Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = cucurbit viruses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3351 KiB  
Article
Fungal Warriors: Effects of Beauveria bassiana and Purpureocillium lilacinum on CCYV-Carrying Whiteflies
by Dan Zhai, Hang Lu, Suyao Liu, Jialei Liu, Wanyu Zhang, Jingjing Wu, Jingjing Li, Rune Bai, Fengming Yan and Chenchen Zhao
Biomolecules 2025, 15(4), 593; https://doi.org/10.3390/biom15040593 - 16 Apr 2025
Cited by 1 | Viewed by 659
Abstract
Bemisia tabaci is a major agricultural pest that affects both greenhouse and field crops by feeding on plant sap, which impairs plant growth, and by secreting honeydew, promotes sooty mold growth that further reduces photosynthesis. Additionally, these insects are vectors for viruses such [...] Read more.
Bemisia tabaci is a major agricultural pest that affects both greenhouse and field crops by feeding on plant sap, which impairs plant growth, and by secreting honeydew, promotes sooty mold growth that further reduces photosynthesis. Additionally, these insects are vectors for viruses such as the cucurbit chlorotic yellows virus (CCYV), which causes significant damage to cucurbit crops. Traditional chemical pesticide treatments have limitations, including the development of resistance, harm to non-target organisms, and environmental contamination. Traditional chemical pesticides have limitations when it comes to controlling plants infested by CCYV and whitefly. However, the underlying reasons for these limitations remain unclear, as does the impact of entomopathogenic fungi on whitefly responses. This study explores the potential of using biological control agents, specifically Beauveria bassiana and Purpureocillium lilacinum, to manage whitefly populations and control CCYV transmission. Laboratory experiments were conducted to evaluate the pathogenicity of these fungi on non/viruliferous whitefly. The results indicated that both fungi effectively reduced whitefly populations, with B. bassiana showing particularly strong adverse effects. Whiteflies infected with CCYV exhibited a higher LC50 to B. bassiana and P. lilacinum. Furthermore, bio-pesticides significantly altered the bacterial microbiome dynamics of the whitefly. Interestingly, CCYV increased the susceptibility of whiteflies to entomopathogenic fungus. The findings suggest that these biocontrol agents offer a sustainable alternative to chemical pesticides. Our study unraveled a new horizon for the multiple interaction theories among bio-pesticides–insects–symbionts–viruses. Full article
(This article belongs to the Special Issue Microbial Biocontrol and Plant-Microbe Interactions)
Show Figures

Figure 1

16 pages, 11435 KiB  
Article
Prevalence of Aphid-Transmitted Potyviruses in Pumpkin and Winter Squash in Georgia, USA
by Nirmala Acharya, Manish Kumar, Sudeep Bag, David G. Riley, Juan C. Diaz-Perez, Alvin M. Simmons, Timothy Coolong and Theodore McAvoy
Viruses 2025, 17(2), 233; https://doi.org/10.3390/v17020233 - 8 Feb 2025
Cited by 1 | Viewed by 1283
Abstract
Viruses are a major pathogen challenging the sustainable production of cucurbits worldwide. Pumpkin and winter squash showed severe virus-like symptoms during the fall of 2022 and 2023 in Georgia, USA. Symptomatic leaves were collected from the field and processed for small RNA sequencing [...] Read more.
Viruses are a major pathogen challenging the sustainable production of cucurbits worldwide. Pumpkin and winter squash showed severe virus-like symptoms during the fall of 2022 and 2023 in Georgia, USA. Symptomatic leaves were collected from the field and processed for small RNA sequencing for virus identification using high-throughput sequencing (HTS). HTS analysis revealed the presence of two aphid-transmitted viruses (ATVs), zucchini yellow mosaic virus (ZYMV) and papaya ringspot virus (PRSV), along with three whitefly-transmitted viruses, cucurbit chlorotic yellows virus, cucurbit yellow stunting disorder virus, and cucurbit leaf crumple virus. The results of our study suggest a significant shift in ATV’s abundance in these two crops between 2022 and 2023. According to the qPCR data in the fall of 2022, pumpkins experience an incidence of 56.25% and 31.25% of PRSV and ZYMV, respectively. Similarly, winter squash shows an incidence of 50% and 32.14% of PRSV and ZYMV, respectively. Mixed infection of both viruses was also observed in these two crops. In 2023, we observed a predominance of ZYMV in pumpkin and winter squash (61.25% and 42.50%, respectively). However, PRSV was not detected in pumpkins, and it was detected at a negligible level (0.62%) in winter squash using qPCR. Phylogenetic analysis of ZYMV-encoded coat protein (CP) and helper component-protease (HC-Pro) from Georgia suggests a close relationship with the European isolates. Conversely, PRSV-encoded CP and NIa-VPg show a more diverse evolutionary history. Overall, this research will provide valuable insights into the dynamics of ZYMV and PRSV in pumpkin and winter squash crops within the southeastern United States. Full article
(This article belongs to the Special Issue Plant Viruses and Their Vectors: Epidemiology and Control)
Show Figures

Figure 1

14 pages, 2370 KiB  
Article
Exogenous Application of dsRNA for Protection against Tomato Leaf Curl New Delhi Virus
by Fulco Frascati, Silvia Rotunno, Gian Paolo Accotto, Emanuela Noris, Anna Maria Vaira and Laura Miozzi
Viruses 2024, 16(3), 436; https://doi.org/10.3390/v16030436 - 12 Mar 2024
Cited by 8 | Viewed by 3134
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) is an emerging plant pathogen, fast spreading in Asian and Mediterranean regions, and is considered the most harmful geminivirus of cucurbits in the Mediterranean. ToLCNDV infects several plant and crop species from a range of families, [...] Read more.
Tomato leaf curl New Delhi virus (ToLCNDV) is an emerging plant pathogen, fast spreading in Asian and Mediterranean regions, and is considered the most harmful geminivirus of cucurbits in the Mediterranean. ToLCNDV infects several plant and crop species from a range of families, including Solanaceae, Cucurbitaceae, Fabaceae, Malvaceae and Euphorbiaceae. Up to now, protection from ToLCNDV infection has been achieved mainly by RNAi-mediated transgenic resistance, and non-transgenic fast-developing approaches are an urgent need. Plant protection by the delivery of dsRNAs homologous to a pathogen target sequence is an RNA interference-based biotechnological approach that avoids cultivating transgenic plants and has been already shown effective against RNA viruses and viroids. However, the efficacy of this approach against DNA viruses, particularly Geminiviridae family, is still under study. Here, the protection induced by exogenous application of a chimeric dsRNA targeting all the coding regions of the ToLCNDV DNA-A was evaluated in zucchini, an important crop strongly affected by this virus. A reduction in the number of infected plants and a delay in symptoms appearance, associated with a tendency of reduction in the viral titer, was observed in the plants treated with the chimeric dsRNA, indicating that the treatment is effective against geminiviruses but requires further optimization. Limits of RNAi-based vaccinations against geminiviruses and possible causes are discussed. Full article
(This article belongs to the Special Issue Crop Resistance to Viral Infections)
Show Figures

Figure 1

11 pages, 2158 KiB  
Article
Development and Application of Droplet Digital PCR Assay for the Detection of Watermelon Silver Mottle Virus and Melon Yellow Spot Virus
by Huijie Wu, Mei Liu, Wenyang Li, Min Wang, Junqing Xiu, Bin Peng, Yanping Hu, Baoshan Kang, Liming Liu and Qinsheng Gu
Horticulturae 2024, 10(3), 199; https://doi.org/10.3390/horticulturae10030199 - 20 Feb 2024
Cited by 3 | Viewed by 2667
Abstract
Watermelon silver mottle virus (WSMoV) and melon yellow spot virus (MYSV) (Tospoviridae, Orthotospovirus) are responsible for silver mottle mosaic and yellow spot symptoms, posing threats to melon (Cucumis melo), watermelon (Citrullus lanatus), and cucumber and leading to significant [...] Read more.
Watermelon silver mottle virus (WSMoV) and melon yellow spot virus (MYSV) (Tospoviridae, Orthotospovirus) are responsible for silver mottle mosaic and yellow spot symptoms, posing threats to melon (Cucumis melo), watermelon (Citrullus lanatus), and cucumber and leading to significant economic losses in China. Early disease detection and monitoring of these two viruses are necessary for disease management, for which a rapid, reliable, and adaptable diagnostic method is required. In this study, using a droplet digital PCR (ddPCR) method, the conserved region of the nucleocapsid gene (N gene) sequence was detected in WSMoV and MYSV. The probes and primers for WSMoV and MYSV did not detect other relevant cucurbit viruses, and the specificity reached 100%. Although both qPCR and ddPCR exhibited good reproducibility, the reproducibility of ddPCR was better than that of qPCR. The reproducibility of ddPCR was proved to be 100%. Moreover, ddPCR exhibited a good linear correlation with varying concentrations of targets. The detection limits of WSMoV and MYSV in ddPCR were 18 and 9 copies/μL and were approximately 12- and 18-times more than those in qPCR, respectively. Finally, 62 samples collected from the field (including infected melon, watermelon, and weeds) were further evaluated for the presence of WSMoV and MYSV. The field samples exhibited 91.94% and 51.61% positivity rates in ddPCR assays for WSMoV and MYSV, respectively; the rates were higher than those in qPCR (59.68% and 43.39%, respectively). The results indicated that ddPCR has a higher accuracy than qPCR. Therefore, ddPCR could be used in the clinical diagnosis of early infections of WSMoV and MYSV. To the best of our knowledge, this is the first study to establish a ddPCR method for the detection of WSMoV and MYSV. The application of this method for differential detection of MYSV and WSMoV will help in understanding the epidemics caused by these two important viruses and provide important information for the early detection, monitoring, and rapid extermination of infection. Full article
(This article belongs to the Special Issue Plant Pathology in Horticultural Production)
Show Figures

Figure 1

41 pages, 3216 KiB  
Review
From Sequencing to Genome Editing in Cucurbitaceae: Application of Modern Genomic Techniques to Enhance Plant Traits
by Magdalena Pawełkowicz, Bartłomiej Zieniuk, Pawel Staszek and Arkadiusz Przybysz
Agriculture 2024, 14(1), 90; https://doi.org/10.3390/agriculture14010090 - 1 Jan 2024
Cited by 8 | Viewed by 5140
Abstract
The availability of genome-sequencing and genome-editing techniques has increased the applicability of innovative solutions, opening up revolutionary prospects for developments in horticultural plant breeding. The Cucurbitaceae family is a group of plants of great importance in horticulture due to their high nutritional and [...] Read more.
The availability of genome-sequencing and genome-editing techniques has increased the applicability of innovative solutions, opening up revolutionary prospects for developments in horticultural plant breeding. The Cucurbitaceae family is a group of plants of great importance in horticulture due to their high nutritional and economic value. These plants serve as important models for elucidating the principles of plant development and refining yield improvement strategies. While traditional breeding approaches have made significant contributions to the production of cucurbits, they have also been limited by the reduced genetic diversity and lower rates of variation inherent in these species. This comprehensive review summarises the latest developments in genome editing in cucurbits. It covers various aspects of enhancing plant traits to resist biotic stresses such as pathogenic fungi and viruses, as well as abiotic stresses such as adverse climate change, especially stresses caused by drought and salinity. This study focused on improvements in plant quality and on the optimisation of plant architecture, sex determination of flowers and fruit features. This review provides insights that may hold great promise for the future of horticultural crop improvement and serves as an important reference for the advancement of genome-sequencing and gene-editing technologies in cucurbits. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

17 pages, 2511 KiB  
Article
Advances in Understanding the Mechanism of Cap-Independent Cucurbit Aphid-Borne Yellows Virus Protein Synthesis
by Verónica Truniger, Giuliano Sting Pechar and Miguel A. Aranda
Int. J. Mol. Sci. 2023, 24(24), 17598; https://doi.org/10.3390/ijms242417598 - 18 Dec 2023
Cited by 1 | Viewed by 1917
Abstract
Non-canonical translation mechanisms have been described for many viral RNAs. In the case of several plant viruses, their protein synthesis is controlled by RNA elements in their genomic 3′-ends that are able to enhance cap-independent translation (3′-CITE). The proposed general mechanism of 3′-CITEs [...] Read more.
Non-canonical translation mechanisms have been described for many viral RNAs. In the case of several plant viruses, their protein synthesis is controlled by RNA elements in their genomic 3′-ends that are able to enhance cap-independent translation (3′-CITE). The proposed general mechanism of 3′-CITEs includes their binding to eukaryotic translation initiation factors (eIFs) that reach the 5′-end and AUG start codon through 5′-3′-UTR-interactions. It was previously shown that cucurbit aphid-borne yellows virus (CABYV) has a 3′-CITE, which varies in sequence and structure depending on the phylogenetic group to which the isolate belongs, possibly as a result of adaptation to the different geographical regions. In this work, the cap-independent translation mechanisms of two CABYV 3′-CITEs belonging to the Mediterranean (CMTE) and Asian (CXTE) groups, respectively, were studied. In vivo cap-independent translation assays show that these 3′-CITEs require the presence of the CABYV short genomic 5′-UTR with at least 40% adenines in cis and an accessible 5′-end for its activity. Additionally, they suggest that the eIF4E-independent CABYV 3′-CITE activities may not require either eIF4A or the eIF4F complex, but may depend on eIF4G and PABP. By pulling down host proteins using RNA baits containing both 5′- and 3′-CABYV-UTRs, 80 RNA binding proteins were identified. These interacted preferentially with either CMTE, CXTE, or both. One of these proteins, specifically interacting with the RNA containing CMTE, was HSP70.2. Preliminary results suggested that HSP70.2 may be involved in CMTE- but not CXTE-mediated cap-independent translation activity. Full article
(This article belongs to the Special Issue Molecular Characterization of Plant-Virus Interactions)
Show Figures

Figure 1

15 pages, 2720 KiB  
Review
Whitefly-Transmitted Viruses of Cucurbits in the Southern United States
by Ragunathan Devendran, Saritha Raman Kavalappara, Alvin M. Simmons and Sudeep Bag
Viruses 2023, 15(11), 2278; https://doi.org/10.3390/v15112278 - 20 Nov 2023
Cited by 9 | Viewed by 2861
Abstract
Cucurbits are economically important crops that are widely cultivated in many parts of the world, including the southern US. In recent years, higher temperatures have favored the rapid build-up of whiteflies in the fall-grown cucurbits in this region. As a result, whitefly-transmitted viruses [...] Read more.
Cucurbits are economically important crops that are widely cultivated in many parts of the world, including the southern US. In recent years, higher temperatures have favored the rapid build-up of whiteflies in the fall-grown cucurbits in this region. As a result, whitefly-transmitted viruses (WTVs) have severely impacted the marketable yield of cucurbits. In this review, we discuss three major groups of WTVs negatively impacting cucurbit cultivation in the southern US, including begomoviruses, criniviruses, and ipomoviruses. Here, we discuss the available information on the biology, epidemiology and advances made toward detecting and managing these viruses, including sources of resistance and cultural practices. Full article
(This article belongs to the Special Issue Plant Virus Epidemiology and Control 2023)
Show Figures

Figure 1

16 pages, 2575 KiB  
Article
Further Molecular Diagnosis Determines Lack of Evidence for Real Seed Transmission of Tomato Leaf Curl New Delhi Virus in Cucurbits
by Cristina Sáez, Amina Kheireddine, Arcadio García, Alicia Sifres, Alejandro Moreno, María Isabel Font-San-Ambrosio, Belén Picó and Carmelo López
Plants 2023, 12(21), 3773; https://doi.org/10.3390/plants12213773 - 4 Nov 2023
Cited by 2 | Viewed by 2783
Abstract
Begomoviruses (family Geminiviridae) cause serious diseases in many crop families. Since 2013, the Spanish isolate of tomato leaf curl New Delhi virus (ToLCNDV) has been a limiting factor for cucurbits production in the Mediterranean basin, forcing farmers to adapt new management and control [...] Read more.
Begomoviruses (family Geminiviridae) cause serious diseases in many crop families. Since 2013, the Spanish isolate of tomato leaf curl New Delhi virus (ToLCNDV) has been a limiting factor for cucurbits production in the Mediterranean basin, forcing farmers to adapt new management and control techniques. Although it is well-known that begomoviruses are naturally transmitted by the whitefly Bemisia tabaci, the capacity of these viruses to be vertically transmitted through seeds remains controversial. Clarifying the potential ToLCNDV seed transmission is essential to understand the epidemiology of this threating-for-cucurbits virus and to design appropriate control strategies. We assessed ToLCNDV distribution in the leaves, flowers and seeds of the infected plants of susceptible Cucumis melo accessions and toleration to the infected genotypes of Cucurbita moschata by conventional and quantitative PCR. We analyzed whether the viral particle was transmitted to offspring. We also evaluated ToLCNDV presence in commercial seeds of cucurbits (zucchini (Cucurbita pepo), melon (C. melo), cucumber (Cucumis sativus) and watermelon (Citrullus lanatus)) and in their progenies. As the assayed seedlings remained symptomless, we increased the reliability and accuracy of detection in these samples by searching for replicative forms of ToLCNDV by combining Southern blot hybridization and rolling-circle amplification (RCA). However, integral genomic DNA was not identified in the plants of offspring. Although the seedborne nature of ToLCNDV was confirmed, our results do not support the transmission of this virus from contaminated seeds to progeny. Full article
Show Figures

Figure 1

15 pages, 3122 KiB  
Article
Zucchini Yellow Mosaic Virus (ZYMV) as a Serious Biotic Stress to Cucurbits: Prevalence, Diversity, and Its Implications for Crop Sustainability
by Muhammad Ahsan, Muhammad Ashfaq, Mahmoud Ahmed Amer, Muhammad Taimoor Shakeel, Mirza Abid Mehmood, Muhammad Umar and Mohammed Ali Al-Saleh
Plants 2023, 12(19), 3503; https://doi.org/10.3390/plants12193503 - 8 Oct 2023
Cited by 7 | Viewed by 3141
Abstract
Zucchini yellow mosaic virus (ZYMV) is a severe threat to cucurbit crops worldwide, including Pakistan. This study was pursued to evaluate the prevalence, geographic distribution, and molecular diversity of ZYMV isolates infecting cucurbits in Pakistan’s Pothwar region. Almost all the plant viruses act [...] Read more.
Zucchini yellow mosaic virus (ZYMV) is a severe threat to cucurbit crops worldwide, including Pakistan. This study was pursued to evaluate the prevalence, geographic distribution, and molecular diversity of ZYMV isolates infecting cucurbits in Pakistan’s Pothwar region. Almost all the plant viruses act as a biotic stress on the host plants, which results in a yield loss. These viruses cause losses in single-infection or in mixed-infection cucurbit crops, and we have found a number of mixed-infected samples belonging to the Curubitaceae family. Serological detection of the tested potyviruses in the collected cucurbit samples revealed that ZYMV was the most prevalent virus, with a disease incidence (DI) at 35.2%, followed by Papaya ringspot virus (PRSV) with an incidence of 2.2%, and Watermelon mosaic virus (WMV) having an incidence as little as 0.5% in 2016. In the year 2017, a relatively higher disease incidence of 39.7%, 2.4%, and 0.3% for ZYMV, WMV, and PRSV, respectively, was recorded. ZYMV was the most prevalent virus with the highest incidence in Attock, Rawalpindi, and Islamabad, while PRSV was observed to be the highest in Islamabad and Jhelum. WMV infection was observed only in Rawalpindi and Chakwal. Newly detected Pakistani ZYMV isolates shared 95.8–97.0% nucleotide identities among themselves and 77.1–97.8% with other isolates retrieved from GenBank. Phylogenetic relationships obtained using different ZYMV isolates retrieved from GenBank and validated by in silico restriction analysis revealed that four Pakistani isolates clustered with other ZYMV isolates in group IIb with Chinese, Italian, Polish, and French isolates, while another isolate (MK848239) formed a separate minor clade within IIb. The isolate MK8482490, reported to infect bitter gourd in Pakistan, shared a minor clade with a Chinese isolate (KX884570). Recombination analysis revealed that the recently found ZYMV isolate (MK848239) is most likely a recombinant of Pakistani (MK848237) and Italian (MK956829) isolates, with a recombinant breakpoint between 266 and 814 nucleotide positions. Local isolate comparison and recombination detection may aid in the development of a breeding program that identifies resistant sources against recombinant isolates because the ZYMV is prevalent in a few cucurbit species grown in the surveyed areas and causes heavy losses and economic damage to the agricultural community. Full article
Show Figures

Figure 1

14 pages, 3497 KiB  
Article
Virome Profiling, New Virus Identification and the Prevalence and Distribution of Viruses Infecting Chieh-Qua (Benincasa hispida Cogn. var. chieh-qua How) in China
by Haiyan Che, Yuxin Ma, Yating Lin, Tuizi Feng, Daquan Luo and Haibo Long
Viruses 2023, 15(6), 1396; https://doi.org/10.3390/v15061396 - 19 Jun 2023
Cited by 3 | Viewed by 2413
Abstract
The cucurbit vegetable chieh-qua (Benincasa hispida var. chieh-qua How) is an important crop in South China and southeast Asian countries. Viral diseases cause substantial loss of chieh-qua yield. To identify the viruses that affect chieh-qua in China, ribosomal RNA-depleted total RNA sequencing [...] Read more.
The cucurbit vegetable chieh-qua (Benincasa hispida var. chieh-qua How) is an important crop in South China and southeast Asian countries. Viral diseases cause substantial loss of chieh-qua yield. To identify the viruses that affect chieh-qua in China, ribosomal RNA-depleted total RNA sequencing was performed using chieh-qua leaf samples with typical viral symptoms. The virome of chieh-qua comprises four known viruses (melon yellow spot virus (MYSV), cucurbit chlorotic yellows virus (CCYV), papaya ringspot virus (PRSV) and watermelon silver mottle virus (WSMoV) and two novel viruses: cucurbit chlorotic virus (CuCV) in the genus Crinivirus and chieh-qua endornavirus (CqEV) in the genus Alphaendornavirus. The complete genomes of the two novel viruses in chieh-qua and three other isolates of CuCV in pumpkin, watermelon and cucumber were determined and the recombination signals of pumpkin and watermelon isolates of CuCV were detected. A reverse transcriptase PCR indicated that the dominant viruses of chieh-qua in Hainan are MYSV (66.67%) and CCYV (55.56%), followed by CuCV (27.41%), WSMoV (7.41%), cucumber mosaic virus (8.15%), zucchini yellow mosaic virus (6.67%), PRSV (6.67%) and CqEV (35.56%). Our findings support diagnostic and prevalence studies of viruses infecting chieh-qua in China, enabling sustainable control strategies for cucurbit viruses worldwide. Full article
(This article belongs to the Special Issue Next-Generation Sequencing in Plant Virology 2.0)
Show Figures

Figure 1

17 pages, 1550 KiB  
Article
Development, Validation, and Application of Reverse Transcription Real-Time and Droplet Digital PCR Assays for the Detection of the Potyviruses Watermelon Mosaic Virus and Zucchini Yellow Mosaic Virus in Cucurbits
by Marta Luigi, Ariana Manglli, Carla Libia Corrado, Antonio Tiberini, Elisa Costantini, Luca Ferretti, Laura Tomassoli and Sabrina Bertin
Plants 2023, 12(12), 2364; https://doi.org/10.3390/plants12122364 - 19 Jun 2023
Cited by 7 | Viewed by 2536
Abstract
Among the cucurbit-infecting viruses, watermelon mosaic virus (WMV) and zucchini yellow mosaic virus (ZYMV) (Potyvirus: Potyviridae) are responsible for severe symptoms on cucumber, melon, watermelon, and zucchini cultivations worldwide. In this study, reverse transcription real-time PCR (real-time RT-PCR) and droplet-digital PCR (RT-ddPCR) assays [...] Read more.
Among the cucurbit-infecting viruses, watermelon mosaic virus (WMV) and zucchini yellow mosaic virus (ZYMV) (Potyvirus: Potyviridae) are responsible for severe symptoms on cucumber, melon, watermelon, and zucchini cultivations worldwide. In this study, reverse transcription real-time PCR (real-time RT-PCR) and droplet-digital PCR (RT-ddPCR) assays targeting the coat protein (CP) genes of WMV and ZYMV were developed and validated according to the international standards of plant pest diagnosis (EPPO PM 7/98 (5)). First, the diagnostic performance of WMV-CP and ZYMV-CP real-time RT-PCRs was evaluated, and the assays displayed an analytical sensitivity of 10−5 and 10−3, respectively. The tests also showed an optimal repeatability, reproducibility and analytical specificity, and were reliable for the virus detection in naturally infected samples and across a wide range of cucurbit hosts. Based on these results, the real-time RT-PCR reactions were adapted to set up RT-ddPCR assays. These were the first RT-ddPCR assays aiming at the detection and quantification of WMV and ZYMV and showed a high sensitivity, being able to detect until 9 and 8 copies/µL of WMV or ZYMV, respectively. The RT-ddPCRs allowed the direct estimation of the virus concentrations and opened to a broad range of applications in disease management, such as the evaluation of partial resistance in breeding processes, identification of antagonistic/synergistic events, and studies on the implementation of natural compounds in the integrated management strategies. Full article
(This article belongs to the Special Issue Identification of Plant Viruses and Viroids)
Show Figures

Figure 1

20 pages, 5734 KiB  
Review
Occurrence, Distribution, and Management of Aphid-Transmitted Viruses in Cucurbits in Spain
by Celia De Moya-Ruiz, Pedro Gómez and Miguel Juárez
Pathogens 2023, 12(3), 422; https://doi.org/10.3390/pathogens12030422 - 7 Mar 2023
Cited by 20 | Viewed by 5489
Abstract
The effectiveness of pest and disease management in crops relies on knowledge about their presence and distribution in crop-producing areas. Aphids and whiteflies are among the main threats to vegetable crops since these hemipterans feed on plants, causing severe damage, and are also [...] Read more.
The effectiveness of pest and disease management in crops relies on knowledge about their presence and distribution in crop-producing areas. Aphids and whiteflies are among the main threats to vegetable crops since these hemipterans feed on plants, causing severe damage, and are also able to transmit a large number of devastating plant viral diseases. In particular, the widespread occurrence of aphid-transmitted viruses in cucurbit crops, along with the lack of effective control measures, makes surveillance programs and virus epidemiology necessary for providing sound advice and further integration into the management strategies that can ensure sustainable food production. This review describes the current presence and distribution of aphid-transmitted viruses in cucurbits in Spain, providing valuable epidemiological information, including symptom expressions of virus-infected plants for further surveillance and viral detection. We also provide an overview of the current measures for virus infection prevention and control strategies in cucurbits and indicate the need for further research and innovative strategies against aphid pests and their associated viral diseases. Full article
(This article belongs to the Special Issue Emerging and Re-emerging Plant Viruses in a Context of Global Change)
Show Figures

Figure 1

21 pages, 2210 KiB  
Article
Characterization of Cucurbit Aphid-Borne Yellows Virus (CABYV) from Passion Fruit in Brazil: Evidence of a Complex of Species within CABYV Isolates
by Andreza H. Vidal, Cristiano Lacorte, Marcio M. Sanches, Dione M. T. Alves-Freitas, Emanuel F. M. Abreu, Bruna Pinheiro-Lima, Raul C. Carriello Rosa, Onildo N. Jesus, Magnólia A. Campos, Gustavo P. Felix, Ana Clara R. Abreu, Yam S. Santos, Ana Luiza M. Lacerda, Arvind Varsani, Fernando L. Melo and Simone G. Ribeiro
Viruses 2023, 15(2), 410; https://doi.org/10.3390/v15020410 - 1 Feb 2023
Cited by 10 | Viewed by 3682
Abstract
High-throughput sequencing (HTS) has been an important tool for the discovery of plant viruses and their surveillance. In 2015, several virus-like symptoms were observed in passion fruit (PF) plants in Bahia state, Brazil. Using HTS technology, bioinformatics tools, RT-PCR, and Sanger sequencing, we [...] Read more.
High-throughput sequencing (HTS) has been an important tool for the discovery of plant viruses and their surveillance. In 2015, several virus-like symptoms were observed in passion fruit (PF) plants in Bahia state, Brazil. Using HTS technology, bioinformatics tools, RT-PCR, and Sanger sequencing, we identified the cucurbit aphid-borne yellows virus (CABYV, Polerovirus, Solemoviridae) in co-infection with cowpea aphid-borne mosaic virus (CABMV, Potyvirus, Potyviridae) in PF, in green manure, and spontaneous plants in several localities in Bahia. Complete genomes of CABYV-PF isolates were determined and analyzed with other CABYV isolates available in GenBank that have been identified in various countries. Phylogenetic analysis and pairwise identity comparison with CABYV isolates showed that CABYV-PFs are more closely related to French and Spanish isolates. Overall, analyses of all the CABYV genomes revealed that these could represent ten distinct species, and we thus proposed reclassifying these CABYV as isolates into ten species, tentatively named “Polerovirus curcubitaeprimum” to “Polerovirus curcubitaenonum”, and “Polerovirus melo”. CABYV-PF is a member of “Polerovirus curcubitaeprimum”. Full article
(This article belongs to the Special Issue Emerging Fruit and Vegetable Viruses)
Show Figures

Figure 1

16 pages, 2737 KiB  
Article
Transcriptional Analysis of the Differences between ToLCNDV-India and ToLCNDV-ES Leading to Contrary Symptom Development in Cucumber
by Thuy T. B. Vo, Won Kyong Cho, Yeonhwa Jo, Aamir Lal, Bupi Nattanong, Muhammad Amir Qureshi, Marjia Tabssum, Elisa Troiano, Giuseppe Parrella, Eui-Joon Kil, Taek-Kyun Lee and Sukchan Lee
Int. J. Mol. Sci. 2023, 24(3), 2181; https://doi.org/10.3390/ijms24032181 - 22 Jan 2023
Cited by 4 | Viewed by 3219
Abstract
Tomato leaf curl New Delhi virus-ES (ToLCNDV-ES), a high threat to cucurbits in the Mediterranean Basin, is listed as a different strain from the Asian ToLCNDV isolates. In this study, the infectivity of two clones previously isolated from Italy and Pakistan were compared [...] Read more.
Tomato leaf curl New Delhi virus-ES (ToLCNDV-ES), a high threat to cucurbits in the Mediterranean Basin, is listed as a different strain from the Asian ToLCNDV isolates. In this study, the infectivity of two clones previously isolated from Italy and Pakistan were compared in cucumbers, which resulted in the opposite symptom appearance. The swapping subgenome was processed; however, the mechanisms related to the disease phenotype remain unclear. To identify the disease-associated genes that could contribute to symptom development under the two ToLCNDV infections, the transcriptomes of ToLCNDV-infected and mock-inoculated cucumber plants were compared 21 days postinoculation. The number of differentially expressed genes in ToLCNDV-India-infected plants was 10 times higher than in ToLCNDV-ES-infected samples. The gene ontology (GO) and pathway enrichment were analyzed using the Cucurbits Genomics Database. The flavonoid pathway-related genes were upregulated in ToLCNDV-ES, but some were downregulated in ToLCNDV-India infection, suggesting their role in resistance to the two ToLCNDV infections. The relative expression levels of the selected candidate genes were validated by qRT-PCR under two ToLCNDV-infected conditions. Our results reveal the different infectivity of the two ToLCNDVs in cucumber and also provide primary information based on RNA-seq for further analysis related to different ToLCNDV infections. Full article
(This article belongs to the Special Issue Molecular Genetics and Genomics of Plant-Pathogen Interactions)
Show Figures

Figure 1

17 pages, 2686 KiB  
Article
Different RNA Elements Control Viral Protein Synthesis in Polerovirus Isolates Evolved in Separate Geographical Regions
by Manuel Miras, Miguel A. Aranda and Verónica Truniger
Int. J. Mol. Sci. 2022, 23(20), 12503; https://doi.org/10.3390/ijms232012503 - 19 Oct 2022
Cited by 4 | Viewed by 2047
Abstract
Most plant viruses lack the 5′-cap and 3′-poly(A) structures, which are common in their host mRNAs, and are crucial for translation initiation. Thus, alternative translation initiation mechanisms were identified for viral mRNAs, one of these being controlled by an RNA element in their [...] Read more.
Most plant viruses lack the 5′-cap and 3′-poly(A) structures, which are common in their host mRNAs, and are crucial for translation initiation. Thus, alternative translation initiation mechanisms were identified for viral mRNAs, one of these being controlled by an RNA element in their 3′-ends that is able to enhance mRNA cap-independent translation (3′-CITE). The 3′-CITEs are modular and transferable RNA elements. In the case of poleroviruses, the mechanism of translation initiation of their RNAs in the host cell is still unclear; thus, it was studied for one of its members, cucurbit aphid-borne yellows virus (CABYV). We determined that efficient CABYV RNA translation requires the presence of a 3′-CITE in its 3′-UTR. We showed that this 3′-CITE requires the presence of the 5′-UTR in cis for its eIF4E-independent activity. Efficient virus multiplication depended on 3′-CITE activity. In CABYV isolates belonging to the three phylogenetic groups identified so far, the 3′-CITEs differ, and recombination prediction analyses suggest that these 3′-CITEs have been acquired through recombination with an unknown donor. Since these isolates have evolved in different geographical regions, this may suggest that their respective 3′-CITEs are possibly better adapted to each region. We propose that translation of other polerovirus genomes may also be 3′-CITE-dependent. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Plant Biology Research in Spain)
Show Figures

Figure 1

Back to TopTop