrossRef]
- Xu, M., Fu, Y., Yu, J., Zhu, P., Shen, M., & Chen, H. (2020). Source information is inherently linked to working memory representation for auditory but not for visual stimuli. Cognition, 197, 104160. [Google Scholar] [CrossRef]
- Yan, N., & Anderson, B. A. (2024). Attribute amnesia as a product of experience-dependent encoding. Psychonomic Bulletin & Review, 31(2), 772–780. [Google Scholar] [CrossRef]
- Yang, H., Cai, B., Tan, W., Luo, L., & Zhang, Z. (2024). Pitch improvement in attentional blink: A study across audiovisual asymmetries. Behavioral Sciences, 14(2), 145. [Google Scholar] [CrossRef]
- Yang, H., Yue, C., Wang, C., Wang, A., Zhang, Z., & Luo, L. (2023). Effect of target semantic consistency in different sequence positions and processing modes on T2 recognition: Integration and suppression based on cross-modal processing. Brain Sciences, 13(2), 340. [Google Scholar] [CrossRef]
- Zhao, S., Feng, C., Liao, Y., Huang, X., & Feng, W. (2021a). Attentional blink suppresses both stimulus-driven and representation-driven cross-modal spread of attention. Psychophysiology, 58(4), e13761. [Google Scholar] [CrossRef]
- Zhao, S., Li, Y., Wang, C., Feng, C., & Feng, W. (2021b). Updating the dual-mechanism model for cross-sensory attentional spreading: The influence of space-based visual selective attention. Human Brain Mapping, 42(18), 6038–6052. [Google Scholar] [CrossRef]
- Zhao, S., Wang, C., Chen, M., Zhai, M., Leng, X., Zhao, F., Feng, C., & Feng, W. (2023). Cross-modal enhancement of spatially unpredictable visual target discrimination during the attentional blink. Attention, Perception, & Psychophysics, 85(7), 2178–2195. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S., Wang, C., Feng, C., Wang, Y., & Feng, W. (2022). The interplay between audiovisual temporal synchrony and semantic congruency in the cross-modal boost of the visual target discrimination during the attentional blink. Human Brain Mapping, 43(8), 2478–2494. [Google Scholar] [CrossRef]
- Zhou, H., Cheung, E. F. C., & Chan, R. C. K. (2020). Audiovisual temporal integration: Cognitive processing, neural mechanisms, developmental trajectory and potential interventions. Neuropsychologia, 140, 107396. [Google Scholar] [CrossRef]
Experiment 1 | Experiment 2 | Experiment 3 | |||||
---|---|---|---|---|---|---|---|
Martial Arts Routine Group | Control Group | Martial Arts Routine Group | Control Group | Martial Arts Routine Group | Control Group | ||
Age (year) | 22.03 ± 1.14 | 20 ± 1.81 | 19.95 ± 1.9 | 20.95 ± 2.1 | 21.33 ± 2.2 | 20.31 ± 1.2 | |
Gender | Male | 13 | 17 | 13 | 13 | 15 | 14 |
Female | 17 | 16 | 12 | 14 | 11 | 10 | |
None | 33 | 27 | 24 | ||||
Sport Level | Level 2 | 23 | 21 | 19 | |||
Level 1 | 3 | 3 | 6 | ||||
Elite | 4 | 1 | 1 | ||||
Total | 30 | 33 | 25 | 27 | 26 | 24 | |
Avg. Training Duration (year) | 8.73 ± 3.2 years | 9.72 ± 4.4 years | 8.64 ± 3.14 years |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wang, Z.; Gao, Y.; Jiang, W.; Meng, Z.; Gu, T.; Zhang, Z.; Yang, H.; Luo, L. Enhanced Cross-Audiovisual Perception in High-Level Martial Arts Routine Athletes Stems from Increased Automatic Processing Capacity. Behav. Sci. 2025, 15, 1028. https://doi.org/10.3390/bs15081028
Wang X, Wang Z, Gao Y, Jiang W, Meng Z, Gu T, Zhang Z, Yang H, Luo L. Enhanced Cross-Audiovisual Perception in High-Level Martial Arts Routine Athletes Stems from Increased Automatic Processing Capacity. Behavioral Sciences. 2025; 15(8):1028. https://doi.org/10.3390/bs15081028
Chicago/Turabian StyleWang, Xiaohan, Zeshuai Wang, Ya Gao, Wu Jiang, Zikang Meng, Tianxin Gu, Zonghao Zhang, Haoping Yang, and Li Luo. 2025. "Enhanced Cross-Audiovisual Perception in High-Level Martial Arts Routine Athletes Stems from Increased Automatic Processing Capacity" Behavioral Sciences 15, no. 8: 1028. https://doi.org/10.3390/bs15081028
APA StyleWang, X., Wang, Z., Gao, Y., Jiang, W., Meng, Z., Gu, T., Zhang, Z., Yang, H., & Luo, L. (2025). Enhanced Cross-Audiovisual Perception in High-Level Martial Arts Routine Athletes Stems from Increased Automatic Processing Capacity. Behavioral Sciences, 15(8), 1028. https://doi.org/10.3390/bs15081028