Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (97)

Search Parameters:
Keywords = cubist model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 17755 KB  
Article
Estimating Aboveground Biomass of Mangrove Forests in Indonesia Using Spatial Attention Coupled Bayesian Aggregator
by Xinyue Zhu, Zhaohui Xue, Siyu Qian and Chenrun Sun
Forests 2025, 16(8), 1296; https://doi.org/10.3390/f16081296 - 8 Aug 2025
Viewed by 789
Abstract
Mangroves play a crucial part in the worldwide blue carbon cycle because they store a lot of carbon in their biomass and soil. Accurate estimation of aboveground biomass (AGB) is essential for quantifying carbon stocks and understanding ecological responses to climate and human [...] Read more.
Mangroves play a crucial part in the worldwide blue carbon cycle because they store a lot of carbon in their biomass and soil. Accurate estimation of aboveground biomass (AGB) is essential for quantifying carbon stocks and understanding ecological responses to climate and human disturbances. However, regional-scale AGB mapping remains difficult due to fragmented mangrove distributions, limited field data, and cross-site heterogeneity. To address these challenges, we propose a Spatial Attention Coupled Bayesian Aggregator (SAC-BA), which integrates field measurements with multi-source remote sensing (Landsat 8, Sentinel-1), terrain data, and climate variables using advanced ensemble learning. Four machine learning models (Random Forest (RF), Cubist, Support Vector Regression (SVR), and Extreme Gradient Boosting (XGBoost)) were first trained, and their outputs were fused using Bayesian model averaging with spatial attention weights and constraints based on Local Indicators of Spatial Association (LISAs), which identify spatial clusters (e.g., high–high, low–low) to improve accuracy and spatial coherence. SAC-BA achieved the highest performance (coefficient of determination (R2) = 0.82, root mean square error = 29.90 Mg/ha), outperforming all individual models and traditional BMA. The resulting 30-m AGB map of Indonesian mangroves in 2017 estimated a total of 217.17 × 106 Mg, with a mean of 103.20 Mg/ha. The predicted AGB map effectively captured spatial variability, reduced noise at ecological boundaries, and maintained high confidence predictions in core mangrove zones. These results highlight the advantages of incorporating spatial structure and uncertainty into ensemble modeling. SAC-BA provides a reliable and transferable framework for regional AGB estimation, supporting improved carbon assessment and mangrove conservation efforts. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

20 pages, 5756 KB  
Article
Stepwise Downscaling of ERA5-Land Reanalysis Air Temperature: A Case Study in Nanjing, China
by Xuelian Li, Guixin Zhang, Shanyou Zhu and Yongming Xu
Remote Sens. 2025, 17(12), 2063; https://doi.org/10.3390/rs17122063 - 15 Jun 2025
Viewed by 1040
Abstract
Reanalysis air temperature data, characterized by temporal continuity but limited spatial resolution, are commonly downscaled to achieve higher spatial resolution to meet the demands of regional climatological studies and related research fields. However, when large spatial scale differences are involved, the adaptability of [...] Read more.
Reanalysis air temperature data, characterized by temporal continuity but limited spatial resolution, are commonly downscaled to achieve higher spatial resolution to meet the demands of regional climatological studies and related research fields. However, when large spatial scale differences are involved, the adaptability of statistical downscaling models across different scales warrants further investigation. In this study, a stepwise downscaling method is proposed, employing multiple linear regression (MLR), Cubist regression tree, random forest (RF), and extreme gradient boosting (XGBoost) models to downscale the 3-hourly ERA5-Land reanalysis air temperature data at the resolution of 0.1° to that of 30 m. A comparative analysis was performed to evaluate the accuracy of downscaled ERA5-Land air temperature results obtained from the stepwise and the direct downscaling methods, based on observed air temperatures at meteorological stations and the spatial distribution of air temperature estimated by a remote sensing method. In addition, variations in the importance of driving factors across different spatial scales were examined. The results indicate that the stepwise downscaling method exhibits higher accuracy than the direct downscaling method, with a more pronounced performance improvement in winter. Compared with the direct downscaling method, the RMSE value of the MLR, Cubist, RF, and XGBoost models under the stepwise downscaling method were reduced by 0.48 K, 0.38 K, 0.48 K, and 0.50 K, respectively, at meteorological station locations. In terms of spatial distribution, the stepwise downscaling results demonstrate greater consistency with the estimated spatial distribution of air temperature, and it can capture air temperature variations across different land surface types more accurately. Furthermore, the stepwise downscaling method is capable of effectively capturing changes in the importance of driving factors across different spatial scales. These results generally suggest that the stepwise downscaling method can significantly improve the accuracy of air temperature downscaled from reanalysis data by adopting multiple resolutions as the intermediate downscaling process. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Urban Environment and Climate)
Show Figures

Figure 1

16 pages, 2965 KB  
Article
Comparison of Selected Ensemble Supervised Learning Algorithms Used for Meteorological Normalisation of Particulate Matter (PM10)
by Karolina Gora and Mateusz Rzeszutek
Sustainability 2025, 17(12), 5274; https://doi.org/10.3390/su17125274 - 7 Jun 2025
Viewed by 689
Abstract
Air pollution, particularly PM10 particulate matter, poses significant health risks related to respiratory and cardiovascular diseases as well as cancer. Accurate identification of PM10 reduction factors is therefore essential for developing effective sustainable development strategies. According to the current state of [...] Read more.
Air pollution, particularly PM10 particulate matter, poses significant health risks related to respiratory and cardiovascular diseases as well as cancer. Accurate identification of PM10 reduction factors is therefore essential for developing effective sustainable development strategies. According to the current state of knowledge, machine learning methods are most frequently employed for this purpose due to their superior performance compared to classical statistical approaches. This study evaluated the performance of three machine learning algorithms—Decision Tree (CART), Random Forest, and Cubist Rule—in predicting PM10 concentrations and estimating long-term trends following meteorological normalisation. The research focused on Tarnów, Poland (2010–2022), with comprehensive consideration of meteorological variability. The results demonstrated superior accuracy for the Random Forest and Cubist models (R2 ~0.88–0.89, RMSE ~14 μg/m3) compared to CART (RMSE 19.96 μg/m3). Air temperature and boundary layer height emerged as the most significant predictive variables across all algorithms. The Cubist algorithm proved particularly effective in detecting the impact of policy interventions, making it valuable for air quality trend analysis. While the study confirmed a statistically significant annual decrease in PM10 concentrations (0.83–1.03 μg/m3), pollution levels still exceeded both the updated EU air quality standards from 2024 (Directive (EU) 2024/2881), which will come into force in 2030, and the more stringent WHO guidelines from 2021. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

18 pages, 1131 KB  
Article
Analyzing and Predicting the Agronomic Effectiveness of Fertilizers Derived from Food Waste Using Data-Driven Models
by Ksawery Kuligowski, Quoc Ba Tran, Chinh Chien Nguyen, Piotr Kaczyński, Izabela Konkol, Lesław Świerczek, Adam Cenian and Xuan Cuong Nguyen
Appl. Sci. 2025, 15(11), 5999; https://doi.org/10.3390/app15115999 - 26 May 2025
Viewed by 1014
Abstract
This study evaluates and estimates the agronomic effectiveness of food waste-derived fertilizers by analyzing plant yield and the internal efficiency of nitrogen utilization (IENU) via statistical and machine learning models. A dataset of 448 cases from various food waste treatments gathered from our [...] Read more.
This study evaluates and estimates the agronomic effectiveness of food waste-derived fertilizers by analyzing plant yield and the internal efficiency of nitrogen utilization (IENU) via statistical and machine learning models. A dataset of 448 cases from various food waste treatments gathered from our experiments and the existing literature was analyzed. Plant yield and IENU exhibited substantial variability, averaging 2268 ± 3099 kg/ha and 32.3 ± 92.5 kg N/ha, respectively. Ryegrass dominated (73.77%), followed by unspecified grass (10.76%), oats (4.87%), and lettuce (2.02%). Correlation analysis revealed that decomposition duration positively influenced plant yield and IENU (r = 0.42 and 0.44), while temperature and volatile solids had negative correlations. Machine learning models outperformed linear regression in predicting plant yield and IENU, especially after preprocessing to remove missing values and outliers. Random Forest and Cubist models showed strong generalization with high R2 (0.79–0.83) for plant yield, while Cubist predicted IENU well in testing, with RMSE = 3.83 and R2 = 0.78. These findings highlight machine learning’s ability to analyze complex datasets, improve agricultural decision-making, and optimize food waste utilization. Full article
Show Figures

Figure 1

19 pages, 3423 KB  
Article
Integrating Genetic Algorithm and Geographically Weighted Approaches into Machine Learning Improves Soil pH Prediction in China
by Wantao Zhang, Jingyi Ji, Binbin Li, Xiao Deng and Mingxiang Xu
Remote Sens. 2025, 17(6), 1086; https://doi.org/10.3390/rs17061086 - 20 Mar 2025
Viewed by 971
Abstract
Accurate soil pH prediction is critical for soil management and ecological environmental protection. Machine learning (ML) models have been widely applied in the field of soil pH prediction. However, when using these models, the spatial heterogeneity of the relationship between soil and environmental [...] Read more.
Accurate soil pH prediction is critical for soil management and ecological environmental protection. Machine learning (ML) models have been widely applied in the field of soil pH prediction. However, when using these models, the spatial heterogeneity of the relationship between soil and environmental variables is often not fully considered, which limits the predictive capability of the models, especially in large-scale regions with complex soil landscapes. To address these challenges, this study collected soil pH data from 4335 soil surface points (0–20 cm) obtained from the China Soil System Survey, combined with a multi-source environmental covariate. This study integrates Geographic Weighted Regression (GWR) with three ML models (Random Forest, Cubist, and XGBoost) and designs and develops three geographically weighted machine learning models optimized by Genetic Algorithms to improve the prediction of soil pH values. Compared to GWR and traditional ML models, the R2 of the geographic weighted random forest (GWRF), geographic weighted Cubist (GWCubist), and geographic weighted extreme gradient boosting (GWXGBoost) models increased by 1.98% to 14.29%, while the RMSE decreased by 1.81% to 11.98%. Among the three models, the GWRF model performed the best and effectively reduced uncertainty in soil pH mapping. Mean Annual Precipitation and the Normalized Difference Vegetation Index are two key environmental variables influencing the prediction of soil pH, and they have a significant negative impact on the spatial distribution of soil pH. These findings provide a scientific basis for effective soil health management and the implementation of large-scale soil modeling programs. Full article
Show Figures

Figure 1

14 pages, 4158 KB  
Article
Vis/NIR Spectroscopy and Chemometrics for Non-Destructive Estimation of Chlorophyll Content in Different Plant Leaves
by Qiang Huang, Meihua Yang, Liao Ouyang, Zimiao Wang and Jiayao Lin
Sensors 2025, 25(6), 1673; https://doi.org/10.3390/s25061673 - 8 Mar 2025
Viewed by 977
Abstract
Vegetation biochemical and biophysical variables, especially chlorophyll content, are pivotal indicators for assessing drought’s impact on plants. Chlorophyll, crucial for photosynthesis, ultimately influences crop productivity. This study evaluates the mean squared Euclidean distance (MSD) method, traditionally applied in soil analysis, for estimating chlorophyll [...] Read more.
Vegetation biochemical and biophysical variables, especially chlorophyll content, are pivotal indicators for assessing drought’s impact on plants. Chlorophyll, crucial for photosynthesis, ultimately influences crop productivity. This study evaluates the mean squared Euclidean distance (MSD) method, traditionally applied in soil analysis, for estimating chlorophyll content in five diverse leaf types across various months using visible/near-infrared (vis/NIR) spectral reflectance. The MSD method serves as a tool for selecting a representative calibration dataset. By integrating MSD with partial least squares regression (PLSR) and the Cubist model, we aim to accurately predict chlorophyll content, focusing on key spectral bands within the ranges of 500–640 nm and 740–1100 nm. In the validation dataset, PLSR achieved a high determination coefficient (R2) of 0.70 and a low mean bias error (MBE) of 0.04 mg g−1. The Cubist model performed even better, demonstrating an R2 of 0.77 and an exceptionally low MBE of 0.01 mg g−1. These results indicate that the MSD method serves as a tool for selecting a representative calibration dataset in leaves, and vis/NIR spectrometry combined with the MSD method is a promising alternative to traditional methods for quantifying chlorophyll content in various leaf types over various months. The technique is non-destructive, rapid, and consistent, making it an invaluable tool for assessing drought impacts on plant health and productivity. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

16 pages, 2507 KB  
Article
The Yield Estimation of Apple Trees Based on the Best Combination of Hyperspectral Sensitive Wavelengths Algorithm
by Anran Qin, Jiarui Sun, Xicun Zhu, Meixuan Li, Cheng Li, Ling Wang, Xinyang Yu and Yuanmao Jiang
Sustainability 2025, 17(2), 518; https://doi.org/10.3390/su17020518 - 10 Jan 2025
Viewed by 1109
Abstract
Agriculture’s sustainable growth necessitates the application of advanced science and technology to ensure the sensible use of resources and improve the agricultural economy’s long-term stability. In this study, apple trees were employed as research objects throughout the spring (NSS) and autumn shoot stop-growing [...] Read more.
Agriculture’s sustainable growth necessitates the application of advanced science and technology to ensure the sensible use of resources and improve the agricultural economy’s long-term stability. In this study, apple trees were employed as research objects throughout the spring (NSS) and autumn shoot stop-growing stage (ASS), and the data source was canopy hyperspectral data of fruit trees collected using ASD near-earth sensors, which was then combined with multiple sensitive wavelength screening algorithms and machine learning models to create an efficient and accurate apple yield estimation system. This is critical for guiding fruit farmers’ production, maintaining market supply and demand balances, fostering stable agricultural economy development, and providing a scientific basis and technical support for agricultural sustainability. Firstly, the fruit tree canopy hyperspectral data and apple tree yield data were collected, and the Savitsky–Golay convolution smoothing method (SG) was used to preprocess the canopy hyperspectral data. Secondly, six algorithms—Competitive Adaptive Re-weighting Sampling (CARS), Genetic Algorithm (GA), Successive Projections Algorithm (SPA), Uninformative Variable Elimination Algorithm (UVE), Variable Iteration Spatial Shrinking Algorithm (VISSA), and Variable Combination Population Algorithm (VCPA)—were employed to screen for the sensitive wavelengths related to apple tree yield, then preferring three methods for two-by-two combinations to determine the optimal algorithm combinations. Finally, using the best algorithm combinations, we built the apple yield linear model partial least squares regression (PLSR) and three machine learning models, Random Forest (RF), Cubist, and XGBoost, to screen for the best estimation model. The results demonstrated that ASS was the best fertility period for estimating yield; the validation set of the model constructed using each algorithm in ASS had a higher R2 of 0.05–0.51 and a lower RMSE of 0.21–5.33 than those in NSS. The three algorithms preferred were CARS, GA, and VISSA. After combining the three algorithms in two combinations, the best combination of VISSA-CARS was found. The RF model established based on the best VISSA-CARS combination algorithm is the best model for apple yield estimation, with a validation set R2 = 0.78 and RMSE = 6.03. The findings of this study may provide a new concept for accurately and quickly estimating apple yield, allowing fruit growers to improve production efficiency and promote agricultural sustainability. Full article
Show Figures

Figure 1

20 pages, 2172 KB  
Article
Metabolic Fluxes Using Deep Learning Based on Enzyme Variations: Application to Glycolysis in Entamoeba histolytica
by Freddy Oulia, Philippe Charton, Ophélie Lo-Thong-Viramoutou, Carlos G. Acevedo-Rocha, Wei Liu, Du Huynh, Cédric Damour, Jingbo Wang and Frederic Cadet
Int. J. Mol. Sci. 2024, 25(24), 13390; https://doi.org/10.3390/ijms252413390 - 13 Dec 2024
Cited by 1 | Viewed by 1230
Abstract
Metabolic pathway modeling, essential for understanding organism metabolism, is pivotal in predicting genetic mutation effects, drug design, and biofuel development. Enhancing these modeling techniques is crucial for achieving greater prediction accuracy and reliability. However, the limited experimental data or the complexity of the [...] Read more.
Metabolic pathway modeling, essential for understanding organism metabolism, is pivotal in predicting genetic mutation effects, drug design, and biofuel development. Enhancing these modeling techniques is crucial for achieving greater prediction accuracy and reliability. However, the limited experimental data or the complexity of the pathway makes it challenging for researchers to predict phenotypes. Deep learning (DL) is known to perform better than other Machine Learning (ML) approaches if the right conditions are met (i.e., a large database and good choice of parameters). Here, we use a knowledge-based model to massively generate synthetic data and extend a small initial dataset of experimental values. The main objective is to assess if DL can perform at least as well as other ML approaches in flux prediction, using 68,950 instances. Two processing methods are used to generate DL models: cross-validation and repeated holdout evaluation. DL models predict the metabolic fluxes with high precision and slightly outperform the best-known ML approach (the Cubist model) with a lower RMSE (≤0.01) in both cases. They also outperform the PLS model (RMSE ≥ 30). This study is the first to use DL to predict the overall flux of a metabolic pathway only from variations of enzyme concentrations. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Graphical abstract

17 pages, 12137 KB  
Article
Ensemble Learning for Oat Yield Prediction Using Multi-Growth Stage UAV Images
by Pengpeng Zhang, Bing Lu, Jiali Shang, Xingyu Wang, Zhenwei Hou, Shujian Jin, Yadong Yang, Huadong Zang, Junyong Ge and Zhaohai Zeng
Remote Sens. 2024, 16(23), 4575; https://doi.org/10.3390/rs16234575 - 6 Dec 2024
Cited by 3 | Viewed by 1846
Abstract
Accurate crop yield prediction is crucial for optimizing cultivation practices and informing breeding decisions. Integrating UAV-acquired multispectral datasets with advanced machine learning methodologies has markedly refined the accuracy of crop yield forecasting. This study aimed to construct a robust and versatile yield prediction [...] Read more.
Accurate crop yield prediction is crucial for optimizing cultivation practices and informing breeding decisions. Integrating UAV-acquired multispectral datasets with advanced machine learning methodologies has markedly refined the accuracy of crop yield forecasting. This study aimed to construct a robust and versatile yield prediction model for multi-genotyped oat varieties by investigating 14 modeling scenarios that combine multispectral data from four key growth stages. An ensemble learning framework, StackReg, was constructed by stacking four base algorithms—ridge regression (RR), support vector machines (SVM), Cubist, and extreme gradient boosting (XGBoost)—to predict oat yield. The results show that, for single growth stages, base models achieved R2 values within the interval of 0.02 to 0.60 and RMSEs ranging from 391.50 to 620.49 kg/ha. By comparison, the StackReg improved performance, with R2 values extending from 0.25 to 0.61 and RMSEs narrowing to 385.33 and 542.02 kg/ha. In dual-stage and multi-stage settings, the StackReg consistently surpassed the base models, reaching R2 values of up to 0.65 and RMSE values as low as 371.77 kg/ha. These findings underscored the potential of combining UAV-derived multispectral imagery with ensemble learning for high-throughput phenotyping and yield forecasting, advancing precision agriculture in oat cultivation. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Graphical abstract

17 pages, 1964 KB  
Article
A Step Forward in Hybrid Soil Laboratory Analysis: Merging Chemometric Corrections, Protocols and Data-Driven Methods
by Bruno dos Anjos Bartsch, Nicolas Augusto Rosin, Uemeson José dos Santos, João Augusto Coblinski, Marcelo H. P. Pelegrino, Jorge Tadeu Fim Rosas, Raul Roberto Poppiel, Ednilson Batista Ortiz, Viviane Cristina Vivian Kochinki, Paulo Gallo, Eyal Ben Dor, Renan Falcioni, Marcos Rafael Nanni, João Vitor Ferreira Gonçalves, Caio Almeida de Oliveira, Nicole Ghinzelli Vedana Vedana, Renato Herrig Furlanetto and José A. M. Demattê
Remote Sens. 2024, 16(23), 4543; https://doi.org/10.3390/rs16234543 - 4 Dec 2024
Cited by 3 | Viewed by 1554
Abstract
The need to maintain soil health and produce more food worldwide has increased, and soil analysis is essential for its management. Although spectroscopy has emerged as an important tool, it is important to focus primarily on predictive modeling procedures rather than specific protocols. [...] Read more.
The need to maintain soil health and produce more food worldwide has increased, and soil analysis is essential for its management. Although spectroscopy has emerged as an important tool, it is important to focus primarily on predictive modeling procedures rather than specific protocols. This article aims to contribute to a routine work sequence in a hybrid laboratory that seeks to provide the best data for its users. In this study, 18,730 soil samples from the state of Paraná, Brazil, were analyzed using three different laboratories, sensors and geometries for data acquisition. Thirty soil properties were analyzed, some using different chemical methodologies for comparison purposes. After a spectral reading, two literary protocols were applied, and the final prediction results were observed. We applied cubist models, which were the best for our population. The combination of different spectral analysis systems, with a standardized protocol using LB for the ISS detection of discrepant samples, was shown to significantly improve the accuracy of predictions for 21 of the 30 soil properties analyzed, highlighting the importance of choosing the extraction methodology and improving data quality, which have a significant impact on laboratory analyses, reaffirming spectroscopy as an essential tool for the efficient and sustainable management of soil resources. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

17 pages, 5293 KB  
Article
Spatial Variation and Stock Estimation of Soil Organic Carbon in Cropland in the Black Soil Region of Northeast China
by Wenwen Li, Zhen Yang, Jie Jiang and Guoxin Sun
Agronomy 2024, 14(11), 2744; https://doi.org/10.3390/agronomy14112744 - 20 Nov 2024
Cited by 1 | Viewed by 1073
Abstract
Soil organic carbon (SOC) sequestration in cropland is not only instrumental in combating climate change, but it also significantly enhances soil fertility. It is imperative to precisely and accurately quantify the SOC sequestration potential and assess the relative significance of various multiple explanatory [...] Read more.
Soil organic carbon (SOC) sequestration in cropland is not only instrumental in combating climate change, but it also significantly enhances soil fertility. It is imperative to precisely and accurately quantify the SOC sequestration potential and assess the relative significance of various multiple explanatory factors in a timely manner. We studied 555 soil samples from the cropland topsoil (0–15 cm) across the black soil region in Northeast China between the years 2021 and 2022, and we identified 16 significant impact factors using one-way ANOVA and Pearson correlation coefficient analysis. In addition, the Random Forest (RF) model outperformed the Cubist model in predicting the spatial distribution of SOC contents. The predicted ranges of SOC contents span from 5.24 to 43.93 g/kg, with the average SOC content using the RF model standing at 17.24 g/kg in Northeast China. Stepwise regression and structural equation modeling revealed climate and topography as key factors affecting SOC distribution. The SOC density in the study area varied from 0.51 to 9.11 kg/m2, averaging 3.30 kg/m2, with a total SOC stock of 1226.64 Tg. The SOC sequestration potential in the study area was estimated at 3057.65 Tg by the categorical maximum method, with a remaining sequestration capacity of 1831.01 Tg. The study area has great potential for SOC sequestration. We hope to transform the theoretical value of SOC sequestration potential into actual SOC sequestration capacity by promoting sustainable agriculture and additional strategies. Our findings provide insights into the global soil conditions, SOC storage capacities, and effective SOC management strategies. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

19 pages, 5705 KB  
Article
Comparative Analysis of Machine Learning Models for Tropical Cyclone Intensity Estimation
by Yuei-An Liou and Truong-Vinh Le
Remote Sens. 2024, 16(17), 3138; https://doi.org/10.3390/rs16173138 - 26 Aug 2024
Cited by 2 | Viewed by 3748
Abstract
Estimating tropical cyclone (TC) intensity is crucial for disaster reduction and risk management. This study aims to estimate TC intensity using machine learning (ML) models. We utilized eight ML models to predict TC intensity, incorporating factors such as TC location, central pressure, distance [...] Read more.
Estimating tropical cyclone (TC) intensity is crucial for disaster reduction and risk management. This study aims to estimate TC intensity using machine learning (ML) models. We utilized eight ML models to predict TC intensity, incorporating factors such as TC location, central pressure, distance to land, landfall in the next six hours, storm speed, storm direction, date, and number from the International Best Track Archive for Climate Stewardship Version 4 (IBTrACS V4). The dataset was divided into four sub-datasets based on the El Niño–Southern Oscillation (ENSO) phases (Neutral, El Niño, and La Niña). Our results highlight that central pressure has the greatest effect on TC intensity estimation, with a maximum root mean square error (RMSE) of 1.289 knots (equivalent to 0.663 m/s). Cubist and Random Forest (RF) models consistently outperformed others, with Cubist showing superior performance in both training and testing datasets. The highest bias was observed in SVM models. Temporal analysis revealed the highest mean error in January and November, and the lowest in February. Errors during the Warm phase of ENSO were notably higher, especially in the South China Sea. Central pressure was identified as the most influential factor for TC intensity estimation, with further exploration of environmental features recommended for model robustness. Full article
Show Figures

Graphical abstract

23 pages, 5725 KB  
Article
Estimation of the Aboveground Carbon Storage of Dendrocalamus giganteus Based on Spaceborne Lidar Co-Kriging
by Huanfen Yang, Zhen Qin, Qingtai Shu, Lei Xi, Cuifen Xia, Zaikun Wu, Mingxing Wang and Dandan Duan
Forests 2024, 15(8), 1440; https://doi.org/10.3390/f15081440 - 15 Aug 2024
Cited by 1 | Viewed by 1831
Abstract
Bamboo forests, as some of the integral components of forest ecosystems, have emerged as focal points in forestry research due to their rapid growth and substantial carbon sequestration capacities. In this paper, satellite-borne lidar data from GEDI and ICESat-2/ATLAS are utilized as the [...] Read more.
Bamboo forests, as some of the integral components of forest ecosystems, have emerged as focal points in forestry research due to their rapid growth and substantial carbon sequestration capacities. In this paper, satellite-borne lidar data from GEDI and ICESat-2/ATLAS are utilized as the main information sources, with Landsat 9 and DEM data as covariates, combined with 51 pieces of ground-measured data. Using random forest regression (RFR), boosted regression tree (BRT), k-nearest neighbor (KNN), Cubist, extreme gradient boosting (XGBoost), and Stacking-ridge regression (RR) machine learning methods, an aboveground carbon (AGC) storage model was constructed at a regional scale. The model evaluation indices were the coefficient of determination (R2), root mean square error (RMSE), and overall estimation accuracy (P). The results showed that (1) The best-fit semivariogram models for cdem, fdem, fndvi, pdem, and andvi were Gaussian models, while those for h1b7, h2b7, h3b7, and h4b7 were spherical models; (2) According to Pearson correlation analysis, the AGC of Dendrocalamus giganteus showed an extremely significant correlation (p < 0.01) with cdem and pdem from GEDI, and also showed an extremely significant correlation with andvi, h1b7, h2b7, h3b7, and h4b7 from ICESat-2/ATLAS; moreover, AGC showed a significant correlation (0.01 < p < 0.05) with fdem and fndvi from GEDI; (3) The estimation accuracy of the GEDI model was superior to that of the ICESat-2/ATLAS model; additionally, the estimation accuracy of the Stacking-RR model, which integrates GEDI and ICESat-2/ATLAS (R2 = 0.92, RMSE = 5.73 Mg/ha, p = 86.19%), was better than that of any single model (XGBoost, RFR, BRT, KNN, Cubist); (4) Based on the Stacking-RR model, the estimated AGC of Dendrocalamus giganteus within the study area was 1.02 × 107 Mg. The average AGC was 43.61 Mg/ha, with a maximum value of 76.43 Mg/ha and a minimum value of 15.52 Mg/ha. This achievement can serve as a reference for estimating other bamboo species using GEDI and ICESat-2/ATLAS remote sensing technologies and provide decision support for the scientific operation and management of Dendrocalamus giganteus. Full article
Show Figures

Figure 1

16 pages, 4578 KB  
Article
Soil Organic Carbon Prediction Based on Vis–NIR Spectral Classification Data Using GWPCA–FCM Algorithm
by Yutong Miao, Haoyu Wang, Xiaona Huang, Kexin Liu, Qian Sun, Lingtong Meng and Dongyun Xu
Sensors 2024, 24(15), 4930; https://doi.org/10.3390/s24154930 - 30 Jul 2024
Viewed by 2035
Abstract
Soil visible and near–infrared reflectance spectroscopy is an effective tool for the rapid estimation of soil organic carbon (SOC). The development of spectroscopic technology has increased the application of spectral libraries for SOC research. However, the direct application of spectral libraries for SOC [...] Read more.
Soil visible and near–infrared reflectance spectroscopy is an effective tool for the rapid estimation of soil organic carbon (SOC). The development of spectroscopic technology has increased the application of spectral libraries for SOC research. However, the direct application of spectral libraries for SOC prediction remains challenging due to the high variability in soil types and soil–forming factors. This study aims to address this challenge by improving SOC prediction accuracy through spectral classification. We utilized the European Land Use and Cover Area frame Survey (LUCAS) large–scale spectral library and employed a geographically weighted principal component analysis (GWPCA) combined with a fuzzy c–means (FCM) clustering algorithm to classify the spectra. Subsequently, we used partial least squares regression (PLSR) and the Cubist model for SOC prediction. Additionally, we classified the soil data by land cover types and compared the classification prediction results with those obtained from spectral classification. The results showed that (1) the GWPCA–FCM–Cubist model yielded the best predictions, with an average accuracy of R2 = 0.83 and RPIQ = 2.95, representing improvements of 10.33% and 18.00% in R2 and RPIQ, respectively, compared to unclassified full sample modeling. (2) The accuracy of spectral classification modeling based on GWPCA–FCM was significantly superior to that of land cover type classification modeling. Specifically, there was a 7.64% and 14.22% improvement in R2 and RPIQ, respectively, under PLSR, and a 13.36% and 29.10% improvement in R2 and RPIQ, respectively, under Cubist. (3) Overall, the prediction accuracy of Cubist models was better than that of PLSR models. These findings indicate that the application of GWPCA and FCM clustering in conjunction with the Cubist modeling technique can significantly enhance the prediction accuracy of SOC from large–scale spectral libraries. Full article
(This article belongs to the Special Issue Spectral Detection Technology, Sensors and Instruments)
Show Figures

Figure 1

19 pages, 13934 KB  
Article
Leveraging Remote Sensing-Derived Dynamic Crop Growth Information for Improved Soil Property Prediction in Farmlands
by Jing Geng, Qiuyuan Tan, Ying Zhang, Junwei Lv, Yong Yu, Huajun Fang, Yifan Guo and Shulan Cheng
Remote Sens. 2024, 16(15), 2731; https://doi.org/10.3390/rs16152731 - 26 Jul 2024
Cited by 3 | Viewed by 1813
Abstract
Rapid and accurate mapping of soil properties in farmlands is crucial for guiding agricultural production and maintaining food security. Traditional methods using spectral features from remote sensing prove valuable for estimating soil properties, but are restricted to short periods of bare soil occurrence [...] Read more.
Rapid and accurate mapping of soil properties in farmlands is crucial for guiding agricultural production and maintaining food security. Traditional methods using spectral features from remote sensing prove valuable for estimating soil properties, but are restricted to short periods of bare soil occurrence within agricultural settings. Addressing the challenge of predicting soil properties under crop cover, this study proposed an improved soil modeling framework that integrates dynamic crop growth information with machine learning techniques. The methodology’s robustness was tested on six key soil properties in an agricultural region of China, including soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and pH. Four experimental scenarios were established to assess the impact of crop growth information, represented by the normalized difference vegetation index (NDVI) and phenological parameters. Specifically, Scenario I utilized only natural factors (terrain and climate data); Scenario II added phenological parameters based on Scenario I; Scenario III incorporated time-series NDVI based on Scenario I; and Scenario IV combined all variables (traditional natural factors and crop growth information). These were evaluated using three advanced machine learning models: random forest (RF), Cubist, and Extreme Gradient Boosting (XGBoost). Results demonstrated that incorporating phenological parameters and time-series NDVI significantly improved model accuracy, enhancing predictions by up to 36% over models using only natural factors. Moreover, although both are crop growth factors, the contribution of the time-series NDVI variable to model accuracy surpassed that of the phenological variable for most soil properties. Relative importance analysis suggested that the crop growth information, derived from time-series NDVI and phenology data, collectively explained 14–45% of the spatial variation in soil properties. This study highlights the significant benefits of integrating remote sensing-based crop growth factors into soil property inversion under crop-covered conditions, providing valuable insights for digital soil mapping. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Graphical abstract

Back to TopTop