Leveraging Remote Sensing-Derived Dynamic Crop Growth Information for Improved Soil Property Prediction in Farmlands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Soil Properties Determination
2.3. Environmental Covariates and Preprocessing
2.3.1. Terrain Data
2.3.2. Climate Data
2.3.3. Time-Series Crop NDVI Data
2.3.4. Crop Phenological Parameters Data
2.4. Modeling Techniques and Accuracy Evaluation
2.4.1. Machine Learning Techniques
2.4.2. Model Performance Evaluation
3. Results and Discussion
3.1. Statistical Characteristics of Observed Six Soil Properties
3.2. Spatial Variability and Temporal Dynamics of Crop NDVI and Phenological Parameters Variables
3.3. Comparison of Modeling Performance with Different Variable Scenarios
3.4. Relative Importance of Predictors Based on the Optimal Model
3.5. Spatial Distribution of Soil Properties Maps
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lal, R.; Bouma, J.; Brevik, E.; Dawson, L.; Field, D.J.; Glaser, B.; Hatano, R.; Hartemink, A.E.; Kosaki, T.; Lascelles, B. Soils and sustainable development goals of the United Nations: An International Union of Soil Sciences perspective. Geoderma Reg. 2021, 25, e00398. [Google Scholar] [CrossRef]
- Stenberg, B. Soil attributes as predictors of crop production under standardized conditions. Biol. Fertil. Soils 1998, 27, 104–112. [Google Scholar] [CrossRef]
- Schjønning, P.; Jensen, J.L.; Bruun, S.; Jensen, L.S.; Christensen, B.T.; Munkholm, L.J.; Oelofse, M.; Baby, S.; Knudsen, L. The role of soil organic matter for maintaining crop yields: Evidence for a renewed conceptual basis. Adv. Agron. 2018, 150, 35–79. [Google Scholar]
- Zhou, T.; Geng, Y.; Chen, J.; Sun, C.; Haase, D.; Lausch, A. Mapping of soil total nitrogen content in the middle reaches of the Heihe River Basin in China using multi-source remote sensing-derived variables. Remote Sens. 2019, 11, 2934. [Google Scholar] [CrossRef]
- Husson, O. Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: A transdisciplinary overview pointing to integrative opportunities for agronomy. Plant Soil 2013, 362, 389–417. [Google Scholar] [CrossRef]
- Surey, R.; Schimpf, C.M.; Sauheitl, L.; Mueller, C.W.; Rummel, P.S.; Dittert, K.; Kaiser, K.; Böttcher, J.; Mikutta, R. Potential denitrification stimulated by water-soluble organic carbon from plant residues during initial decomposition. Soil Biol. Biochem. 2020, 147, 107841. [Google Scholar] [CrossRef]
- Forkuor, G.; Dimobe, K.; Serme, I.; Tondoh, J.E. Landsat-8 vs. Sentinel-2: Examining the added value of sentinel-2’s red-edge bands to land-use and land-cover mapping in Burkina Faso. GISci. Remote Sens. 2018, 55, 331–354. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Wu, W.; Liu, H. Prediction of Soil Organic Carbon under Different Land Use Types Using Sentinel-1/-2 Data in a Small Watershed. Remote Sens. 2021, 13, 1229. [Google Scholar] [CrossRef]
- Luo, C.; Zhang, W.; Zhang, X.; Liu, H. Mapping of soil organic matter in a typical black soil area using Landsat-8 synthetic images at different time periods. Catena 2023, 231, 107336. [Google Scholar] [CrossRef]
- Khanal, S.; Kc, K.; Fulton, J.P.; Shearer, S.; Ozkan, E. Remote sensing in agriculture—Accomplishments, limitations, and opportunities. Remote Sens. 2020, 12, 3783. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Luo, C.; Wang, Y.; Zhang, X.; Zhang, W.; Liu, H. Spatial prediction of soil organic matter content using multiyear synthetic images and partitioning algorithms. Catena 2022, 211, 106023. [Google Scholar] [CrossRef]
- Silvero, N.E.Q.; Demattê, J.A.M.; Amorim, M.T.A.; dos Santos, N.V.; Rizzo, R.; Safanelli, J.L.; Poppiel, R.R.; de Sousa Mendes, W.; Bonfatti, B.R. Soil variability and quantification based on Sentinel-2 and Landsat-8 bare soil images: A comparison. Remote Sens. Environ. 2021, 252, 112117. [Google Scholar] [CrossRef]
- Yang, L.; He, X.; Shen, F.; Zhou, C.; Zhu, A.; Gao, B.; Chen, Z.; Li, M. Improving prediction of soil organic carbon content in croplands using phenological parameters extracted from NDVI time series data. Soil Tillage Res. 2020, 196, 104465. [Google Scholar] [CrossRef]
- Wu, T.; Wang, D.; Mu, C.; Zhang, W.; Zhu, X.; Zhao, L.; Li, R.; Hu, G.; Zou, D.; Chen, J. Storage, patterns, and environmental controls of soil organic carbon stocks in the permafrost regions of the Northern Hemisphere. Sci. Total Environ. 2022, 828, 154464. [Google Scholar] [CrossRef]
- Guo, L.; Fu, P.; Shi, T.; Chen, Y.; Zhang, H.; Meng, R.; Wang, S. Mapping field-scale soil organic carbon with unmanned aircraft system-acquired time series multispectral images. Soil Tillage Res. 2020, 196, 104477. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Garosi, Y.; Owliaie, H.R.; Ayoubi, S.; Taghizadeh-Mehrjardi, R.; Scholten, T.; Xu, M. Improving the spatial prediction of soil organic carbon using environmental covariates selection: A comparison of a group of environmental covariates. Catena 2022, 208, 105723. [Google Scholar] [CrossRef]
- Zhang, L.; Cai, Y.; Huang, H.; Li, A.; Yang, L.; Zhou, C. A CNN-LSTM model for soil organic carbon content prediction with long time series of MODIS-based phenological variables. Remote Sens. 2022, 14, 4441. [Google Scholar] [CrossRef]
- McBratney, A.B.; Santos, M.M.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, L.; Chen, Y.; Shi, T.; Luo, M.; Ju, Q.; Zhang, H.; Wang, S. Prediction of soil organic carbon based on Landsat 8 monthly NDVI data for the Jianghan Plain in Hubei Province, China. Remote Sens. 2019, 11, 1683. [Google Scholar] [CrossRef]
- Yang, L.; Cai, Y.; Zhang, L.; Guo, M.; Li, A.; Zhou, C. A deep learning method to predict soil organic carbon content at a regional scale using satellite-based phenology variables. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102428. [Google Scholar] [CrossRef]
- Lamichhane, S.; Kumar, L.; Wilson, B. Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review. Geoderma 2019, 352, 395–413. [Google Scholar] [CrossRef]
- Wadoux, A.M.-C.; Minasny, B.; McBratney, A.B. Machine learning for digital soil mapping: Applications, challenges and suggested solutions. Earth-Sci. Rev. 2020, 210, 103359. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.; Ji, C.; Xu, X.; Wang, H.; Pan, J.; Bumberger, J.; Haase, D.; Lausch, A. Prediction of soil organic carbon and the C: N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images. Sci. Total Environ. 2021, 755, 142661. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xue, J.; Chen, S.; Wang, N.; Shi, Z.; Huang, Y.; Zhuo, Z.Q. Digital Mapping of Soil Organic Carbon with Machine Learning in Dryland of Northeast and North Plain China. Remote Sens. 2022, 14, 2504. [Google Scholar] [CrossRef]
- Pan, B.; Zheng, Y.; Shen, R.; Ye, T.; Zhao, W.; Dong, J.; Ma, H.; Yuan, W. High resolution distribution dataset of double-season paddy rice in china. Remote Sens. 2021, 13, 4609. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.; Chen, J.; Liu, M.; Haase, D.; Lausch, A. Mapping soil organic carbon content using multi-source remote sensing variables in the Heihe River Basin in China. Ecol. Indic. 2020, 114, 106288. [Google Scholar] [CrossRef]
- He, X.; Yang, L.; Li, A.; Zhang, L.; Shen, F.; Cai, Y.; Zhou, C. Soil organic carbon prediction using phenological parameters and remote sensing variables generated from Sentinel-2 images. Catena 2021, 205, 105442. [Google Scholar] [CrossRef]
- Bao, Y.; Ustin, S.; Meng, X.; Zhang, X.; Guan, H.; Qi, B.; Liu, H. A regional-scale hyperspectral prediction model of soil organic carbon considering geomorphic features. Geoderma 2021, 403, 115263. [Google Scholar] [CrossRef]
- Sabetizade, M.; Gorji, M.; Roudier, P.; Zolfaghari, A.A.; Keshavarzi, A. Combination of MIR spectroscopy and environmental covariates to predict soil organic carbon in a semi-arid region. Catena 2021, 196, 104844. [Google Scholar] [CrossRef]
- Xiao, Y.; Xue, J.; Zhang, X.; Wang, N.; Hong, Y.; Jiang, Y.; Zhou, Y.; Teng, H.; Hu, B.; Lugato, E.; et al. Improving pedotransfer functions for predicting soil mineral associated organic carbon by ensemble machine learning. Geoderma 2022, 428, 116208. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Biney, J.K.M.; Blöcher, J.R.; Bell, S.M.; Borůvka, L.; Vašát, R. Can in situ spectral measurements under disturbance-reduced environmental conditions help improve soil organic carbon estimation? Sci. Total Environ. 2022, 838, 156304. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Wang, Y.; Wang, S.; Adhikari, K.; Wang, Q.; Sui, Y.; Xin, G. Effect of cultivation history on soil organic carbon status of arable land in northeastern China. Geoderma 2019, 342, 55–64. [Google Scholar] [CrossRef]
- Piikki, K.; Wetterlind, J.; Söderström, M.; Stenberg, B. Perspectives on validation in digital soil mapping of continuous attributes—A review. Soil Use Manag. 2021, 37, 7–21. [Google Scholar] [CrossRef]
- Hong, Y.; Guo, L.; Chen, S.; Linderman, M.; Mouazen, A.M.; Yu, L.; Chen, Y.; Liu, Y.L.; Liu, Y.F.; Cheng, H.; et al. Exploring the potential of airborne hyperspectral image for estimating topsoil organic carbon: Effects of fractional-order derivative and optimal band combination algorithm. Geoderma 2020, 365, 114228. [Google Scholar] [CrossRef]
- Tripathi, R.; Nayak, A.; Shahid, M.; Lal, B.; Gautam, P.; Raja, R.; Mohanty, S.; Kumar, A.; Panda, B.; Sahoo, R. Delineation of soil management zones for a rice cultivated area in eastern India using fuzzy clustering. Catena 2015, 133, 128–136. [Google Scholar] [CrossRef]
- Fan, M.; Lal, R.; Zhang, H.; Margenot, A.J.; Wu, J.; Wu, P.; Zhang, L.; Yao, J.; Chen, F.; Gao, C. Variability and determinants of soil organic matter under different land uses and soil types in eastern China. Soil Tillage Res. 2020, 198, 104544. [Google Scholar] [CrossRef]
- Han, Y.; Yi, D.; Ye, Y.; Guo, X.; Liu, S. Response of spatiotemporal variability in soil pH and associated influencing factors to land use change in a red soil hilly region in southern China. Catena 2022, 212, 106074. [Google Scholar] [CrossRef]
- Cai, Z.; Yang, C.; Du, X.; Zhang, L.; Wen, S.; Yang, Y. Parent material and altitude influence red soil acidification after converted rice paddy to upland in a hilly region of southern China. J. Soils Sed. 2023, 23, 1628–1640. [Google Scholar] [CrossRef]
- Zeng, Q.; Yin, M.; Fu, L.; Singh, B.K.; Liu, S.; Chen, H.; Ge, A.; Han, L.; Zhang, L. Green manure substitution for potassium fertilizer promotes agro-ecosystem multifunctionality via triggering interactions among soil, plant and rhizosphere microbiome. Plant Soil 2023, 498, 431–450. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, Y.; Han, Y.; Zhou, J.; Liu, J.; Wu, J. Mapping farmland soil organic carbon density in plains with combined cropping system extracted from NDVI time-series data. Sci. Total Environ. 2021, 754, 142120. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Siddique, K.H.; Turner, N.C.; Li, X.; Niu, J.; Yang, C.; Liu, L.; Chai, Q. Ridge-furrow mulching systems—An innovative technique for boosting crop productivity in semiarid rain-fed environments. Adv. Agron. 2013, 118, 429–476. [Google Scholar]
- Tian, Z.; Ji, Y.; Xu, H.; Qiu, H.; Sun, L.; Zhong, H.; Liu, J. The potential contribution of growing rapeseed in winter fallow fields across Yangtze River Basin to energy and food security in China. Resour. Conserv. Recycl. 2021, 164, 105159. [Google Scholar] [CrossRef]
- Liu, W.; Li, S.; Tao, J.; Liu, X.; Yin, G.; Xia, Y.; Wang, T.; Zhang, H. CARM30: China annual rapeseed maps at 30 m spatial resolution from 2000 to 2022 using multi-source data. Sci. Data 2024, 11, 356. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Wu, W.; Liu, W.; Xu, M. Exploring the Spatio-Temporal Dynamics of Winter Rape on the Middle Reaches of Yangtze River Valley Using Time-Series MODIS Data. Sustainability 2020, 12, 266. [Google Scholar] [CrossRef]
- Ndip, F.E.; Molua, E.L.; Mvodo, M.S.; Nkendah, R.; Choumbou, R.F.D.; Tabetando, R.; Akem, N.F. Farmland Fragmentation, crop diversification and incomes in Cameroon, a Congo Basin country. Land Use Policy 2023, 130, 106663. [Google Scholar] [CrossRef]
- Wu, F.; Qiu, Y.; Huang, W.; Guo, S.; Han, Y.; Wang, G.; Li, X.; Lei, Y.; Yang, B.; Xiong, S. Water and heat resource utilization of cotton under different cropping patterns and their effects on crop biomass and yield formation. Agric. For. Meteorol. 2022, 323, 109091. [Google Scholar] [CrossRef]
- Zhang, C.; Diao, C. A Phenology-guided Bayesian-CNN (PB-CNN) framework for soybean yield estimation and uncertainty analysis. ISPRS J. Photogramm. Remote Sens. 2023, 205, 50–73. [Google Scholar] [CrossRef]
- Bégué, A.; Arvor, D.; Bellon, B.; Betbeder, J.; De Abelleyra, D.; Ferraz, R.P.D.; Lebourgeois, V.; Lelong, C.; Simões, M.; Verón, S.R. Remote sensing and cropping practices: A review. Remote Sens. 2018, 10, 99. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Song, X. Improving the Spatial Prediction of Soil Organic Carbon Content Using Phenological Factors: A Case Study in the Middle and Upper Reaches of Heihe River Basin, China. Remote Sens. 2023, 15, 1847. [Google Scholar] [CrossRef]
- Ahirwal, J.; Nath, A.; Brahma, B.; Deb, S.; Sahoo, U.K.; Nath, A.J. Patterns and driving factors of biomass carbon and soil organic carbon stock in the Indian Himalayan region. Sci. Total Environ. 2021, 770, 145292. [Google Scholar] [CrossRef] [PubMed]
- Geng, L.; Che, T.; Ma, M.; Tan, J.; Wang, H. Corn biomass estimation by integrating remote sensing and long-term observation data based on machine learning techniques. Remote Sens. 2021, 13, 2352. [Google Scholar] [CrossRef]
- Tan, Q.; Geng, J.; Fang, H.; Li, Y.; Guo, Y. Exploring the Impacts of Data Source, Model Types and Spatial Scales on the Soil Organic Carbon Prediction: A Case Study in the Red Soil Hilly Region of Southern China. Remote Sens. 2022, 14, 5151. [Google Scholar] [CrossRef]
- Wilson, C.H.; Caughlin, T.T.; Rifai, S.W.; Boughton, E.H.; Mack, M.C.; Flory, S.L. Multi-decadal time series of remotely sensed vegetation improves prediction of soil carbon in a subtropical grassland. Ecol. Appl. 2017, 27, 1646–1656. [Google Scholar] [CrossRef]
- Moinet, G.Y.; Hunt, J.E.; Kirschbaum, M.U.; Morcom, C.P.; Midwood, A.J.; Millard, P. The temperature sensitivity of soil organic matter decomposition is constrained by microbial access to substrates. Soil Biol. Biochem. 2018, 116, 333–339. [Google Scholar] [CrossRef]
- Jia, Y.; Kuzyakov, Y.; Wang, G.; Tan, W.; Zhu, B.; Feng, X. Temperature sensitivity of decomposition of soil organic matter fractions increases with their turnover time. Land Degrad. Dev. 2020, 31, 632–645. [Google Scholar] [CrossRef]
- Hou, E.; Chen, C.; Luo, Y.; Zhou, G.; Kuang, Y.; Zhang, Y.; Heenan, M.; Lu, X.; Wen, D. Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Glob. Chang. Biol. 2018, 24, 3344–3356. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Shi, L.; Fu, S. Effects of nitrogen deposition and increased precipitation on soil phosphorus dynamics in a temperate forest. Geoderma 2020, 380, 114650. [Google Scholar] [CrossRef]
- Tittonell, P.; Shepherd, K.D.; Vanlauwe, B.; Giller, K.E. Unravelling the effects of soil and crop management on maize productivity in smallholder agricultural systems of western Kenya—An application of classification and regression tree analysis. Agric. Ecosyst. Environ. 2008, 123, 137–150. [Google Scholar] [CrossRef]
- Guo, L.; Fu, P.; Shi, T.; Chen, Y.; Zeng, C.; Zhang, H.; Wang, S.Q. Exploring influence factors in mapping soil organic carbon on low-relief agricultural lands using time series of remote sensing data. Soil Tillage Res. 2021, 210, 104982. [Google Scholar] [CrossRef]
- Wang, W.; Lai, D.; Wang, C.; Pan, T.; Zeng, C. Effects of rice straw incorporation on active soil organic carbon pools in a subtropical paddy field. Soil Tillage Res. 2015, 152, 8–16. [Google Scholar] [CrossRef]
- dos Santos, E.P.; Moreira, M.C.; Fernandes-Filho, E.I.; Demattê, J.A.M.; dos Santos, U.J.; da Silva, D.D.; Cruz, R.R.P.; Moura-Bueno, J.M.; Santos, I.C.; Sampaio, E.V.D.S.B. Improving the generalization error and transparency of regression models to estimate soil organic carbon using soil reflectance data. Ecol. Inf. 2023, 77, 102240. [Google Scholar] [CrossRef]
- Meng, X.; Bao, Y.; Wang, Y.; Zhang, X.; Liu, H. An advanced soil organic carbon content prediction model via fused temporal-spatial-spectral (TSS) information based on machine learning and deep learning algorithms. Remote Sens. Environ. 2022, 280, 113166. [Google Scholar] [CrossRef]
Soil Property | SOC (g/kg) | TN (g/kg) | TP (g/kg) | pH | DOC (mg/kg) | DON (mg/kg) |
---|---|---|---|---|---|---|
Max | 40.39 | 3.18 | 0.91 | 6.87 | 21.35 | 3.06 |
Min | 7.57 | 0.56 | 0.26 | 4.58 | 1.42 | 0.01 |
Mean | 23.92 | 1.78 | 0.54 | 5.70 | 4.73 | 1.14 |
SD | 5.85 | 0.47 | 0.14 | 0.40 | 2.95 | 0.58 |
CV% | 24.46% | 26.40% | 25.93% | 7.02% | 62.37% | 50.88% |
Kurt | 0.62 | 0.71 | 0.14 | 0.08 | 11.54 | 0.70 |
Skew | −0.11 | 0.05 | 0.73 | −0.02 | 2.88 | 0.34 |
Soil Property | Covariate Scenarios | RF | Cubist | XGBoost | ||||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | MAE | R2 | RMSE | MAE | R2 | RMSE | MAE | ||
SOC | Scenario I | 0.276 | 5.370 | 4.057 | 0.276 | 5.351 | 4.015 | 0.276 | 5.351 | 4.015 |
Scenario II | 0.286 | 5.253 | 3.981 | 0.283 | 5.306 | 4.044 | 0.283 | 5.306 | 4.044 | |
Scenario III | 0.286 | 5.295 | 4.017 | 0.283 | 5.310 | 4.051 | 0.301 | 5.205 | 4.063 | |
Scenario IV | 0.300 | 5.234 | 3.936 | 0.293 | 5.274 | 4.026 | 0.313 | 5.216 | 3.952 | |
TN | Scenario I | 0.212 | 0.444 | 0.339 | 0.231 | 0.451 | 0.345 | 0.216 | 0.438 | 0.342 |
Scenario II | 0.236 | 0.435 | 0.328 | 0.242 | 0.450 | 0.343 | 0.238 | 0.422 | 0.329 | |
Scenario III | 0.218 | 0.437 | 0.333 | 0.212 | 0.459 | 0.345 | 0.219 | 0.436 | 0.334 | |
Scenario IV | 0.256 | 0.428 | 0.321 | 0.232 | 0.455 | 0.344 | 0.253 | 0.430 | 0.330 | |
TP | Scenario I | 0.183 | 0.138 | 0.107 | 0.173 | 0.141 | 0.109 | 0.221 | 0.133 | 0.104 |
Scenario II | 0.203 | 0.136 | 0.107 | 0.174 | 0.146 | 0.114 | 0.263 | 0.130 | 0.103 | |
Scenario III | 0.224 | 0.133 | 0.104 | 0.198 | 0.138 | 0.108 | 0.243 | 0.131 | 0.103 | |
Scenario IV | 0.248 | 0.131 | 0.103 | 0.228 | 0.138 | 0.106 | 0.276 | 0.130 | 0.104 | |
pH | Scenario I | 0.427 | 0.318 | 0.253 | 0.376 | 0.347 | 0.278 | 0.400 | 0.326 | 0.263 |
Scenario II | 0.425 | 0.319 | 0.253 | 0.378 | 0.347 | 0.278 | 0.415 | 0.326 | 0.261 | |
Scenario III | 0.456 | 0.310 | 0.252 | 0.407 | 0.344 | 0.275 | 0.424 | 0.321 | 0.258 | |
Scenario IV | 0.468 | 0.308 | 0.250 | 0.441 | 0.330 | 0.263 | 0.436 | 0.317 | 0.253 | |
DOC | Scenario I | 0.516 | 2.041 | 1.444 | 0.434 | 2.309 | 1.593 | 0.528 | 1.940 | 1.363 |
Scenario II | 0.528 | 2.086 | 1.423 | 0.416 | 2.412 | 1.595 | 0.531 | 1.920 | 1.319 | |
Scenario III | 0.540 | 1.946 | 1.349 | 0.469 | 2.180 | 1.517 | 0.541 | 1.890 | 1.326 | |
Scenario IV | 0.550 | 1.927 | 1.353 | 0.466 | 2.187 | 1.526 | 0.570 | 1.908 | 1.333 | |
DON | Scenario I | 0.366 | 0.486 | 0.377 | 0.353 | 0.502 | 0.387 | 0.354 | 0.490 | 0.380 |
Scenario II | 0.371 | 0.484 | 0.377 | 0.372 | 0.490 | 0.374 | 0.364 | 0.488 | 0.378 | |
Scenario III | 0.433 | 0.469 | 0.365 | 0.402 | 0.474 | 0.371 | 0.453 | 0.446 | 0.352 | |
Scenario IV | 0.440 | 0.464 | 0.365 | 0.420 | 0.465 | 0.368 | 0.471 | 0.439 | 0.341 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, J.; Tan, Q.; Zhang, Y.; Lv, J.; Yu, Y.; Fang, H.; Guo, Y.; Cheng, S. Leveraging Remote Sensing-Derived Dynamic Crop Growth Information for Improved Soil Property Prediction in Farmlands. Remote Sens. 2024, 16, 2731. https://doi.org/10.3390/rs16152731
Geng J, Tan Q, Zhang Y, Lv J, Yu Y, Fang H, Guo Y, Cheng S. Leveraging Remote Sensing-Derived Dynamic Crop Growth Information for Improved Soil Property Prediction in Farmlands. Remote Sensing. 2024; 16(15):2731. https://doi.org/10.3390/rs16152731
Chicago/Turabian StyleGeng, Jing, Qiuyuan Tan, Ying Zhang, Junwei Lv, Yong Yu, Huajun Fang, Yifan Guo, and Shulan Cheng. 2024. "Leveraging Remote Sensing-Derived Dynamic Crop Growth Information for Improved Soil Property Prediction in Farmlands" Remote Sensing 16, no. 15: 2731. https://doi.org/10.3390/rs16152731
APA StyleGeng, J., Tan, Q., Zhang, Y., Lv, J., Yu, Y., Fang, H., Guo, Y., & Cheng, S. (2024). Leveraging Remote Sensing-Derived Dynamic Crop Growth Information for Improved Soil Property Prediction in Farmlands. Remote Sensing, 16(15), 2731. https://doi.org/10.3390/rs16152731