Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = crowdsensing solutions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 15979 KiB  
Article
A Spatial Crowdsourcing Engine for Harmonizing Volunteers’ Needs and Tasks’ Completion Goals
by Maite Puerta-Beldarrain, Oihane Gómez-Carmona, Liming Chen, Diego López-de-Ipiña, Diego Casado-Mansilla and Felipe Vergara-Borge
Sensors 2024, 24(24), 8117; https://doi.org/10.3390/s24248117 - 19 Dec 2024
Cited by 2 | Viewed by 993
Abstract
This work addresses the task allocation problem in spatial crowdsensing with altruistic participation, tackling challenges like declining engagement and user fatigue from task overload. Unlike typical models relying on financial incentives, this context requires alternative strategies to sustain participation. This paper presents a [...] Read more.
This work addresses the task allocation problem in spatial crowdsensing with altruistic participation, tackling challenges like declining engagement and user fatigue from task overload. Unlike typical models relying on financial incentives, this context requires alternative strategies to sustain participation. This paper presents a new solution, the Volunteer Task Allocation Engine (VTAE), to address these challenges. This solution is not based on economic incentives, and it has two primary goals. The first one is to improve user experience by limiting the workload and creating a user-centric task allocation solution. The second goal is to create an equal distribution of tasks over the spatial locations to make the solution robust against the possible decrease in participation. Two approaches are used to test the performance of this solution against different conditions: computer simulations and a real-world experiment with real users, which include a qualitative evaluation. The simulations tested system performance in controlled environments, while the real-world experiment assessed the effectiveness and usability of the VTAE with real users. This research highlights the importance of user-centered design in citizen science applications with altruistic participation. The findings demonstrate that the VTAE algorithm ensures equitable task distribution across geographical areas while actively involving users in the decision-making process. Full article
(This article belongs to the Special Issue Mobile Sensing for Smart Cities)
Show Figures

Figure 1

25 pages, 4785 KiB  
Article
Task-Importance-Oriented Task Selection and Allocation Scheme for Mobile Crowdsensing
by Sha Chang, Yahui Wu, Su Deng, Wubin Ma and Haohao Zhou
Mathematics 2024, 12(16), 2471; https://doi.org/10.3390/math12162471 - 10 Aug 2024
Viewed by 905
Abstract
In Mobile Crowdsensing (MCS), sensing tasks have different impacts and contributions to the whole system or specific targets, so the importance of the tasks is different. Since resources for performing tasks are usually limited, prioritizing the allocation of resources to more important tasks [...] Read more.
In Mobile Crowdsensing (MCS), sensing tasks have different impacts and contributions to the whole system or specific targets, so the importance of the tasks is different. Since resources for performing tasks are usually limited, prioritizing the allocation of resources to more important tasks can ensure that key data or information can be collected promptly and accurately, thus improving overall efficiency and performance. Therefore, it is very important to consider the importance of tasks in the task selection and allocation of MCS. In this paper, a task queue is established, the importance of tasks, the ability of participants to perform tasks, and the stability of the task queue are considered, and a novel task selection and allocation scheme (TSAS) in the MCS system is designed. This scheme introduces the Lyapunov optimization method, which can be used to dynamically keep the task queue stable, balance the execution ability of participants and the system load, and perform more important tasks in different system states, even when the participants are limited. In addition, the Double Deep Q-Network (DDQN) method is introduced to improve on the traditional solution of the Lyapunov optimization problem, so this scheme has a certain predictive ability and foresight on the impact of future system states. This paper also proposes action-masking and iterative training methods for the MCS system, which can accelerate the training process of the neural network in the DDQN and improve the training effect. Experiments show that the TSAS based on the Lyapunov optimization method and DDQN performs better than other algorithms, considering the long-term stability of the queue, the number and importance of tasks to be executed, and the congestion degree of tasks. Full article
(This article belongs to the Topic AI and Data-Driven Advancements in Industry 4.0)
Show Figures

Figure 1

20 pages, 1127 KiB  
Article
Privacy-Preserving Fine-Grained Redaction with Policy Fuzzy Matching in Blockchain-Based Mobile Crowdsensing
by Hongchen Guo, Haotian Liang, Mingyang Zhao, Yao Xiao, Tong Wu, Jingfeng Xue and Liehuang Zhu
Electronics 2023, 12(16), 3416; https://doi.org/10.3390/electronics12163416 - 11 Aug 2023
Cited by 4 | Viewed by 2110
Abstract
The redactable blockchain has emerged as a promising technique in mobile crowdsensing, allowing users to break immutability in a controlled manner selectively. Unfortunately, current fine-grained redactable blockchains suffer two significant limitations in terms of security and functionality, which severely impede their application in [...] Read more.
The redactable blockchain has emerged as a promising technique in mobile crowdsensing, allowing users to break immutability in a controlled manner selectively. Unfortunately, current fine-grained redactable blockchains suffer two significant limitations in terms of security and functionality, which severely impede their application in mobile crowdsensing. For security, the transparency of the blockchain allows anyone to access both the data and policy, which consequently results in a breach of user privacy. Regarding functionality, current solutions cannot support error tolerance during policy matching, thereby limiting their applicability in various situations, such as fingerprint-based and face-based identification scenarios. This paper presents a privacy-preserving fine-grained redactable blockchain with policy fuzzy matching, named PRBFM. PRBFM supports fuzzy policy matching and partitions users’ privileges without compromising user privacy. The idea of PRBFM is to leverage threshold linear secret sharing based on the Lagrange interpolation theorem to distribute the decryption keys and chameleon hash trapdoors. Additionally, we have incorporated a privacy-preserving policy matching delegation mechanism into PRBFM to minimize user overhead. Our security analysis demonstrates that PRBFM can defend against the chosen-ciphertext attack. Moreover, experiments conducted on the FISCO blockchain platform show that PRBFM is at least 7.8 times faster than existing state-of-the-art solutions. Full article
(This article belongs to the Special Issue Data Privacy and Cybersecurity in Mobile Crowdsensing)
Show Figures

Figure 1

16 pages, 1829 KiB  
Article
A Blockchain Approach for Migrating a Cyber-Physical Water Monitoring Solution to a Decentralized Architecture
by Bogdan-Ionut Pahontu, Adrian Petcu, Alexandru Predescu, Diana Andreea Arsene and Mariana Mocanu
Water 2023, 15(16), 2874; https://doi.org/10.3390/w15162874 - 9 Aug 2023
Cited by 2 | Viewed by 2308
Abstract
Water is one of the most important resources in our lives, and because of this, the interest in water management systems is growing constantly. A primary concern regarding urban water distribution is how to build robust solutions to facilitate water monitoring flows with [...] Read more.
Water is one of the most important resources in our lives, and because of this, the interest in water management systems is growing constantly. A primary concern regarding urban water distribution is how to build robust solutions to facilitate water monitoring flows with the support of consumer involvement. Crowdsensing solutions contribute to the involvement in social platforms for increased awareness about the importance of water resources based on incentives and rewards. Blockchain is one of the technologies that has become increasingly popular in the last few years. The possibility of using this architecture in such different sectors while integrating emerging concepts, such as crowdsensing, the Internet of Things, serious gaming, and decision support systems, offers a lot of alternatives and approaches for designing modern applications. This paper aims to present how these technologies can be combined in order to migrate the functionalities of a water distribution management system from a centralized architecture to a decentralized one by leveraging blockchain technologies. The proposed application was designed to facilitate incident reporting flows in public water distribution networks. The proposed solution was to migrate the rewarding mechanisms using the Ethereum infrastructure. The novelty of this solution is determined by the introduction of this decentralized approach into the architecture and also by increasing customer interest by offering tradeable rewards and dynamic subscription discounts. This results in a new decentralized architecture that allows for more transparent interactions between the water provider and clients and increases customer engagement to contribute to water reporting flows. Full article
Show Figures

Figure 1

18 pages, 636 KiB  
Article
Stackelberg Game Approach for Service Selection in UAV Networks
by Abdessalam Mohammed Hadjkouider, Chaker Abdelaziz Kerrache, Ahmed Korichi, Yesin Sahraoui and Carlos T. Calafate
Sensors 2023, 23(9), 4220; https://doi.org/10.3390/s23094220 - 23 Apr 2023
Cited by 6 | Viewed by 2279
Abstract
Nowadays, mobile devices are expected to perform a growing number of tasks, whose complexity is also increasing significantly. However, despite great technological improvements in the last decade, such devices still have limitations in terms of processing power and battery lifetime. In this context, [...] Read more.
Nowadays, mobile devices are expected to perform a growing number of tasks, whose complexity is also increasing significantly. However, despite great technological improvements in the last decade, such devices still have limitations in terms of processing power and battery lifetime. In this context, mobile edge computing (MEC) emerges as a possible solution to address such limitations, being able to provide on-demand services to the customer, and bringing closer several services published in the cloud with a reduced cost and fewer security concerns. On the other hand, Unmanned Aerial Vehicle (UAV) networking emerged as a paradigm offering flexible services, new ephemeral applications such as safety and disaster management, mobile crowd-sensing, and fast delivery, to name a few. However, to efficiently use these services, discovery and selection strategies must be taken into account. In this context, discovering the services made available by a UAV-MEC network, and selecting the best services among those available in a timely and efficient manner, can become a challenging task. To face these issues, game theory methods have been proposed in the literature that perfectly suit the case of UAV-MEC services by modeling this challenge as a Stackelberg game, and using existing approaches to find the solution for such a game aiming at an efficient services’ discovery and service selection. Hence, the goal of this paper is to propose Stackelberg-game-based solutions for service discovery and selection in the context of UAV-based mobile edge computing. Simulations results conducted using the NS-3 simulator highlight the efficiency of our proposed game in terms of price and QoS metrics. Full article
Show Figures

Figure 1

27 pages, 25509 KiB  
Article
Implementation of Digital Geotwin-Based Mobile Crowdsensing to Support Monitoring System in Smart City
by Suhono H. Supangkat, Rohullah Ragajaya and Agustinus Bambang Setyadji
Sustainability 2023, 15(5), 3942; https://doi.org/10.3390/su15053942 - 21 Feb 2023
Cited by 17 | Viewed by 3326
Abstract
According to the UN (United Nations) data released in 2018, the growth in the world’s population in urban areas is increasing every year. This encourages changes in cities that are increasingly dynamic in infrastructure development, which has an impact on social, economic, and [...] Read more.
According to the UN (United Nations) data released in 2018, the growth in the world’s population in urban areas is increasing every year. This encourages changes in cities that are increasingly dynamic in infrastructure development, which has an impact on social, economic, and environmental conditions. On the other hand, this also raises the potential for new problems in urban areas. To overcome potential problems that occur in urban areas, a smart, effective, and efficient urban monitoring system is needed. One solution that can be implemented is the Smart City concept which utilizes sensor technology, IoT, and Cloud Computing to monitor and obtain data on problems that occur in cities in real time. However, installing sensors and IoT throughout the city will take a long time and be relatively expensive. Therefore, in this study, it is proposed that the Mobile Crowdsensing (MCS) method is implemented to retrieve and collect data on problems that occur in urban areas from citizen reports using their mobile devices. MCS implementation in collecting data from the field is relatively inexpensive and does not take long because all data and information are sent from citizens or the community. The data and information that has been collected from the community are then integrated and visualized using the Digital Geotwin-based platform. Compared to other platforms, which are mostly still based on text and GIS in 2D, the advantage of Digital Geotwin is being able to represent and simulate real urban conditions in the physical world into a virtual world in 3D. Furthermore, the use of the Digital Geotwin-based platform is expected to improve the quality of planning and policy making for stakeholders. This research study aims to implement the MCS method in retrieving and collecting data in the form of objects and problem events from the field, which are then integrated into the Digital Geotwin-based platform. Data collected from MCS are coordinate data and images of problem objects. These are the contributions of this research study: the first is to increase the accuracy in determining the coordinates of a distant object by adding a parameter in the form of the approximate coordinates of the object. Second, 3D visualization of the problem object using image data obtained through the MCS method and then integrating it into the Digital Geotwin-based platform. The results of the research study show a fairly good increase in accuracy for determining the coordinates of distant objects. Evaluation results from the visualization of problem objects in 3D have also proven to increase public understanding and satisfaction in capturing information. Full article
(This article belongs to the Special Issue Remote Sensing, Sustainable Land Use and Smart City)
Show Figures

Figure 1

24 pages, 1234 KiB  
Review
Use of Mobile Crowdsensing in Disaster Management: A Systematic Review, Challenges, and Open Issues
by Didem Cicek and Burak Kantarci
Sensors 2023, 23(3), 1699; https://doi.org/10.3390/s23031699 - 3 Feb 2023
Cited by 28 | Viewed by 11480
Abstract
With the increasing efforts to utilize information and communication technologies (ICT) in disaster management, the massive amount of heterogeneous data that is generated through ubiquitous sensors paves the way for fast and informed decisions in the case of disasters. Utilization of the big [...] Read more.
With the increasing efforts to utilize information and communication technologies (ICT) in disaster management, the massive amount of heterogeneous data that is generated through ubiquitous sensors paves the way for fast and informed decisions in the case of disasters. Utilization of the big “sensed” data leads to an effective and efficient management of disaster situations so as to prevent human and economic losses. The advancement of built-in sensing technologies in smart mobile devices enables crowdsourcing of sensed data, which is known as mobile crowdsensing (MCS). This systematic literature review investigates the use of mobile crowdsensing in disaster management on the basis of the built-in sensor types in smart mobile devices, disaster management categories, and the disaster management cycle phases (i.e., mitigation, preparedness, response, and recovery activities). Additionally, this work seeks to unveil the frameworks or models that can potentially guide disaster management authorities towards integrating crowd-sensed data with their existing decision-support systems. The vast majority of the existing studies are conceptual as they highlight a challenge in experimental testing of the disaster management solutions in real-life settings, and there is little emphasis on the use cases of crowdsensing through smartphone sensors in disaster incidents. In light of a thorough review, we provide and discuss future directions and open issues for mobile crowdsensing-aided disaster management. Full article
(This article belongs to the Special Issue Feature Papers in Smart and Intelligent Sensors Systems)
Show Figures

Figure 1

20 pages, 995 KiB  
Article
Evaluating Collaborative and Autonomous Agents in Data-Stream-Supported Coordination of Mobile Crowdsourcing
by Ralf Bruns, Jeremias Dötterl, Jürgen Dunkel and Sascha Ossowski
Sensors 2023, 23(2), 614; https://doi.org/10.3390/s23020614 - 5 Jan 2023
Cited by 4 | Viewed by 1663
Abstract
Mobile crowdsourcing refers to systems where the completion of tasks necessarily requires physical movement of crowdworkers in an on-demand workforce. Evidence suggests that in such systems, tasks often get assigned to crowdworkers who struggle to complete those tasks successfully, resulting in high failure [...] Read more.
Mobile crowdsourcing refers to systems where the completion of tasks necessarily requires physical movement of crowdworkers in an on-demand workforce. Evidence suggests that in such systems, tasks often get assigned to crowdworkers who struggle to complete those tasks successfully, resulting in high failure rates and low service quality. A promising solution to ensure higher quality of service is to continuously adapt the assignment and respond to failure-causing events by transferring tasks to better-suited workers who use different routes or vehicles. However, implementing task transfers in mobile crowdsourcing is difficult because workers are autonomous and may reject transfer requests. Moreover, task outcomes are uncertain and need to be predicted. In this paper, we propose different mechanisms to achieve outcome prediction and task coordination in mobile crowdsourcing. First, we analyze different data stream learning approaches for the prediction of task outcomes. Second, based on the suggested prediction model, we propose and evaluate two different approaches for task coordination with different degrees of autonomy: an opportunistic approach for crowdshipping with collaborative, but non-autonomous workers, and a market-based model with autonomous workers for crowdsensing. Full article
(This article belongs to the Special Issue Emerging Technologies in Edge Computing and Networking)
Show Figures

Figure 1

41 pages, 9641 KiB  
Article
CrowdPower: A Novel Crowdsensing-as-a-Service Platform for Real-Time Incident Reporting
by Sujith Samuel Mathew, May El Barachi and Mohammad Amin Kuhail
Appl. Sci. 2022, 12(21), 11156; https://doi.org/10.3390/app122111156 - 3 Nov 2022
Cited by 3 | Viewed by 1898
Abstract
Crowdsensing using mobile phones is a novel addition to the Internet of Things applications suite. However, there are many challenges related to crowdsensing, including (1) the ability to manage a large number of mobile users with varying devices’ capabilities; (2) recruiting reliable users [...] Read more.
Crowdsensing using mobile phones is a novel addition to the Internet of Things applications suite. However, there are many challenges related to crowdsensing, including (1) the ability to manage a large number of mobile users with varying devices’ capabilities; (2) recruiting reliable users available in the location of interest at the right time; (3) handling various sensory data collected with different requirements and at different frequencies and scales; (4) brokering the relationship between data collectors and consumers in an efficient and scalable manner; and (5) automatically generating intelligence reports after processing the collected sensory data. No comprehensive end-to-end crowdsensing platform has been proposed despite a few attempts to address these challenges. In this work, we aim at filling this gap by proposing and describing the practical implementation of an end-to-end crowdsensing-as-a-service system dubbed CrowdPower. Our platform offers a standard interface for the management and brokerage of sensory data, enabling the transformation of raw sensory data into valuable smart city intelligence. Our solution includes a model for selecting participants for sensing campaigns based on the reliability and quality of sensors on users’ devices, then subsequently analysing the quality of the data provided using a clustering approach to predict user reputation and identify outliers. The platform also has an elaborate administration web portal developed to manage and visualize sensing activities. In addition to the architecture, design, and implementation of the backend platform capabilities, we also explain the creation of CrowdPower’s sensing mobile application that enables data collectors and consumers to participate in various sensing activities. Full article
Show Figures

Figure 1

17 pages, 503 KiB  
Article
A Real-Time Crowdsensing Framework for Potential COVID-19 Carrier Detection Using Wearable Sensors
by Harsh Mankodiya, Priyal Palkhiwala, Rajesh Gupta, Nilesh Kumar Jadav, Sudeep Tanwar, Bogdan-Constantin Neagu, Gheorghe Grigoras, Fayez Alqahtani and Ahmed M. Shehata
Mathematics 2022, 10(16), 2927; https://doi.org/10.3390/math10162927 - 14 Aug 2022
Cited by 6 | Viewed by 2035
Abstract
Artificial intelligence has been utilized extensively in the healthcare sector for the last few decades to simplify medical procedures, such as diagnosis, prognosis, drug discovery, and many more. With the spread of the COVID-19 pandemic, more methods for detecting and treating COVID-19 infections [...] Read more.
Artificial intelligence has been utilized extensively in the healthcare sector for the last few decades to simplify medical procedures, such as diagnosis, prognosis, drug discovery, and many more. With the spread of the COVID-19 pandemic, more methods for detecting and treating COVID-19 infections have been developed. Several projects involving considerable artificial intelligence use have been researched and put into practice. Crowdsensing is an example of an application in which artificial intelligence is employed to detect the presence of a virus in an individual based on their physiological parameters. A solution is proposed to detect the potential COVID-19 carrier in crowded premises of a closed campus area, for example, hospitals, corridors, company premises, and so on. Sensor-based wearable devices are utilized to obtain measurements of various physiological indicators (or parameters) of an individual. A machine-learning-based model is proposed for COVID-19 prediction with these parameters as input. The wearable device dataset was used to train four different machine learning algorithms. The support vector machine, which performed the best, received an F1-score of 96.64% and an accuracy score of 96.57%. Moreover, the wearable device is used to retrieve the coordinates of a potential COVID-19 carrier, and the YOLOv5 object detection method is used to do real-time visual tracking on a closed-circuit television video feed. Full article
(This article belongs to the Special Issue Modelling, Analysis and Control of COVID-19 Spread Dynamics)
Show Figures

Figure 1

22 pages, 5450 KiB  
Article
Distributed Visual Crowdsensing Framework for Area Coverage in Resource Constrained Environments
by Moad Mowafi, Fahed Awad and Fida’a Al-Quran
Sensors 2022, 22(15), 5467; https://doi.org/10.3390/s22155467 - 22 Jul 2022
Cited by 3 | Viewed by 1747
Abstract
Visual crowdsensing applications using built-in cameras in smartphones have recently attracted researchers’ interest. Making the most out of the limited resources to acquire the most helpful images from the public is a challenge in disaster recovery applications. Proposed solutions should adequately address several [...] Read more.
Visual crowdsensing applications using built-in cameras in smartphones have recently attracted researchers’ interest. Making the most out of the limited resources to acquire the most helpful images from the public is a challenge in disaster recovery applications. Proposed solutions should adequately address several constraints, including limited bandwidth, limited energy resources, and interrupted communication links with the command center or server. Furthermore, data redundancy is considered one of the main challenges in visual crowdsensing. In distributed visual crowdsensing systems, photo sharing duplicates and expands the amount of data stored on each sensor node. As a result, if any node can communicate with the server, then more photos of the target region would be available to the server. Methods for recognizing and removing redundant data provide a range of benefits, including decreased transmission costs and energy consumption overall. To handle the interrupted communication with the server and the restricted resources of the sensor nodes, this paper proposes a distributed visual crowdsensing system for full-view area coverage. The target area is divided into virtual sub-regions, each of which is represented by a set of boundary points of interest. Then, based on the criteria for full-view area coverage, a specific data structure theme is developed to represent each photo with a set of features. The geometric context parameters of each photo are utilized to extract the features of each photo based on the full-view area coverage criteria. Finally, data redundancy removal algorithms are implemented based on the proposed clustering scheme to eliminate duplicate photos. As a result, each sensor node may filter redundant photographs in dispersed contexts without requiring high computational complexity, resources, or global awareness of all photos from all sensor nodes inside the target area. Compared to the most recent state-of-the-art, the improvement ratio of the added values of the photos provided by the proposed method is more than 38%. In terms of traffic transfer, the proposed method requires fewer data to be transferred between sensor nodes and between sensor nodes and the command center. The overall reduction in traffic exceeds 20% and the overall savings in energy consumption is more than 25%. It was evident that in the proposed system, sending photos between sensor nodes, as well as between sensor nodes and the command center, consumes less energy than existing approaches due to the considerable amount of photo exchange required. Thus, the proposed technique effectively transfers only the most valuable photos needed. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

20 pages, 3918 KiB  
Article
A Personalized Task Allocation Strategy in Mobile Crowdsensing for Minimizing Total Cost
by Hengfei Gao and Hongwei Zhao
Sensors 2022, 22(7), 2751; https://doi.org/10.3390/s22072751 - 2 Apr 2022
Cited by 9 | Viewed by 2687
Abstract
Mobile crowdsensing utilizes the devices of a group of users to cooperatively perform some sensing tasks, where finding the perfect allocation from tasks to users is commonly crucial to guarantee task completion efficiency. However, existing works usually assume a static task allocation by [...] Read more.
Mobile crowdsensing utilizes the devices of a group of users to cooperatively perform some sensing tasks, where finding the perfect allocation from tasks to users is commonly crucial to guarantee task completion efficiency. However, existing works usually assume a static task allocation by sorting the cost of users to complete the tasks, where the cost is measured by the expense of time or distance. In this paper, we argue that the task allocation process is actually a dynamic combinational optimization problem because the previous allocated task will influence the initial state of the user to finish the next task, and the user’s preference will also influence the actual cost. To this end, we propose a personalized task allocation strategy for minimizing total cost, where the cost for a user to finish a task is measured by both the moving distance and the user’s preference for the task, then instead of statically allocating the tasks, the allocation problem is formulated as a heterogeneous, asymmetric, multiple traveling salesman problem (TSP). Furthermore, we transform the multiple-TSP to the single-TSP by proving the equivalency, and two solutions are presented to solve the single-TSP. One is a greedy algorithm, which is proved to have a bound to the optimal solution. The other is a genetic algorithm, which spends more calculation time while achieving a lower total cost. Finally, we have conducted a number of simulations based on three widely-used real-world traces: roma/taxi, epfl, and geolife. The simulation results could match the results of theoretical analysis. Full article
(This article belongs to the Special Issue Advanced Research in Mobile Crowd Sensing Systems)
Show Figures

Figure 1

66 pages, 2492 KiB  
Review
Data Fusion in Earth Observation and the Role of Citizen as a Sensor: A Scoping Review of Applications, Methods and Future Trends
by Aikaterini Karagiannopoulou, Athanasia Tsertou, Georgios Tsimiklis and Angelos Amditis
Remote Sens. 2022, 14(5), 1263; https://doi.org/10.3390/rs14051263 - 4 Mar 2022
Cited by 16 | Viewed by 7518
Abstract
Recent advances in Earth Observation (EO) placed Citizen Science (CS) in the highest position, declaring their essential provision of information in every discipline that serves the SDGs, and the 2050 climate neutrality targets. However, so far, none of the published literature reviews has [...] Read more.
Recent advances in Earth Observation (EO) placed Citizen Science (CS) in the highest position, declaring their essential provision of information in every discipline that serves the SDGs, and the 2050 climate neutrality targets. However, so far, none of the published literature reviews has investigated the models and tools that assimilate these data sources. Following this gap of knowledge, we synthesised this scoping systematic literature review (SSLR) with a will to cover this limitation and highlight the benefits and the future directions that remain uncovered. Adopting the SSLR guidelines, a double and two-level screening hybrid process found 66 articles to meet the eligibility criteria, presenting methods, where data were fused and evaluated regarding their performance, scalability level and computational efficiency. Subsequent reference is given on EO-data, their corresponding conversions, the citizens’ participation digital tools, and Data Fusion (DF) models that are predominately exploited. Preliminary results showcased a preference in the multispectral satellite sensors, with the microwave sensors to be used as a supplementary data source. Approaches such as the “brute-force approach” and the super-resolution models indicate an effective way to overcome the spatio-temporal gaps and the so far reliance on commercial satellite sensors. Passive crowdsensing observations are foreseen to gain a greater audience as, described in, most cases as a low-cost and easily applicable solution even in the unprecedented COVID-19 pandemic. Immersive platforms and decentralised systems should have a vital role in citizens’ engagement and training process. Reviewing the DF models, the majority of the selected articles followed a data-driven method with the traditional algorithms to still hold significant attention. An exception is revealed in the smaller-scale studies, which showed a preference for deep learning models. Several studies enhanced their methods with the active-, and transfer-learning approaches, constructing a scalable model. In the end, we strongly support that the interaction with citizens is of paramount importance to achieve a climate-neutral Earth. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Graphical abstract

65 pages, 3212 KiB  
Review
Toward Integrated Large-Scale Environmental Monitoring Using WSN/UAV/Crowdsensing: A Review of Applications, Signal Processing, and Future Perspectives
by Alessio Fascista
Sensors 2022, 22(5), 1824; https://doi.org/10.3390/s22051824 - 25 Feb 2022
Cited by 122 | Viewed by 12397
Abstract
Fighting Earth’s degradation and safeguarding the environment are subjects of topical interest and sources of hot debate in today’s society. According to the United Nations, there is a compelling need to take immediate actions worldwide and to implement large-scale monitoring policies aimed at [...] Read more.
Fighting Earth’s degradation and safeguarding the environment are subjects of topical interest and sources of hot debate in today’s society. According to the United Nations, there is a compelling need to take immediate actions worldwide and to implement large-scale monitoring policies aimed at counteracting the unprecedented levels of air, land, and water pollution. This requires going beyond the legacy technologies currently employed by government authorities and adopting more advanced systems that guarantee a continuous and pervasive monitoring of the environment in all its different aspects. In this paper, we take the research on integrated and large-scale environmental monitoring a step further by providing a comprehensive review that covers transversally all the main applications of wireless sensor networks (WSNs), unmanned aerial vehicles (UAVs), and crowdsensing monitoring technologies. By outlining the available solutions and current limitations, we identify in the cooperation among terrestrial (WSN/crowdsensing) and aerial (UAVs) sensing, coupled with the adoption of advanced signal processing techniques, the major pillars at the basis of future integrated (air, land, and water) and large-scale environmental monitoring systems. This review not only consolidates the progresses achieved in the field of environmental monitoring, but also sheds new lights on potential future research directions and synergies among different research areas. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

17 pages, 790 KiB  
Article
Towards the Interpretation of Sound Measurements from Smartphones Collected with Mobile Crowdsensing in the Healthcare Domain: An Experiment with Android Devices
by Robin Kraft, Manfred Reichert and Rüdiger Pryss
Sensors 2022, 22(1), 170; https://doi.org/10.3390/s22010170 - 28 Dec 2021
Cited by 9 | Viewed by 3555
Abstract
The ubiquity of mobile devices fosters the combined use of ecological momentary assessments (EMA) and mobile crowdsensing (MCS) in the field of healthcare. This combination not only allows researchers to collect ecologically valid data, but also to use smartphone sensors to capture the [...] Read more.
The ubiquity of mobile devices fosters the combined use of ecological momentary assessments (EMA) and mobile crowdsensing (MCS) in the field of healthcare. This combination not only allows researchers to collect ecologically valid data, but also to use smartphone sensors to capture the context in which these data are collected. The TrackYourTinnitus (TYT) platform uses EMA to track users’ individual subjective tinnitus perception and MCS to capture an objective environmental sound level while the EMA questionnaire is filled in. However, the sound level data cannot be used directly among the different smartphones used by TYT users, since uncalibrated raw values are stored. This work describes an approach towards making these values comparable. In the described setting, the evaluation of sensor measurements from different smartphone users becomes increasingly prevalent. Therefore, the shown approach can be also considered as a more general solution as it not only shows how it helped to interpret TYT sound level data, but may also stimulate other researchers, especially those who need to interpret sensor data in a similar setting. Altogether, the approach will show that measuring sound levels with mobile devices is possible in healthcare scenarios, but there are many challenges to ensuring that the measured values are interpretable. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

Back to TopTop