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Abstract: Recent advances in Earth Observation (EO) placed Citizen Science (CS) in the highest
position, declaring their essential provision of information in every discipline that serves the SDGs,
and the 2050 climate neutrality targets. However, so far, none of the published literature reviews
has investigated the models and tools that assimilate these data sources. Following this gap of
knowledge, we synthesised this scoping systematic literature review (SSLR) with a will to cover this
limitation and highlight the benefits and the future directions that remain uncovered. Adopting
the SSLR guidelines, a double and two-level screening hybrid process found 66 articles to meet
the eligibility criteria, presenting methods, where data were fused and evaluated regarding their
performance, scalability level and computational efficiency. Subsequent reference is given on EO-data,
their corresponding conversions, the citizens’ participation digital tools, and Data Fusion (DF) models
that are predominately exploited. Preliminary results showcased a preference in the multispectral
satellite sensors, with the microwave sensors to be used as a supplementary data source. Approaches
such as the “brute-force approach” and the super-resolution models indicate an effective way to
overcome the spatio-temporal gaps and the so far reliance on commercial satellite sensors. Passive
crowdsensing observations are foreseen to gain a greater audience as, described in, most cases as a
low-cost and easily applicable solution even in the unprecedented COVID-19 pandemic. Immersive
platforms and decentralised systems should have a vital role in citizens’ engagement and training
process. Reviewing the DF models, the majority of the selected articles followed a data-driven method
with the traditional algorithms to still hold significant attention. An exception is revealed in the
smaller-scale studies, which showed a preference for deep learning models. Several studies enhanced
their methods with the active-, and transfer-learning approaches, constructing a scalable model. In
the end, we strongly support that the interaction with citizens is of paramount importance to achieve
a climate-neutral Earth.

Keywords: Earth Observation; Citizen Science; crowdsourcing; data fusion; data assimilation; data
models; data curation; citizen engagement; scoping review

1. Introduction

During the last few decades, rapid and aggressive changes to the global climate have
placed citizens in the spotlight, as the main drivers of Climate Change (CC) [1]. Increased
greenhouse gas emission (GHG), global temperature, and mean sea level rise are producing
a domino effect at various levels. Indeed, the temperature rise, natural hazards of increasing
intensity, and extreme food demand due to the population increase and the perturbation
of natural resources [2] are already visible challenges. The earth population is expanding,
expected to exceed 1.2 billion by 2100 [2,3], with 75% of citizens living in urban regions [4].
Under these conditions, cities are exposed to high concentrations of GHGs, and local events,
such as urban flash floods, intense droughts on land, long-standing forest fires [5], and
extreme heatwaves, generated by Urban Heat Islands (UHI) [6]. However, citizens are still

Remote Sens. 2022, 14, 1263. https://doi.org/10.3390/rs14051263 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14051263
https://doi.org/10.3390/rs14051263
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-1255-5375
https://orcid.org/0000-0001-6242-2100
https://orcid.org/0000-0002-2431-8529
https://orcid.org/0000-0002-4089-1990
https://doi.org/10.3390/rs14051263
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14051263?type=check_update&version=3


Remote Sens. 2022, 14, 1263 2 of 66

predominantly living in urban areas [7], further deteriorating the visible impacts of CC [8].
Stakeholders need to be able to make use of open access data at high spatio-temporal
resolution to mobilise relevant authorities and strengthen the impact of resilient-building
efforts [9]. Duro et al. [10] stated that economic costs and human losses could be enormous
if we continue to face fragmented data sources and the lack of real-time observations.
Recent technology advances in the two inter-related areas of Earth Observation (EO) and
Citizen Science (CS) have shown a great potential to address these challenges. An increased
spatio-temporal resolution of satellite sensors could offer detailed observations even in
remotely located regions, but are still of limited use due to their high cost. On the contrary,
the sudden rise of citizen sensing can assist as a complementary observational stream that
can eliminate the temporal gap of satellite observations or as reference data, supporting
the analysis of remote sensed images [11]. Providing such a geospatial perspective of
aggregated observations received from Satellite systems and the near-surface volunteer
geographic information (VGI) [12] is considered as a promising solution to describe the
complexity of earth’s system. Rigorous data transformation and assimilation processes
are being identified, in order to generate accurate and “actionable” information that could
assist decision-makers to strengthen their policies, and support a climate resilient strategy.

Leveraging this gap of knowledge, this scoping review aims at presenting the data
fusion algorithms and methodological procedures explored thus far, focusing on demon-
stratable applications of this synthesis. Additional research questions related to EO datasets
and the crowdsourcing tools and platforms that are used, are included in this review, as
well as methods that aim to tackle the heterogeneous and noisy nature of measurements
received by citizens. In this context, achievements, barriers and remaining challenges are
also outlined. The remainder of this paper is organised as follows: Sections 2 and 3 present
the background and methodological framework based on the principles of the systematic
scoping review. Section 4 illustrates the research findings and addresses our research
questions, with the final Sections of Sections 5 and 6 being focused on the conclusion of
this analysis emphasising on research gaps and future directions.

2. Background
2.1. Earth Observation and Citizen Science Data Proliferation: The “Footprint” of the Digital Age

Two significant landmarks appeared in the 21st century as the ones that can facilitate
to better understanding the world’s needs; the provision of global-scale, open-accessed
Satellite data and Web 2.0, which has culminated in the rise of crowdsourcing and the
citizens as a sensor information [13–15]. Recent solutions have placed EO in the highest
position of the data landscape as a cost-efficient solution that could provide more accurate
estimations on the future dynamics of the human-Earth system [16]. Under this frame,
various international organisations such as the Committee on Earth Observation Satellites
(CEOS), the Global Climate Observing System (GCOS), and the Group on Earth Observa-
tions (GEO) were established to design and further certify the scalable and interoperable
nature of EO systems [17]. In 2016, the European Space Agency (ESA) initiated the Earth
Observation for Sustainable Development (EO4SD) program to explore the existed EO-
missions in numerous applications, such as agriculture and rural-urban development,
water resource management, climate resilience and natural hazards reduction. With the
combinations of the EO and ancillary data from static sensors, model simulations’ outputs,
and others, now we shall claim that we are in the most convenient position to monitor
our planet [18] accurately. Opposing this statement, even if such a tremendous amount of
information surrounds us, it usually lacks semantic meaning. Traditional methods of visual
inspection and photo interpretation are still performed for the acquisition of reference data
and therefore described among researchers as a bottleneck and an unsustainable way to
extract meaningful outcomes for the heterogeneous, complex, imperfect big-EO data [19].

Overcoming this obstacle, citizens have proven a meaningful addition to the environ-
mental sciences as they are capable of creating content in various ways, i.e., through image
interpretation, collection of in situ data, and social media [20]. Mialhe et al. [21] declared
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that the VGI derived from citizens and stakeholders could reveal rich and complex infor-
mation of the local environment and its change through time; a hard to gain knowledge
by other data forms or experts. Capitalising on the pioneering work of Goodchild [12,22],
in the last two decades, a significant amount of initiatives and projects incorporated the
VGI as a valuable source of information. Indicative examples are the EU-funded projects
of hackAIR [23], SCENT [24], the ARGOMARINE [25], E2mC [26], and GROW Obser-
vatory [27]. The hackAir project (www.hackair.eu; accessed on 28 February 2022) has
developed an air quality data warehouse, where large communities of citizens can pro-
vide air quality measurements with easy deployment of low-cost sensors. Subsequently,
the air quality conditions are further expanded using a combination of official data and
sky-depicting images. SCENT (https://scent-project.eu/; accessed on 28 February 2022)
demonstrated a collaborative citizen engagement tool, enabling the land-use/land-cover
change (LULCC) data collection. Semi-automated and machine learning classification
methods were utilised to evaluate the collected observations and extract semantic de-
scriptions of the ground-level images. An innovative contribution of CS to the improved
monitoring of marine water quality is offered by the ARGOMARINE mobile application
(http://www.argomarine.eu/; accessed on 28 February 2022), allowing citizens to pro-
vide notifications of detected oil spills, assisting on the efficient and responsive mitigation
actions. E2mC (http://www.e2mc-project.eu/; accessed on 28 February 2022) aims to
expand the Emergency Management Service (EMS) of Copernicus, exploiting the beneficial
contribution of social media data to the rapid evaluation of the satellite-based map prod-
ucts and subsequent reduction of timely effort of producing reliable information. One of
the fundamental projects of CS is the GROW observatory (https://growobservatory.org/;
accessed on 28 February 2022), which demonstrated a complete “Citizen Observatory”,
resulting in a targeted audience of different stakeholders (i.e., smallholders, community
groups, etc.), creating soil and LULC monitoring system.

In addition to the broad applicability of volunteer crowdsourcing in several domains,
still, it is essential to encapsulate the citizen role, not only as a data collector but as a
contributor and collaborator to a citizen science project [28]. Many terms have appeared
across the literature [15,20,29], with a will to describe the crowdsource data, based on the
role of citizen within the project, with the “passive and active crowdsourcing” [30] to be met
in the majority of studies. Former studies defined the role of citizen in EO depending on
the nature of the crowdsourcing task [31] and the technological equipment that was used,
identifying two additional types of crowdsourcing, the "Mobile Crowdsourcing" [32], where
citizens act as moving sensors [33,34], and the social media. The recent growing number
of publications in social media testified the tendency of the research community to invest
in passive (or opportunistic) crowdsourcing and the semi-autonomous or autonomous
information extraction [35]. An example of opportunistic sensing is the pools of geotagged
photos that rapidly increase, declaring almost 2 million public photographs uploaded to
Flickr, and around 58 million images per day to Instagram [36]. Nevertheless, the inclusion
of such vast volumes of EO and CS data generates significant difficulties in the production
of meaningful outcomes to decision-makers, related to the Big Data characteristics (i.e.,
denoted as the 5Vs: Volume, Variety, Velocity, Veracity and Value) [19].

2.2. Assimilating Data from Space and Crowd

Historically in remote sensing, the four dimensions of spatial, temporal, spectral,
and radiometric resolution are denoted as the cornerstones of EO [37], and thus different
acquisition sources have been coupled and jointly analysed by the data fusion techniques to
achieve richer descriptions of them [38]. Data fusion, sensor fusion, information fusion, or
simply fusion is utilised as a powerful way to assimilate various sources of information and
therefore achieve a better outcome [38]. White [39] could be considered as one of the first
researchers that attempted to define the DF as, the association, correlation, and combination
of data from single or multiple sources to achieve refined spatial, temporal and thematic
estimates, and evaluate their significance. Different taxonomy views and architectural

www.hackair.eu
https://scent-project.eu/
http://www.argomarine.eu/
http://www.e2mc-project.eu/
https://growobservatory.org/


Remote Sens. 2022, 14, 1263 4 of 66

schemes have been used to effectively describe data associations. Meng et al. [19] and
Salcedo-Sanz et al. [18] examined the main building blocks of DF. In particular, these blocks
exploit (i) the diverse data sources from different positions and moments, (ii) the operational
processing that refines (or transforms) the pre-described data, to be ingested on the DF
model, and (iii) the purpose that defines the model that is implemented to gain improved
information with fewer errors. In the second article, post-processing was mentioned as an
additional methodological step that is applied to update model’s outcomes and enhance
their accuracy. From a broader view, several methods were designed, attempting to unify
the terminologies that have been used and better understand such a complex system as
data fusion is. However, a dedicated analysis of the DF models exceeds the scope of this
study, and thus Figure 1 aims to report the most wide-spreading architectures and their
corresponding divisions.

Figure 1. An brief description of the main Data Fusion architecture schemas. Data from: Cas-
tanedo [40].

In Remote Sensing (RS), DF is usually defined by the level at which the EO-data
is at hand, and is categorised into pixel, feature, and decision. Starting with the first
raw/pixel, it refers to procedures that utilise different modalities with a will to generate a
new enhanced modality. This includes applications of pan-sharpening, the super-resolution
and reconstruction of a 3D model. The feature DF level aims to augment the initial set of
observations, as linear or spatial transformations of the initial data, and finally, the last
level represents the decision DF, where data represent a specific decision (e.g., LC class, or
the presence/absence of an event), and is combined with additional layers to increase the
robustness of the prior decision. Schmitt and Zhu [41] presented a state-of-the-art (StoA)
review in data fusion techniques and algorithms for Remote Sensing and claimed that
among the most sophisticated fusion tasks, the real challenge is to combine significantly
heterogeneous data. The EO-DF with the crowdsourcing data appeared to be of great
interest. An obvious benefit is the large magnitude of available data, the fact that CS
offers timely and near (real-time) monitoring and analysis, as well as its availability in
online publicly accessed repositories [35]. There is a growing interest in applications that
use CS data from social media, crowdsourced open access data repositories (e.g., OSM,
GeoWiki, Zooniverse, etc.), geotagged shared photographs (e.g., Picasa, Flickr, etc.), web
scrapers and many more [42,43]. Fritz et al. [20] listed a remarkable number of CS projects
in different disciplines of RS, including air quality, collection of environmental data, natural
hazards, land-use/land-cover, and humanitarian and crisis response. On the contrary, CS
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data has been criticised due to its intense noisy nature, thematic inconsistency, and lack
of usability. Various studies tried to solve these challenges and enhance the performance
and credibility of CS data, using noise-tolerance classification algorithms [44], rule-based
thresholds and methods that eliminate errors and biases in the training data [45], with
significant results [46]. Inevitably, citizens have proven a viable data gathering tool, able to
cover the limited quantity of training data, an issue that is often the cause for poor model’s
performance [45].

3. Methodological Framework

In this analysis, a systematic scoping review is presented, following the steps of
Daudt et al.’s [47] and Arksey and O’Malley [48], to explore the current state of knowledge
regarding the pre-determined research questions [49,50]. Data fusion algorithms, data
streams and tools are examined with a focus on research works that assimilated data
from Crowd and EO (satellite, aerial and in situ) sensors. A priori research protocol was
designed, based on the proposed steps of Arksey and O’ Malley [48], and Peters et al. [51].

3.1. Search and Selection Strategy

We initiated this analysis, searching English-language based peer-reviewed journals
in the four electronic literature databases of Scopus, Google Scholar, ScienceDirect, and
Taylor and Francis. To implement this preliminary criterion we excluded any manuscript,
characterised as “grey literature” including conference papers, presentations, book chap-
ters, commentary, extended abstracts, preprints, etc. The searching period is between
1 January 2015 and 31 December 2020, following the work of Saralioglu and Gungor [52]
and Fritz et al. [20] that indicated an increase in the number of published articles that
combine both EO and CS data. Boolean operators combining multiple keywords relevant to
the research topic are depicted in Table 1 and were queried in the aforementioned databases.
All results were uploaded to Mendeley software to remove any duplicates. Subsequently,
visual inspection was performed to exclude any remaining grey literature that was not
automatically obstructed.

Table 1. Group of the selected keywords used in the four selected databases. The operator “AND”
was used to combine the two sections.

Question Components Search Terms

Earth Observation “Earth Observation”* OR Satellite* OR “Remote Sensing”* OR
Aerial* OR UAV OR drones OR “in situ”

Crowdsourcing Crowdsourc* OR “Citizen Science” OR “Crowd science”

A double and two-level screening (abstract screening and full-text screening) methods
were adopted using an iterative review team and the systematic review software, Swift-
Review [53]. This software is built on the latent Dirichlet allocation (LDA) model, where
few pre-trained data are manually labelled (i.e., as “relevant” or “non-relevant”) and are
used to predict the conditional probability of each document as “relevant” [54]. As a result,
the most “representative” documents get the highest scores and are presented at the top
of the list. The double screening procedure consists of two stages with the first including
triaging the publications in “Relevant/Non-Relevant” and thus performing the priority
ranking, and the second to evaluate the predicted ranking scores, denoting the threshold of
relevance. This method included screening the title and abstract of each publication, where
a 50/50 ratio of training and test sample was randomly selected, ensuring the objectivity of
the data sample. An evaluation of the model’s results was conducted, investigating the
quality of the ranking scores against authors’ criterion of “Inclusion/Exclusion” (Inc/Exc),
leveraging the visual-inspection process, the confusion matrix post-processing analysis
and the sensitivity evaluation metric, formulated through the following equation. The
validation process was initiated, denoting as “Relevant” the corpus of a prioritisation
ranking score of 0.6 or higher. Subsequently, we obtained the proportions of true positive
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(TP), and false-positive (FP) and synthesised the sensitivity score. The dataset was updated
including the validated “Relevant” articles and the remaining articles, which were denoted
as “included” during the first abstract screening process. Thereafter, the final dataset
was confirmed, ascertaining the corpus selection efficiency through the full-text screening
procedure. The selection procedure and the adoption of the selection criteria are presented
in the section below.

Sensitivity =
TP

TP + FP
, (1)

3.2. Selection Criteria

A research team of 3 expert reviewers (one in Earth Observation, one in Citizen
Science, and one in Artificial Intelligence and data assimilation algorithms) was formed,
who applied the same post-hoc Inc/Exc criteria, were given a deadline of 2 months after
the initiation of this process. The Inc/Exc criteria were defined at the beginning and prior
to the selection process, ensuring a reduction of bias and the thematic consistency of this
analysis [55]. All the reviewers had to justify the Inc/Exc of each examined publication
and a consensus had to be achieved for the final inclusion of each document.

Inclusion Criteria:

1. Publications must be Peer-reviewed scientific journals, written in the English language.
2. Peer-reviewed articles have to be published between 2015 and 2020.
3. Publications encompass data from satellite, aerial or in situ sensors with crowd-

sourced data.
4. Studies that focused on land terrestrial applications, addressing the following research

domains, among the different thematic categories presented in [20].

(a) Land Use/ Land Cover (LULC)
(b) Natural Hazards
(c) Soil moisture
(d) Urban monitoring
(e) Vegetation monitoring
(f) Ocean/marine monitoring
(g) Humanitarian and crisis response
(h) Air monitoring

5. Articles may validate their proposed method using a statistical accuracy metric.

Exclusion Criteria:

1. The literature review publications.
2. Studies that solely use EO or CS data are excluded from the review.
3. Any publication related to the investigation of extra-terrestrial environments.
4. Articles that oriented their research on platforms visualising data, without applying

data fusion methods among EO and CS data.
5. Exclusion of studies that did not assimilate both EO and CS data during the training

phase of the presented algorithm. Articles, where one of the two data types is utilized
for validation purposes and therefore did not contribute to the model’s prediction, are
excluded for further investigation.

3.3. Charting the Data: Transformation, Analysis and Interpretation

The literature was charted after a common agreement of the reviewing team and is
presented in the following sections, illustrating the processes that attempted to combine
the disparate information [48].

3.3.1. General Categories

In this category, titles and abstracts were explored along key characteristics such as
literature sources, year of publication, thematic categories, and mapping scale. Regarding
the spatial extent, this (i.e., the mapping scale) was categorised as local, regional and global
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(Table 2), following Tobler’s rule [56], which associates the mapping scale with a spatial
resolution of RS images. In cases of multiple EO data, at diverse spatial resolutions, the
category was determined according to data with the finest spatial resolution, denoting as
the minimum size of an area that can be detected, or to authors’ pre-defined minimum
mapping unit (MMU).

Table 2. Associating the mapping scale capabilities of the proposed models in the selected literature,
with the spatial resolution of the Earth Observation images.

Mapping Scale Category Mapping Scale Earth Observation Spatial Resolution

local <1:10,000 pixel size ≤ 5 m
regional 1:10,000 to 1:250,000 5 m < pixel size ≤ 125 m
global >1:250,000 pixel size > 125 m

3.3.2. Applications Assimilating EO and CS Data

The literature is organised with respect to the general thematic categories that are
already presented in Section 3.2, and are subsequently mapped to the main applications of
interest in these particular domains.

3.4. Exploitation of EO Data and Crowdsource Data Gathering Tools

The selected papers were organised into two distinct categories: In the EO data section,
the environmental/climatic and non-environmental variables are examined as well as the
satellite EO platforms and datasets that appeared across the selected cases. Furthermore,
crowdsourced data and tools are classified with respect to citizens’ participation type, de-
noted as “active” or “passive” [5,8], or as Foody et al. [11] stated “participatory sensing” and
“opportunistic sensing”. Participatory sensing will include articles that indicate the actual
involvement of citizens in the data collection and the design of testbed environments [30],
whereas opportunistic sensing incorporates publications that describe automated processes
of crowdsourced data extraction from open-access tools and platforms. In both cases, the
selected corpus will be organised with respect to the technological equipment that was
used, considering the following classes.

i Social media/networking services (SM): Including commercial platforms, developed
for sharing social information content (text, sound, image, and video).

ii Photograph sharing services (PH): Web services, sharing geotagged photos.
iii Sensors (S): Low-cost sensors, such as magnetometers, accelerometers, etc.
iv Smartphones (SP): Mobile crowd-sensing (MCS) [15] devices including their function-

alities of GPS, or geotagged photos, etc.
v Developed Platforms (DP): Open access crowdsourcing platforms, such as Geo-Wiki,

Tomnod [57], Humanitarian Open Street Map, and customised solutions.
vi Other: Referring to studies with an absence of technological equipment. An example

of this case is presented in Mialhe et al. [21], where transparent plastic films were used
to define the land use categories.

3.5. CS Data Uncertainties and Methods for Data Curation

Despite the research advances, data curation and lack of trust in crowdsourced data
still remain a challenge. This category aims to qualitatively describe the identified chal-
lenges and the methods that were utilised to validate and reduce any discrepancies in
CS data. Proposed indicators and methods are described according to the step where the
validation has occurred, denoted as “ex-ante” and “ex-post”, and the relevant crowdsourc-
ing task [57].Three CS tasks of classification, digitisation and conflation [57], and related
classification problems (e.g., multiclass, or binary) will be discussed and associated with
the level of spatial and cognitive complexity of CS data retrieval.
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3.5.1. Data Fusion Models and Evaluation Approaches

The definition of the selected corpus with a single taxonomy seems quite challenging,
if not impossible [18]. For this scoping review, a hybrid data fusion schema is explored,
mapping the RS data fusion terms (i) pixel/data, (ii) feature, (iii) decision [58,59] to the
following four levels of abstraction [40] (i) Low-level fusion, (ii) Medium-level fusion,
(iii) High-level fusion and (iv) Multiple-level fusion. Articles that integrate data types (e.g.,
images, texts, etc.) at different DF levels are included in the fourth abstraction level. Note
that any fusion method implemented in the stages of data preparation or model evaluation,
or that refers to EO or CS data solely, is excluded. Methods are categorised as statistical,
mechanistic, and data-driven with the sub-categories of Artificial intelligence, Ensemble,
and Fuzzy Association, also analysing the quality assessment methods and evaluation
metrics that were applied.

3.5.2. From Data to Information, Towards Decision Making

Charted data are analysed using both descriptive and quantitative approaches [60]. In
the descriptive analysis, a network visualisation map was created based on the selected
literature and the VOSviewer open-access software [61]. N-clusters and linked relation-
ships were generated according to the level of relevance between the predicted terms and
frequency of occurrence. The terms are presented in a weighted form, indicating the most
frequent terms with greater weights. The predicted terms in the network graph were evalu-
ated according to the terms’ relevance and the scope of this analysis. Generic keywords
or keywords irrelevant to EO, Citizen Science/Crowdsourcing and Data fusion/Machine
learning domains were avoided. In the quantitative analysis, graphical representations
were designed, aiming to give intuitive messages regarding the examined research ques-
tions; the web-based software Datawrapper and the Python libraries of Pandas and Plotly
were used.

3.6. Bias Control

In order to reduce bias in this scoping review, Lapierre et al.’s [62] guidelines were
followed that aimed to control two types of bias, the publication bias and the ratter bias [63].
Regarding the first, the authors ensured the provision of research outcomes with trans-
parency, using four electronic literature databases (Scopus, Google Scholar, ScienceDirect,
and Taylor and Francis), in which only peer-reviewed journals were included, avoiding any
restriction related to journals’ level of impact. Continuing, the ratter bias was mitigated
following an iterative review process of the predefined scope by a balanced research team
of 3 reviewers. On top of this, the systematic review software Swift-Review has solved the
rare cases of disagreement between the reviewers.

4. Results
4.1. General Overview of Process and Findings

The association of RS and CS data was initially identified in 2205 published articles,
retrieved by the four electronic databases, referring to the period of 1 January 2015 and
31 December 2020. The articles were further reduced to 732 after the exclusion of the grey
literature and duplicate records. During the double abstract-screening process, 15 addi-
tional publications were found relevant, following the prioritisation modelling and the
statistical evaluation. The ranking scores of the examined literature varied from 0.094 to
0.921, from which approximately 90% of the “Relevant” documents were listed at 50% of
the top-ranked documents. Relevant documents were identified in 70% of the top-ranked
data, (Figure 2). The statistical findings resulting from the prioritization modelling were
evaluated with a threshold of relevance (i.e., ToR = 0.6), using the confusion matrix method
and the sensitivity evaluation metric [64]. Note that ToR was empirically defined based
on the authors’ observations on the selected literature. The sensitivity score of 80% was
estimated exploiting titles-abstracts only and thus seemed acceptable for further processing,
(Table 3).
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Figure 2. Ranking performance curve using 50/50, randomly selecting training-test dataset in the
prioritization modelling. The yellow line shows the baseline of the predicted performance. The green
line denotes the performance based on the test dataset, while the blue line represents the training set.

Table 3. Confusion matrix based on visual inspection analysis, indicating that 80% of the predicted
publications, with prioritisation score of 0.6 or higher, are included in the final dataset.

Relevant Publications
Classified as Relevant

Relevant Publications
Classified as Non-Relevant

Total Number
of Publications Sensitivity Score

Relevant publications
classified as Relevant 164 41 205 80%

During the full-text screening, different data fusion algorithms and processes were
identified. Such processes have been successfully organised by Bleiholder and Nau-
mann [65] into two categories, i.e., data integration and data assimilation. The first refers
to the notion of a unified information system, where data are stored and presented to the
user in a unified view, while the second focuses not only on a common data interpretation
but on the generation of new real-world objects. In the data assimilation system, informa-
tion by various sources is harmonised, based on a pre-designed and three-level mapping
schema (i.e., transform, remove duplicates, and concise), and integrated into numerical
models and algorithms in order to produce a new decision [66]. Considering the above, this
scoping review focuses predominately on articles describing the data assimilation models,
involving EO and CS data as well as any auxiliary geospatial information. Adhering to the
latest criterion, a total of 66 scientific articles were finally selected as they met the eligibility
criteria (Figure 3), and are briefly presented in Tables A1–A8 of Appendix A.

Analysing the 66 selected articles, a thorough view is formulated based on the general
characteristics of the selected documents. Particular attention is given to the peer-reviewed
journals, the number of publications addressing the most common thematic categories as
described in Section 3.2, the number of published articles on annual basis, and the mapping
scale levels, where models were tested.
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Figure 3. Modified Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
flowchart illustrating the different phases of the scoping review and the number of selected articles at
each stage of the process [67].

The majority of the peer-reviewed journals (56%) that are published in the 9 scientific
journals are presented in Table 4. A total of 29 articles appeared only once and thus are
aggregated under the “Other“ category (44%). The majority of the aforementioned journals
focuses on environmental, or climate change ecosystems, whereas the journals ranked in
the top four positions (i.e., Remote Sensing|n = 14, ISPRS Journal of Photogrammetry
and Remote Sensing|n = 5, Remote Sensing of Environment|n = 4, IEEE Transactions
on Geoscience and Remote Sensing|n = 3, and International Journal of Applied Earth
Observation and Geoinformation|n = 3) predominately oriented their studies in the RS
applications.

Following Fritz et al.’s [20] findings, we examined the articles published between 2015
and 2020 (Figure 4a), and those related to the thematic categories presented in Section 3.2,
(Figure 4b). A categorization with respect to the economic status of the selected regions was
performed, revealing two maxima in 2017 (n = 14) and 2019 (n = 14), decreasing in the last
year of the searching riod. However, continuous high numbers of published articles indicate
that the contribution of EO and CS data in the decision-making and management processes
is continuing to grow [68]. With respect to the results in Figure 4b, the greatest number
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of articles refers to the categories of Vegetation monitoring (n = 19) and Land Use/Land
Cover (n = 17) with a negligible difference among them, whereas the Humanitarian and
Crisis Response (n = 2), gained the least attention. Finally, only one article is related to
the Soil moisture domain, indicating that the fusion between the EO and CS data for this
specific application is still in its infancy [69].

Table 4. Peer-reviewed journals are mostly preferred, according to the number of publications. In
terms of simplicity the journals that appeared only once, were homogenized other the Other class.

Name of Journal # Publications

Remote Sensing 14
ISPRS Journal of Photogrammetry and Remote Sensing 5
Remote Sensing of Environment 4
IEEE Transactions on Geoscience and Remote Sensing 3
International Journal of Applied Earth Observation and Geoinformation 3
Scimago: Geo-Spatial Information Science 2
Scimago: Global Change Biology 2
Scimago: Global Change Biology 2
IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing 2

Science of the Total Environment 2
Other 29

Figure 4. (a) Number of published articles per examined year, (b) Number of publications for each
thematic domain, and (c) Percentage of selected papers per mapping scale, indicating the approximate
spatial resolution of the EO data that were exploited, and the replicability status of the proposed
methods as a corollary of the open-source or commercial data providers.

Considering the ratio of articles per mapping scale (Figure 4c), a greater preference is
shown in studies with high and medium mapping scales (local|regional|global = 31|42|27%).
More intuitive findings regarding this research question are presented in Section 4.3.3. The
primary conclusions follow next: First, the tendency to exploit the regional-scale data was
an expected result, as data at finer resolution are predominantly not freely distributed. Ad-
ditionally, we could claim that citizens might feel more engaged with studies at familiar
scales or to a phenomenon that directly affects them, revealing a lower interest in global-scale
applications. This basic assumption is also evaluated by Tobler’s first law of geography (TFL),



Remote Sens. 2022, 14, 1263 12 of 66

which implies a direct and strong relationship between things that are closely located [46].
Recent studies in the quality of the Volunteered Geographic Information (VGI) indicate that
volunteers tend to perform the VGI tasks with greater success when they are located in areas
close to volunteers’ homes [70]. Yet, continental or even global scale effects of humanitarian
or natural disasters are still unknown to the public, or presumably not evident in citizens’
everyday life.

A clustering visualisation network was used, as an alternative to the words’ of cloud
method, as it was able to elicit more meaningful results from unknown patterns, containing
keywords and phrases that were referred in combinations in most documents. The cluster-
ing network graph was generated after several trials, evaluated by authors and displayed
in Figure 5. A total of 49 keywords are visualised in eight core clusters, coloured in red,
green, blue, light blue, yellow, purple, orange and brown, extracting the main research
domains of this paper. Each cluster was structured with nodes closely located to each
other and linkages among them, where each node is denoted from the assigned colour that
indicates the cluster category, and the relative size, presenting “keyword’s importance” and
the frequency of occurrence. Links between the terms indicate the strength of the term and
its association with various terms. Therefore, nodes with higher “keyword importance”
tend to have higher linkage strength; whereas, the colour of the link is related only to the
node’s class.

Figure 5. Clustering network map of the most frequently occurred keywords in the selected case stud-
ies. The shape of the circles denotes the frequency of occurrence of the depicted terms. Subsequently,
the distance between terms indicates the “level of strength” of relevance among the selected journals.

Viewing the results, we could conclude that keywords with the highest frequencies
were “classification/class” (61), “model” (59), “image” (42), “observation” (37), “phenol-
ogy” (18), “open street map-OSM” (31), “volunteer” (16), “land cover product” (14), and
“citizen” (14), revealing the two basic terms of our review, i.e., “Earth Observation” and
“Crowdsource/Citizen Science”, and an increased interest to applications related to vegeta-
tion species, and their phenological stages, and also to land cover products in rural and
urbanized environments. However, in some cases, the Lin-Log/Modularity method was
not able to identify similarities in common terms, and thus terms such as “classification”
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and “class”, or “open street map” and “osm” are revealed in different nodes. To deal
with this issue, both keywords’ importance and strengths of links were calculated and
are presented in an aggregated form. Moreover, it seems that the highest number of links
occurred in the same terms that presented the highest frequencies, a result that was actually
expected. In particular, the keywords “model”, “classification”, and “image” revealed 42,
32, and 24 links, associating themselves with almost all terms in the graph. Therefore, we
could assume that the majority of approaches addressed a supervised data-driven classifi-
cation problem, where patterns among features are known, and defined by the reference
dataset, collected either by citizen-science data or by experts (scientists or national data).
Investigating the clusters depicted in Figure 5, three major groups could be defined, in the
left (red), right (green and blue) and upper side of the graph (purple), separating them-
selves with the largest distances. In these groups, keywords revealed an association with
the most referenced thematic categories, i.e., Land Cover/Urban monitoring, Vegetation
monitoring, and Climate change. The aforementioned result is also in agreement with the
results depicted in Figure 4b.

4.2. Applications Assimilating EO and CS Data

In the following sections, a categorisation of the selected literature is done to illustrate
the main applications for each examined thematic domain. Figure 6 depicts the share of the
applied methodologies, where the RS and crowdsourced data co-existed.

Figure 6. Treemap chart of studies (n = 66) according to the fields of applications. Different colours
reflect the seven thematic categories of the application. Rectangle areas are proportional to the
number of studies in the specific sub-category.

4.2.1. Vegetation Monitoring Applications

Five application types were identified in the Vegetation monitoring domain, including
studies that investigated the phenological shifts as a result of climate change (n = 6), the
identification of different phenological species along with their properties (n = 4), cropland
and forest maps (n = 3&4), and plants with a certain disease (n = 1). The articles in the
first category utilised both mechanistic models (n = 2|[71,72]), as well as data-driven
approaches (n = 4|[60,73–75]) to provide information on either the date of occurrence
of a start-end of the season (SOS or EOS) [75] phenophase stages or the transitions of
the four stages (i.e., green-up, maturity, senescence, and dormancy) [60]. Xin et al. [75]
evaluated the performance of eight different algorithms, six representative rule-based
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algorithms and 2 machine learning models (i.e., the random forest regression and the neural
network) regarding their ability to identify the two phenological phases of SOS, and EOS,
as it can be expressed through the MODerate Resolution Imaging Spectrometer (MODIS)
Enhanced Vegetation Index (EVI) observations. In four articles (n = 4|[46,76–78]), similar
approaches were applied focusing on specific vegetation species and the identification of
their biophysical characteristics (i.e., tree height, diameter breast height, basal area, stem
volume, etc.). In terms of physical models, the Spring Plant Phenology (SPP) models [71]
encompass meteorological observations (i.e., temperature, and precipitation), and EO-
vegetation data [72] to predict the timing of leaf emergence.

Considering the two categories of crop classification (n = 5|[3,79–82]) and forest
cover map (n = 3|[83–85]), most articles attempted to combine the already available LC
data and provide updated maps identifying any uncovered areas [83]. Under this frame,
multiple datasets were used, i.e., RS land cover datasets [3] and regional or national maps
in several countries [85]), EO data at different spatial resolutions (e.g., commercial and
open-source satellite and VGI data), auxiliary data (e.g., FAO cropland statistics [84], and
sub-national crop area statistics, [82]). A noteworthy study is by Baker et al. [79], which
exploited the advantages of citizen science for the identification of urban greening areas at
a finer scale, denoted as domestic gardens. In this study, a participatory citizen campaign
was organised along with a social media campaign to encourage citizens to participate
and provide information related to the garden spaces. One publication [86] exploited the
computer vision models (i.e., object detection) and Unmanned Aerial Vehicle (UAV) RGB
images, proposing a disease diagnosis tool that could recognise changes in plants’ foliage
(i.e., symptoms), at a sub-leaf level.

4.2.2. Land Use/Land Cover Applications

Studies in this category revealed a preference for applications aimed at providing
accurate LULC classification maps (n = 11|[21,44,45,87–94]), with an increased interest for
such maps in middle and low-income countries. Fonte et al. [94] proposed an automated
method of successively filtering the OSM data, avoiding the procedure of the manual
verification of their quality, and producing accurate land cover maps. The OSM2LULC_4T
software package seemed capable of successfully converting the OSM data to land cover
observations. Uncertainty in the land cover data and the CS data quality (n = 2|[95,96]),
along with traditional time-consuming procedures, activated researchers to investigate new
methods that could overcome class label noise, or “attribute noise” [91]. Factors of noise
origination [45] are the presence of dense clouds over the scene acquired by optical sensors,
semantic gaps in LULC categories [87] and discrepancies in thematic consistency and
spatial accuracy [95,96]. Furthermore, two articles [2,97] introduced a different annotation
scheme, called the Local Climate Zones (LCZ), used to better describe the local climate
conditions in urban and rural landscapes [2]. Finally, Li et al. [64] generated a large-scale
benchmark dataset for deep learning applications, exploiting the effective integration
of VHR RS and CS data. Still, the existence of such datasets is limited, preventing RS
experts from improving their models or developing new algorithms. Therefore, fabricating
RS benchmark datasets still seems challenging, as RS images consist of complex objects,
representing more than one land cover type (e.g., mixed pixels at RS images with coarser
resolutions), and are affected by the corresponding factors illustrated before [64].

4.2.3. Natural Hazards Applications

The most articles (n = 8) under the natural hazards category revealed an association
with flooding episodes. In particular, flood risk mapping was examined in five arti-
cles [98–102] with the first two focusing on the estimation of flood extent (i.e., water depth,
and water extent), and the last on the flood susceptibility assessment. In the first category,
1 and 2D hydrologic/hydraulic models, as well as data assimilation (DA) models (e.g.,
Kalman filter) were exploited integrating both physical sensors as well as the WeSenseIt
crowdsourcing smartphone application. On the contrary, univariate or multivariate sta-
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tistical methods, as well as probabilistic models (e.g., Weights of Evidence [102]) were
applied for the estimation of the flood susceptibility rate over an area. In these articles,
various factors (e.g., environmental and meteorological factors) and enablers, including
web search engines [100], photo-sharing platforms (i.e., Flickr site) [102] and participatory
campaigns [101] revealed their potential contribution to monitor flood occurrences, and
to generate up-to-date and accurate datasets of flooded areas. Furthermore, the study by
Ahmad et al. presented an automated flood detection system, called JORD [103], which is
the first system that collects, analyses, and combines data from multi-modal sources (i.e.,
text, images, videos from social media platforms) and associates them with RS-based data
in real-time, in order to give estimations of areas that were affected by a disaster event.
Panteras and Cervone [104] explored the level of significance of crowdsourced geotagged
photos in flood detection methods and thus gave an alternative in cases where the EO
data are not available. Finally, Olthof and Svacina [105] evaluated the efficiency of various
data sources for receiving information on a flood event, such as passive and active satellite
sensors, high-resolution DEM, traffic RGB cameras, and crowdsourced geotagged photos.
It also investigated associated methods, i.e., rule-based image thresholds, the coherent
change detection proposed by Chini et al. [106] and the 1-dimensional flood simulation
algorithm, with the intention to provide accurate urban flood maps within the first 4 h of a
flood event. Subpixel mixing in optical sensors, the coarse spatial resolution of Sentinel-1
data and the occasional contributions of citizens seemed the main limitations of real-time
flood monitoring.

In addition to flooding events, the following three articles, explored the potential
contributions of crowdsourced data in cases related to fire, earthquake, and nuclear ac-
cident events. The first case presents the benefits of using smartphone applications and
a large audience of volunteers to estimate the forest fuel loading in areas close to urban
environments (i.e., wildland-urban interface (WUI) areas) [107]. In general, forest fuels
have proven structural components in wildfire risk monitoring, and therefore the accurate
data collection is of paramount importance [108]. Furthermore, Frank et. al [109] attempted
to give conclusions regarding the role of citizen scientists in terms of their contribution in
the rapid damage assessment after an earthquake event; in particular, they investigated the
noise resistance of two classification methods (i.e., object-based and pixel-based), and the
effect of using different labelling methodologies and crowdsourcing tools. Last, Hultquist
and Cervone [110] demonstrated -in the Safecast VGI project- the production of a complete
footprint for the radiological release over the Fukushima area after the nuclear accident.
In this project, 200,000 measurements were collected by citizens and thus associated with
reference data collected by in situ sensors.

4.2.4. Urban Monitoring Applications

Articles under this category developed methods and tools to accurately identify objects
(e.g., settlements and road networks) in artificial environments. Population estimations
were given, as until now the population layers are produced in coarse resolutions ex-
ceeding 100 m, and inevitably have a limited representation in small villages and remote
regions [111]. Four studies [7,111–113], under this category devoted their efforts to assess
the spatial patterns of the urbanized environments and additionally provide population
maps at a finer resolution. All the aforementioned applications evaluated their methods in
low-income countries. Continuing, Zhao et al. [114] and Kaiser et al. [115] introduced us
to scalable methods, altering the traditional methods of urban scene classification, where
reference data could merely arise by the worldwide Web [115]. Contributors in the first
study were the OSM and the social media platform Baidu. The second study tried to
overcome the bottleneck of manual generation of training datasets and thus prove the noise
resistance of CNN, which could automatically generate annotated images and discriminate
object features. Two articles [116,117] explicitly focused on the provision of updated road
networks; the first one using GPS data derived by climbers and cyclists, and the second one
by taxi drivers. A single publication [118] illustrated the potential of identification of new
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archaeological areas, leveraging the benefits of participatory sensing, creating synergies
between different groups of volunteers, historians, data scientists and heritage managers.

4.2.5. Air Monitoring Applications

After analysing selected studies in the air monitoring domain, two applications may
be referenced, the first [119] investigating the benefits of crowdsourcing in the air quality
measurements, and the second (n = 3|[97,120,121]) investigating variations in air temper-
ature over urbanized environments. In both cases, low-cost sensors provided an insight
into the air temperature and PM2.5 concentrations over the examined areas and therefore
attempted to replace the traditional sensors, as they expressed the reference data in the
regional-scale models. Venter et. al [120] and Hammerbeng et al. [97] highlighted the
potentials of integrating open-source remote sensing and crowdsourced low-cost sensors in
air monitoring, and specifically related to the forecasting of heat extremes (i.e., heat waves,
and UHI).

4.2.6. Ocean/Marine Monitoring Applications

When it comes to the analysis of aquatic environments, observations focused on
factors that affect water quality (n = 3). In particular, Shupe [122] analysed data collected by
citizens along with auxiliary data related to land cover patterns (i.e., urban, agricultural, and
forestry areas) in order to estimate seasonal variations in water quality and their relation
to certain activities, e.g., intense agricultural activities, fertilization, urban expansion, etc.
Under the same concept, Thornhill et al. [123] utilised the CS water quality measurements
(e.g., N-NO3, P-PO4 and turbidity) of the FreshWater Watch (FWW) project, and established
a scalable approach that could facilitate the identification of regional or local key drivers
that contribute to the degradation of freshwater quality. Last, the Citclops CS project was
introduced by Garaba et al. [124], in which the low-cost and easy to use Forel-Ule colour
index (FUI) method was explored along with RS observations of the MERIS multispectral
instrument, to collect watercolour measurements, related to pollutant concentrations (e.g.,
algal density, etc.) [28].

4.2.7. Humanitarian and Crisis Response Applications

Studies by Boyd et al. [125], and Juan and Bank [126] seemed the only cases that
attempted to explore the potential of using crowdsourced data for monitoring activities
against humanity (e.g., conflicts, and modern slavery). The first study estimated the
locations of potential conflicts in Syria using the variables of EO-night lights, and citizens’
reports of casualties. Subsequently, the second case associated the humanitarian crisis of
modern slavery with the carbon footprint that results from the chimney brick kilns. Under
this study, RS and CS data revealed their critical role in the future termination of modern
slavery, achieving the sustainable goals of the United Nations (SDG 8.7: Ending modern
slavery and human trafficking, as well as the child labour in all forms) [127], or the so-called
“Freedom Dividend”.

4.2.8. Soil Moisture Applications

A single study [69] showcased the potential of using both EO and CS data for the
estimation of the soil moisture, a critical variable revealing earth surface processes (e.g.,
fertility of agricultural fields). In the framework of GROW Citizen’s Observatory (CO) [27]
and the open-accessed EO data (e.g., Sentinel-1, Landsat-8, and EU-DEM), three statistical
approaches of multivariate linear regression, multivariate regression kriging and co-kriging
interpolations were examined, with the first two providing results with greater accuracy.
A common limitation for all the deployed methods was the short-range variability of the
soil moisture in situ values, which might prevent researchers from exploiting further this
particular research domain.
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4.3. Exploitation of EO Data and Crowdsource Data Gathering Tools
4.3.1. Environmental/Climatic EO Variables

Among the different predictors observed in the literature, the vast majority of articles
used variables that correspond to data on land (e.g., land cover (n = 22), soil and urban
surfaces (n = 8), and vegetation (n = 32)), as well as water (n = 6) and air (air quality (n = 2),
rainfall (n = 4) and temperature (n = 5)). Articles predominately chose to incorporate
predictors related to topographic features resulting from EO-derived digital elevation
models (n = 23) and to land cover objects (n = 22), with an equal representation of these
datasets. Three publications [7,88,125] exploited the EO-data only as gridded cells (e.g.,
30 m × 30 m area coverage) and therefore were characterised as not applicable (N/A), and
excluded for this section.

Topography seemed a significant factor in various applications and predominantly
in the natural hazards category. Six articles [98–102,107] used the digital elevation/terrain
models (DEM/DTM) to extract topographic parameters as predisposing factors, or as the
driving force, propagating the channel flow over the gridded floodplain surface [98,99,105].
Indeed, the DEM/DTMs have been associated with several natural hazard cases, such as
flood, fire risk assessment, etc., with the majority of them using the first and the second
derivatives, i.e., slope angle and curvature, and aspect. Zeng et al. [100] characterised these
factors as very good proxies in flood susceptibility models. In Kibirige and Dobos [69]
the variables slope, aspect and relief showed the highest level of significance and the
Pearson’s correlation to positively exceed the 0.5, compared to the in situ soil moisture
values. Additionally, the United States Forest Service (USFS) agency indicated that the
aspect, slope position and slope steepness factors greatly influence the frequency and
severity of the wildland fire behaviour [128], as the fire is tended to transfer faster in steeper
inclinations. Subsequent hydrological variables such as flow direction, flow accumulation
and the Compound Topographic Index (CTI) were found in three corresponding studies,
i.e., [69,100,101]. The CTI, also known as Topographic Wetness Index (TWI), is a product of
upslope areas, flow slope, and geometry functions [129], and therefore a good indicator
for runoff risk assessment [130]. Additional environmental studies related to freshwater
degradation (n = 1|[123]), road trace identification (n = 1|[116]), urban LC (n = 1|[90])
and forest plantations mapping (n = 1|[81]) were chosen to exploit the above topographic
indicators. A noteworthy case was found in Venter et al. [120], in which both DTM and the
Digital Surface Model (DSM) were produced from LiDAR airborne laser scanning (ALS)
mission, in order to extract the vegetation canopy height model (CHM), and additional
variables corresponding to terrain’s ruggedness. The CHM was calculated by subtracting
the DTM from the DSM layers. Consequently, morphological metrics of sky view factor
(SVF) resulting from hillshade, mean object height, fractional cover, and neighbourhood
heterogeneity in object height were used to investigate the microscale temperature effects
in urban canopies.

LULC maps were explored by many cases, mostly identified in the Vegetation mon-
itoring articles (n = 12), where information of forested and cultivated areas as well as
different vegetation species (e.g., deciduous forests, shrubs, etc.), was retrieved (n = 6).
Multiple LULC data, varying in space (e.g., spatial resolution ranging from 30 to 1000 m)
and time (e.g., reference year of production ranging from 2000 to 2018) were fused with
the intention to produce an accurate global vegetation map and be in accordance with
the statistical findings provided by the Food and Agriculture Organisation of the United
States (FAO) and national authorities. Schepaschenko et al. [83,84] claimed that hybrid
results are of paramount importance, as so far, the intense pressure in forests arising from
anthropogenic and natural disturbances, produce uncertainties and large disagreements
between the different products. Indeed, global forest models (e.g., G4M) [131], as well as
economic, biophysical, and climatic models e.g., GTAP, IMAGE, GLOBIOM, IMPACT [132],
have significant differences in terms of their outputs. The same concept was applied by
Fritz et al. [3], and Gengler and Bogaert [80] in the production of cropland maps. An excep-
tion to the above is Hansen’s global forest cover map, indicated as the most accurate forest
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map that has been produced so far [85]. Table 5 illustrates the LULC and forest/cropland
maps found in the literature. It seems that most of the products are referenced mainly
in four articles [83–85,96]. Two articles [74,75] exploited the annual vegetation dynamics
of MODIS data (i.e., MCD12Q2) to identify the different phenophase stages (e.g., Start of
Season or End of Season), expressed as date of the year-DOY.

Table 5. EO-generated LULC products that were found across the literature, alongside their data
sources (All websites have been accessed on 28 February 2022), where are accessible and creation date.

LULC Dataset Reference Year Resolution Source Study IDs

Global Datasets

GlobeLand30 2010 30 m http://www.globallandcover.com/ [83,95]

GlobeCover 2009 300 m http://due.esrin.esa.int/page_
globcover.php [3,83,84,96]

Climate Change Initiative land
cover (CCI-LC) 2010 500 m http://www.esa-landcover-cci.org/ [80,83–85,112]

Global Land Cover project
(GLC2000) 2000 1000 m http://bioval.jrc.ec.europa.eu/%2

0products/glc2000/products.php [3,83–85,96]

Global Land Cover by
National Mapping

Organisations
2003 1000 m http://www.iscgm.org/GM_glcnmo [84,85,96]

MODIS land cover
(MCD12Q1) 2001–2012 500 m https://lpdaac.usgs.gov/data_

access%2030 [74,75,83–85]

MODIS VCF 2000–2010 250 m http://modis-land.gsfc.nasa.gov/vcc.
html [83–85]

Landsat VCF 2000 30 m http://www.landcover.org/ [84,85]

FAO forest map 2010 250 m http://www.fao.org/forestry/fra/80
298/en/ [83,85]

Hansen′s Tree Cover 2000–2012 30 m http://earthenginepartners.appspot.
com/science?2013?global?forest/ [83–85]

GLC-SHARE (FAO) 2014 1000 m http://www.glcn.org/databases/lc_
glcshare_en.jsp [83]

Sexton et al. tree canopy 2005 30 m http://landcover.org/data/
landsatTreecover/ [83]

forest maps from ALOS
PALSAR 2007–2010 100 m http://www.eorc.jaxa.jp/ALOS/en/

palsar_fnf/fnf_index.htm [83]

Growing Stock Volume (GSV)
Envisat 2010 1000 m ESA [133] [83]

GEOCOVER 2000 30 m http://zulu.ssc.nasa.gov/mrsid// [3]
Hybrid forest cover Biomass

layer 2015 1000 m http://biomass.geo-wiki.org. [84]

Regional/National Datasets

Pan European CORINE Land
Cover

2018, Every 6
years 1:100,000 http:

//land.copernicus.eu/pan-european [3,95,98,120]

AFRICOVER 2002 1:200,000 http://www.africover.org/ [3]

Brazil PRODES forest mask 2000–2013 30 m http://terrabrasilis.dpi.inpe.br/en/
download-2/ [84,85]

Pan-European
Forest/Non-Forest Map 2000, 2006 30 m http://glcf.umiacs.umd.edu/data/

landsat/ [84,85]

Land Use of Australia 2005–2006 30 m ABARES: https:
//www.agriculture.gov.au/abares [84,85]

Congo Basin forest types map 2007 300 m http:
//www.observatoire-comifac.net/ [84,85]

National Land Cover Database
for ths US 2006 30 m https://www.mrlc.gov/data [134]

Land cover of Russia 2005 1000 m Schepaschenko et. al. [134] [134]
Forest mask European Russia 2000 250 m Potapov et. al. [135] [134]

http://www.globallandcover.com/
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
http://www.esa-landcover-cci.org/
http://bioval.jrc.ec.europa.eu/%20products/glc2000/products.php
http://bioval.jrc.ec.europa.eu/%20products/glc2000/products.php
http://www.iscgm.org/GM_glcnmo
https://lpdaac.usgs.gov/data_access%2030
https://lpdaac.usgs.gov/data_access%2030
http://modis-land.gsfc.nasa.gov/vcc.html
http://modis-land.gsfc.nasa.gov/vcc.html
http://www.landcover.org/
http://www.fao.org/forestry/fra/80298/en/
http://www.fao.org/forestry/fra/80298/en/
http://earthenginepartners.appspot.com/science?2013?global?forest/
http://earthenginepartners.appspot.com/science?2013?global?forest/
http://www.glcn.org/databases/lc_glcshare_en.jsp
http://www.glcn.org/databases/lc_glcshare_en.jsp
http://landcover.org/data/landsatTreecover/
http://landcover.org/data/landsatTreecover/
http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm
http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm
http://zulu.ssc.nasa.gov/mrsid//
http://biomass.geo-wiki.org.
http://land.copernicus.eu/pan-european
http://land.copernicus.eu/pan-european
http://www.africover.org/
http://terrabrasilis.dpi.inpe.br/en/download-2/
http://terrabrasilis.dpi.inpe.br/en/download-2/
http://glcf.umiacs.umd.edu/data/landsat/
http://glcf.umiacs.umd.edu/data/landsat/
https://www.agriculture.gov.au/abares
https://www.agriculture.gov.au/abares
http://www.observatoire-comifac.net/
http://www.observatoire-comifac.net/
https://www.mrlc.gov/data
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Furthermore, the LULC products were identified also in the flood susceptibility cases
(n = 2), where the LC vegetation classes were proven to have a negative association with
flood events [100] or to correspond with the surface roughness properties of the floodplain,
with which the Quasi-2D models propagate the flow. This different classification schema
over the initial land use categories is denoted as Manning’s roughness coefficient [98].
The second LULC classification schema was developed by the World Urban Database and
Access Portal Tools (WUDAPT) and adopted by [2,97,136], in which the urban areas are
denoted with 17-LCZ typologies, presenting different micro-climatic conditions. More
information on the LCZ classification schema are available in Steward and Oke [137].
Finally, LULC was used to reveal information regarding the land cover/urban objects
(e.g., [95,96,112]), and specifically considering the effect of the agriculture activities on
water quality [122,123], or the signal loss due to dense vegetation presence [116].

EO spectral indices are important indicators, present in most examined categories,
except for the Humanitarian and Crisis Response, and Ocean and Marine monitoring
applications. Table 6 shows a preference in Vegetation indices (11/18 total number of
identified indices), and especially (n = 12) in the Normalised Difference Vegetation Index
(NDVI). Maximum NDVI images per annum were obtained in three articles [45,90,91]
to eliminate cloud contamination over the scenes and ameliorate any seasonal and inter-
annual fluctuations [138]. NDVI was not restricted only to LULC studies but was also
used to detect vegetation species (e.g., invasive buffelgrass [78] and urban orchards [46]),
and fuel loads [107], as it can capture variations in chlorophyll absorption patterns of
plants, even in cases of understory vegetation (e.g., shrubs, grass), where the reflectance
response in Near InfraRed (NIR) is lower. Continuing, the Enhanced Vegetation Index (EVI)
was present mostly in time-series models (n = 4), identifying the seasonal disparities in
deciduous forests. An interesting method was Delbart’s et al. [73], where the Normalised
Difference Water Index (NDWI) was exploited for the green-up estimation date, as an
effective solution to avoid false detection due to snowmelt.

Two studies produced multiple vegetation indices calculated by Very High Resolution
(VHR) data of the RapidEye satellite [107] and the High-Resolution True-colour Aerial
Imagery (TAI) of Getmapping [139], with the latest to leverage on pixel’s colour intensity
in visible red and green. Apparently, in land cover classification studies, additional indices
are incorporated, distinguishing the impervious surfaces and bare soil lands. Paradigms
are the most known (a) Normalised Difference Build-Up Index (NDBI), and the newer
indices of (b) built-up index (BuEI), (c) soil index (SoEI), (d) bare soil index (BSI), and (e)
index-based built-up index (IBI). Eventually, the Modified Normalised Difference Water
Index (MNDWI) seemed to be preferrable compared to the NDWI, when the extraction of
water areas is requested, as it is able to suppress the reflectance response of vegetation and
built-up areas, and thus to perform better in water detection [102,104]. Therefore, when
data from multiple satellite sensors are used, the pre-processing technique of atmospheric
correction (e.g., dark subtraction) was applied [88,102,107] in order to avoid inconsistencies
related to the sensor’s viewing angle and the different illumination conditions.
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Table 6. Characteristics of the EO-generated indices that were found across the literature.

Index Definition Source Study IDs

V
eg

et
at

io
n

NDVI NIR− RED
NIR + RED

Rouse Jr et. al. [140] [45,46,69,78,81,89–91,94,114,120]

EVI 2.5(NIR− RED)

1 + NIR− 2.4RED
Huete et. al. [130] [60,72,75,93]

RSR NIR
RED

× SWIRmax − SWIR
SWIRmax − SWIRmin

Heiskanen [141] [107]

SR NIR
RED

[107]

GRVI GREEN − RED
GREEN + RED

Tucker [142] [79,107]

NDRE NIR− RED
NIR + RED

Barnes et. al. [143] [79,107]

GNDVI NIR− GREEN
NIR + GREEN

Buschmann and Nagel [144] [79,107]

GCVI NIR
GREEN − 1

Gitelson et. al. [145] [82]

ExcessGREEN (2× GreenCHROMATIC)− RedCHROMATIC− BlueCHROMATIC Meyer & Neto [146] [79]

ExcessRED (1.4× RedCHROMATIC)− GreenCHROMATIC Meyer & Neto [146] [79]

ExGREENminusExRED ExcessGREEN − ExcessRED Meyer and Neto [146] [79]

U
rb

an
\B

ar
e

So
il

NDBI SWIR− NIR
SWIR + NIR

Zha and Gao [147] [90,92,94]

BuEI 1.25× (SWIR− NIR) + (2.5× BLUE−MIR)− 0.25× RED Feyisa et. al. [148] [90]

SoEI 0.03× (GREEN − 0.11× BLUE) + (1.56× RED + 1.1× NIR) + 1.37×MIR +
(1.37×MIR− 0.61× SWIR) Feyisa et. al. [148] [90]

IBI
2SWIR

SWIR + NIR
− [NIR/(NIR + RED) + GREEN/(GREEN + SWIR)]

2SWIR
SWIR + NIR

+ [NIR/(NIR + RED) + GREEN/(GREEN + SWIR)]

Xu [149] [120]

BSI SWIR− RED
NIR + BLUE

Rikimaru et al. [150] [89]

W
at

er

NDWI NIR− SWIR
NIR + SWIR

Gao [151] [73,89,94]

MNDWI GREEN − SWIR
GREEN + SWIR

Xu [152] [90,102,104]
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Non-invasive technologies and applications on air and water degradation monitoring
were leveraged by a hybrid schema of ground- and satellite-based predictors to monitor
areas of increased air pollutants concentrations (e.g., PM2.5) or to illustrate variations in
microclimatic temperatures [153]. Investigating studies in the first, Ford et al. [119] explored
the air quality-related product of Aerosol Optical Depth (AOD) derived by in situ sensors
(i.e., AERONET sites), low-cost crowdsourced sensors and the satellite AOD products
from MODIS (Aqua and Terra satellite platforms) to reveal the PM2.5 concentrations over
northern Colorado. Furthermore, the air temperature was directly measured by in situ
meteorological stations [121] and gridded interpolated data (i.e., Daymet and PRISM) [71],
or indirectly by using satellite measurements of land surface temperature (LST) [120] as a
proxy for the near-surface air temperature (Tair) measurements. Precipitation and water
level measurements play an important role in flood risk assessment cases (n = 3|[99–101]).
Additionally, Walles et al. [78] used precipitation data to reveal correlations with the
buffelgrass presence, claiming a faster response to water than native plants, breaking the
dormancy phenophase level. In these cases, the precipitation layer was derived from
gridded data of the “Parameter-elevation Regressions on Independent Slopes Model”
(PRISM) and the static physical rainfall or water level sensors. Finally, the Forel-Ule colour
index (FUI) scale was introduced by Garaba et. al [124] as a method to distinguish the
watercolours and illustrate primary findings regarding the concentrations of water masses.
As a consequence, associations with factors related to water quality such as turbidity,
coloured dissolved organic matter (CDOM, also called Gelbstoff), inorganic suspended
particulate material (SPM), as well as chlorophyll-a (chl-a), can be achieved [124].

4.3.2. Non-Environmental EO Variables

Although the environmental variables are presented predominantly in this scop-
ing review (n = 57/61), four articles incorporated non-environmental variables, Table 7.
Gueguen et al. [111] and Herfort et al. [7] utilised human settlements and urban footprint
datasets (e.g., High-Resolution Settlement Layer (HRSL), Global Urban Footprint (GUF),
etc.) along with population density layers, in order to produce population layers at a finer
scale. So far, existing population layers are created in conjunction with ancillary data such
as road networks, census data at coarse resolutions ranging from 100 m to 1 km. This
raises awareness, especially in developing countries, where road networks are not well
recorded, leading to incomplete or innacurate information. Juan and Bank [126] utilised the
annual nightlight emissions retrieved by the Defense Meteorological Satellite Program’s
Operational Linescan System (DMS-OLS) as an indicator to map electrified regions over
Syria that were assumed to be less prone to reveal conflicts and human losses. Eventually,
radiological data retrieved by ground stations are exploited by [110], investigating the
spatial expansion of nuclear radiation over the Fukushima region, as well as the spots of
the highest risk for citizens.

Table 7. Articles that used non-environmental indicators.

Non-Environmental Indicators Study IDs

Demographic data (n = 2)

Population density [7,111]

Other Non-environmental data (n = 2)

Night Lights [126]

Nuclear Radiation [110]

4.3.3. Satellite Data and Sensors Utilised in Data Fusion Applications

Satellite EO data were the main data source across all thematic categories, with only
two articles considering data obtained from drones (n = 2| UCXp-Aerial [109] and HR
TAI [79]). In Figure 7 the vast majority of articles leveraged optical and multispectral
sensors except for seven articles, where SAR data (i.e., ALOS PalSAR and Sentinel-1) [81,91],
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LiDAR 3D point measurements [118], and combined signals of Navstar GPS and Russian
GLONASS Global Navigation Positioning Systems (GNSS) [77,116,117,154] were used.
Landsat multispectral sensors (e.g., 5 TM, 7 ETM, or 8 OLI) were exploited in 16 articles
(LULC = 10; Air monitoring = 2; Natural Hazards = 3; Vegetation monitoring = 1), with
the Landsat-8 OLI dominating among the others. The searching period itself is related to
this as well as the “scan line corrector off” (SLC-off) of Landsat-7 ETM+ which drastically
decreased its usability [45]. Among different application fields, Landsat data was used to
derive spectral indices (e.g., NDVI = 8| [45,69,81,90–92,100,120]; IBI = [120]; LST = [120];
NDBI = 2|[90,92]; MNDWI = 3|[90,102,104]; BuEI = [90]; SoEI = [90]), as well as to generate
LULC maps (n = 7| [2,21,89,97,122,123,136]). Multispectral satellites, described by similar
spatiospectral characteristics, such as Sentinel-2 (10 m), and Earth Observation-1 Advanced
Land Imager (EO-1 ALI, 25 m) were used as alternatives by five articles [81,89,94,104,120].

Figure 7. Cross-matrix analysis: Summarized view of the sensors identified in the examined thematic
domains. Zero values indicate an absence of use of the specific sensor in the domain. Tha EO satellite
data are categorised following the thematic domains that were chosen to be analysed (e.g., Air: Air
quality, HuCR: Humanitarian crisis and response, LULC: Land Use/Land Cover, NatHaz: Natural
Hazards, Urban and Vegetation: Urban and Vegetation monitoring, and Soil: Soil monitoring).

Satellite sensors at lower spatial resolutions (≤250 m), such as MODIS appeared in
regional or global scale studies (n = 5), providing “analysis-ready data”(ARD) of surface
reflectance, phenology related indices such as EVI [60,93], NDVI [78], LC (NLCD2011) [60],
and the Aerosol Optical Thickness/Depth (AOT/AOD) measurements at 550 nm [119]
(MYD04/MOD04). Examples of the MODIS datasets that were used across the litera-
ture are the Nadir Bidirectional Reflectance Distribution Function-Adjusted Reflectance
(NBAR) (MCD43A4, Version 005) [72], 8-day surface reflectance data at 500 m spatial
resolution (MOD09A1 Version 006), the twice-daily surface reflectance data (MOD09GA
and MYD09GA, Version 006) [60], the Vegetation Dynamics dataset (MCD12Q2 Version
006) and the Annual Land Cover Type at 500 m (MCD12Q1 Version 006). Furthermore,
multispectral imageries from the MERIS instrument (300 m spatial resolution) were used
by Garaba et al. [124] to derive FUI colour maps over the North Sea. Continuing, VHR
EO-data were exploited by eight studies [44,46,87,103,104,107,111], with all of them ori-
entating their applications in urbanized environments, barely incorporating the whole
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cover of the examined city. In smaller-scale applications, the VHR data were used as
they were able to distinguish urban objects (i.e., buildings, roads and their state) and
extract complex semantic contents, including building state, population density, road net-
work, flooded areas in dense urban environments and others [114]. Following the above,
GaoFen-2 (GF-2) [44,87] and WorldView-2&3 [46,104,111,114] satellite sensors were used
to derive high-level semantic objects and high-resolution population density information.
Subsequently, Ahmad et al. [103] and Olthof and Svacina [105] exploited the Planetscope’s
spectral bands in visible and near-infrared to identify image patches that could be char-
acterised as flooded. Eventually, RapidEye imagery at the spatial resolution of 5 m was
used in two articles [105,107] to estimate the fuel properties in small forest canopies and the
maximum flood extent over a region with a diverse land cover. Finally, the DigitalGlobe
satellite imagery (0.3 spatial resolution) was employed by Wang et al. [82], to ensure that
the majority of the crowdsourced geotagged photos were located inside the crop field and
therefore the selected features were denoted with the correct labels.

A significant number of studies (n = 30) chose to work on the raw satellite data, in
contrast with the aforementioned indices and products. In such cases, in addition to the
initial spectral information (n = 8), textural and colour features (n = 5), spectral features and
their derivatives (n = 17) were identified. In the first case, features of the Grey-Level Co-
occurrence Matrix (GLCM) [109] such as dissimilarity, entropy, angular second moment [90],
intensity and brightness [46] were used in object-based classifications problems, with
the most prominent being Geographic Object-Based Image Analysis (GEOBIA)) [109]. In
particular, Puissant et al. [155] and Baker et al. [79] referenced them as effective indicators for
describing different LC types, leading to significant improvements in image-segmentation
problems. Subsequent transformations of EO data expanded the already enormous feature
presented in the previous section, for instance focusing on the use of dimensionality
reduction techniques, such as the Principal Component Analysis (PCA) and Minimum
Noise Fraction (MNF) [79], simple band ratios, multispectral surface reflectance values [89],
and images’ vertical and horizontal rotations (e.g., 0◦ and 90◦) [86].

Furthermore, backscatter coefficient features (i.e., in decibel-dB) seem a common trans-
formation when SAR data are exploited. In two articles [81,91], SAR amplitude images
of dual co- and cross-polarization nodes (e.g., ALOS PALSAR: HH, HV; Sentinel-1A&B:
VV, VH; Radarsat-2: HH, HV) were utilised to discover different LC types (e.g., cropland
areas) as they compensate potential data losses due to weather conditions (e.g., cloudy
weather or with haze). Correspondingly, band ratios (e.g., HV/HH) and the backscatter
transformation in gamma naught (γ0

E) [156] and sigma naught (σ0
E) [69,105] were applied

in both cases. Olthof and Svacina [69] capitalised on the ability of SAR data to capture
the slight movements or changes in the landscape, between two different moments. In
particular, using the interferometric coherence between four complex Sentinel-1 images ac-
quired before the event (pre-event coherence, γ pre) and during or after the event (co-event
coherence, γ co), flooded regions were detected. Examining the vegetation monitoring
articles, GNSS bistatic signals were used in two articles [77,154], enabling the calculation
of the signal strength loss (SSL) for estimating the forest canopy. The distributions of SSL
(denoted by the carrier-to-noise ratio (C/N0)) were estimated, subtracting the two acquired
signals, which are retrieved by two independent receivers, over the same period and under
the same sky conditions; the first placed in an open-space region, and the second inside the
forested area. Finally, a single article [118] constructed an EO-image frame by interpolating
values received by LiDAR point cloud density data.

4.3.4. Web Services and Benchmark Datasets Assisting with the Data Fusion Models’
Data Needs

Publicly available datasets, and online web services with EO data at VHR were also
exploited and are presented below. In particular, up-to-date and free of charge RGB
images extracted by Google Earth maps and Microsoft Bing map servers in zoom level
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18 (i.e., approximate resolution of 0.6 m) tiles (256 × 256 pixels) were used by six arti-
cles [7,64,112,113,115,117] and have been fed into deep learning models.

Consequently, four articles used already available datasets, denoted as “Gold-Standard
benchmark datasets”. Kaiser et al. [115] incorporated large datasets downloaded from
Google maps and OSM for the cities of Chicago, Paris, Zurich, Berlin, and the 2D Pots-
dam International Society for Photogrammetry and Remote Sensing (ISPRS) benchmark
dataset that consists of 38 true-colour patches at 5 cm spatial resolution, under a fully
connected neural network (FCN) architecture. Chen et al. [113] implemented a customised
CNN model based on the MapSwipe dataset, the OSM and the Offline Mobile Maps and
Navigation (OsmAnd) GPS tracking data, attempting to overcome the challenges of in-
completeness and heterogeneity. Herfort et al. [7] built a building footprint model based
on a pre-trained model, and the Microsoft COCO dataset. The viability of the residential
classification model of Chew et al. [112] was evaluated based on the ImageNet dataset. In
principle, the ImageNet benchmark comprises over 1.2 million labelled HR images and
1000 categories, collected by the Amazon’s Mechanical Turk [157]. Finally, Li et al. [64]
used the four benchmarking datasets of UC-Merced, SAT-4 and SAT-6, and Aerial Image
Dataset (AID) to evaluate the effectiveness of their benchmark dataset (i.e., RSI-CB). Table 8
presents all the available datasets that were used by the selected studies, along with the
generated ones.

Table 8. List of the available benchmark datasets that were found across the literature and can be
used for future researches. (All websites have been accessed on 28 February 2022).

Datasets Source Study
IDs

G
ol

d-
St

an
da

rd
be

nc
hm

ar
k ImageNet (ILSVRC) https://image-net.org/download.php [112]

UC-Merced http:
//weegee.vision.ucmerced.edu/datasets/landuse.html [64]

SAT-4 and SAT-6 https://csc.lsu.edu/~saikat/deepsat/ [64]
PASCAL VOC http://host.robots.ox.ac.uk/pascal/VOC/ [115]

ISPRS semantic labeling
benchmark

https://www2.isprs.org/commissions/comm2/wg4
/benchmark/2d-sem-label-potsdam/ [115]

Microsoft COCO https://paperswithcode.com/dataset/coco [7]
AID https://captain-whu.github.io/AID/ [64]

RESISC45 https://www.tensorflow.org/datasets/catalog/resisc45 [64]

Pr
od

uc
ed

da
ta

se
ts

in
th

e
li

te
ra

tu
re

MapSwipe https://mapswipe.org/en/data.html [113]
RSI-CB https://github.com/lehaifeng/RSI-CB [64]

MC-CNN https://github.com/ChenJiaoyan/DeepVGI-0.2 &
DeepVGI-0.3 [113]

Land cover change dataset https://pub.iges.or.jp/pub/openstreetmap-land-cover-
change-dataset-laguna [91]

Brick kilns locations https://doi.org/10.1016/j.isprsjprs.2018.02.012 [125]

Plantation map
Dataset:

https://doi.pangaea.de/10.1594/PANGAEA.894892,
Script: https://github.com/utu-tanzania/sh-plantations

[81]

Global croplands http://cropland.geo-wiki.orgwebsites [3]
Maize annotated images with

disease symptoms https://osf.io/p67rz/ [86]

LULC dataset http:/ht/pub.iges.or.jp/modules/envirolib/view.php?
docid=6201 [45]

Tair dataset https://github.com/NINAnor/cityTairMapping [120]
Hybrid forest map http://Russia.geo?wiki.org [83]

4.3.5. CS Platforms for EO Applications

Among the 66 selected papers, 50 articles use passive crowdsourcing data and tools.
On the contrary, the active involvement of citizens [30] is described in 39 articles, Figure 8.
Analysing the platforms and tools, it is mandatory to mention that all articles presented
information that is always accompanied with a spatial reference, referring to the observa-
tions’ direct geolocalized position (e.g., geotagged photos, environmental measurements
georeferenced by the GPS-enabled smartphones), or to its indirect relative position, identi-
fied by the captured landscape, or by deciphering of textual descriptions (e.g., YouTube

https://image-net.org/download.php
http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
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videos [103]). See et al. [29] denoted the aforementioned resources as “Crowdsourced
Geographic Information” (CGI), as they retain the spatial dimension in the crowdsourcing
information. It should be noted that initiatives references in this scoping review had the
context of allowing citizens to use their creativity and provide critical information for the
wider good; as such, they are characterised as “Free contribution tasks” [158,159]. Indeed,
the CS data collection method in all selected articles did not include any type of competitive
task or tournament or reward based on the validity of the received records.

4.3.6. Passive Crowdsourcing Tools

Analysing the literature, Ahmad et al. [103] was the only article that combined passive
contributions -multi-modal information (text, images, video)- and active contributions
(e.g., questionnaires) as a validation process. In the second case, the Microworker (https:
//ttv.microworkers.com/; accessed on 28 February 2022) online platform was used to
conduct two micro-tasking CS campaigns with a small reward per task (0.75 USD). One
article [71] did not provide enough information on the technology used and was excluded.
In over half of the papers reviewed describing the tools used, crowdsourcing platforms
was the relevant means in the majority (55%) of the total corpus, while 53.8% and 56%,
for the corresponding categories. Active Participatory Sensing (APS) advocates the digital
platforms as the most efficient technology, in which citizen scientists can contribute remotely,
avoiding exhaustive and sometimes expensive field campaigns. On the contrary, articles
of “Passive crowdsourcing” (PCS) further included media (22.5%), photosharing services
(14%), smartphones (4%) and field sensors (2%). Ghermandi et al. [35] testified in their
systematic literature review the rapid growth in published manuscripts that base their
methods on social media applications. The automated retrieval of social data using sites’
Application Programming Interfaces (APIs) is undoubtedly an easy to use data collection
means, onboarded in various domains.

Examining the crowdsourcing platforms, 16 articles benefited from the open data
sources in Open Street Map (OSM), one of the most widely-used crowdsourced geographic
data (CGD) in the RS applications [45,91–93,114]. Currently, the humanitarian organisations
of the American Red Cross (ARC) and the dedicated OSM team for humanitarian mapping
activities (HOT) rely on the volunteer-based contribution of geocoded datasets [90,113]
being confident that OSM data could be a complementary or even alternative source of train-
ing data [45]. This class-labelled VGI data are a low-cost and useful approach in cases where
other training data of higher quality cannot be collected. For such cases, the OSM2LULC
software [160] has been exploited. Currently, four different versions are available, adopting
different geospatial technologies (e.g., GRASS GIS and PostGIS handling the vector data
and GDAL and NumPy for the raster data models) and 6 primary tools, which automati-
cally convert OSM tagged features to the corresponding nomenclatures of the Corine LULC
level 2, the Urban Atlas and the GlobeLand30 [94]. The OSM data are available under
an Open Database (ODbL) license [2] and any derivative product is provided under the
same license at no cost. When it comes to the quality of the OSM data, there is always
a scepticism among decision makers [89]. Therefore, eight articles [44,89,94,95,113,115]
oriented their studies on methods that could overcome such limitations, generating a land
cover product at higher quality. A contradictory study is Liu et al. [90], who reached
an overall accuracy (OA) of 95.2% using the OSM in the context of a forest cover appli-
cation. Additional platforms are the Geo-Wiki (n = 2|[85,96]) with available land cover
data collected during former citizens campaigns, the MapSwipe App (n = 2|[7,113]) de-
veloped by Doctors without Borders/Médicins Sans Frontièrs (MSF) within the Missing
Maps Project [63], the USA National Phenology Network (n = 6|[60,71,72,74,75,78]) and
the PlantWatch Citizen Science project (www.plantwatch.ca; accessed on 28 February
2022) [73], where both experts and citizen scientists are participating in the collection of
key phenophase events. Except for the environmental applications, the Syria Tracker CS
tool was used by Juan and Bank [126] to collect spatial records of violations in Syria. Syria
Tracker (https://www.humanitariantracker.org/syria-tracker; accessed on 28 February

https://ttv.microworkers.com/
https://ttv.microworkers.com/
www.plantwatch.ca
https://www.humanitariantracker.org/syria-tracker
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2022) is part of the Humanitarian Tracker project that incorporates data from citizens as
well as news reports, social media, etc. in order to provide updated crisis maps over Syria.

Figure 8. The share of the selected papers organised with respect to the participation type (active
or passive), and the crowdsourcing platforms and tools that were used in both cases. The selected
papers may contain at least one or more tools and therefore are included in each of the tools.

Traditional mainstreaming media such as Twitter (n = 3), Sina and Weido (n = 2),
Baidu (n = 3), and Youtube (n = 3) were used to cover the absence of reference data in
urban planning applications [92,114] and in studies for hazard preparedness and man-
agement [98,100,103,104]. In those cases, unconventional data (text or images), accom-
panied with their relative position were extracted by standardised APIs. Panteras and
Cervone [104] retrieved 2393 geotagged tweets from the USA Mongo DB server, using the
R twitter library. Hashtags and the area of interest were used to assist with the filtering



Remote Sens. 2022, 14, 1263 27 of 66

process and the identification of flooded areas. Subsequently, Ahmad et al. [103] integrated
social media sources (e.g., YouTube, Twitter, etc.) and the photosharing repositories of
Google, and Flickr into an automated flood detection system. In this system, images, videos,
web crawlers and text translators (i.e., Google Translator API) were used along with the in-
ternational disaster database EM-DAT (supported by the World Health Organisation-WHO)
in order to collect, link and analyse an unlimited number of reports on natural hazard
events. Additionally, the TextBlob NLP Python library was used to discard any irrelevant
tweets, while it identified cities’ locations and names, where incidents were reported. Annis
and Nardi [98] adopted a similar approach. Five articles [87,88,98,102,103] illustrated the
effectiveness of using photo-sharing services with the most known to be Flickr. Flickr geo-
tagged photos can be retrieved through the public API performing queries related to their
title, description, tags, date, and image location [88]. Sitthi et al. [88] explored, apart from
the location and content, their colour characteristics (e.g., RGB histogram and identified
edges), generating LC features. In this case, the Otsu binary segmentation algorithm, the
high pass Sobel kernel filter and the colour vegetation indices were implemented to first
isolate the land cover classes from the background image content, and to generate the
features using the probabilistic Naïve Bayes (NB) algorithm to extract the CS land cover
map. Misdetections in the foreground/background segmentation were identified due to
background illumination, different acquisition dates, and image angles, leading to 12.2%
of incorrect classifications; even so, the NB classifier performed with an accuracy greater
than 82% (testing kappa-coefficient, precision, recall, and F-measure). Two additional
websites that are worthy to be mentioned are Panoramio [87] and the PhenoCam Network
(https://phenocam.sr.unh.edu/webcam/; accessed on 28 February 2022). Having access to
a great number of raw vegetation photographs, Melaas et al. [72] monitored the phenologi-
cal dynamics over various vegetation species using time-series of the retrieved images and
the green chromatic coordinate (GCC) index.

Exploring the studies that correspond to the bottom of Poblet’s pyramid [32], raw
crowdsourced data were utilised by three articles [97,116,117] in which GPS traces from
smartphone devices and data from low-cost weather stations were used. In the first case,
the GPS traces of hikers, bikers, or taxi drivers were used as combined trajectory points
to identify missing footpaths and road networks. Li et al. [117] presented four methods
(i.e., (i) trace incrementing, (ii) clustering, (iii) intersection linking and (iv) rasterization),
regarding the construction of a road map of GPS trajectory data. The trace incrementing
requires an initial GPS trajectory of high quality to concatenate the remaining data using
certain models (e.g., weighted Delaunay triangular model). This method is sensitive to data
of low-frequency and high noise. In clustering methods, unsupervised algorithms are lever-
aged, such as Density-based spatial clustering of applications with noise (DBSCAN) and
K-means, whereas the third method finds centerlines and notes which have to be linked. In
the last, data are first converted to a greyscale raster image, with the different colour tones of
grey depicting the number of GPS traces. Then, morphological operations, such as erosion
can be applied to construct the final layer. Additionally, geotagged photographs were used
for crop type identification [82]. Through the Plantix Android geotag application, created
by Progressive Environmental and Agricultural Technologies (PEAT) in 2015, farmers are
able to collect photos of their crops and identify pests, diseases, and nutrient deficiencies
using their mobile phone camera and image recognition software.Hammerberg et al. [97]
incorporated weather data received by the Personal Weather Station Network (PWSN)
of the Weather Underground database (https://www.wunderground.com/; accessed on
28 February 2022), in which citizens voluntarily provide measurements via a simple sign in
process and a set of Netatmo stations with a temperature accuracy of ±0.3 ◦C, a humidity
accuracy of ±3%, and a barometer accuracy of ±1 mbar.

4.3.7. Active Participatory Sensing Tools

Articles in the participatory sensing showed a wider variety in digital platform; among
which we can refer to the use of Geo-Wiki (n = 4), Zooniverse (n = 2), Tomnod (n = 1),
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Amazon Mechanical Turk HITs (n = 1), the Open Foris Collect Earth (n = 1), and PyBossa
(n = 1). Most of the use cases were dedicated to the interpretation of land cover [3,80] and
forest patterns [83,84]. In three articles [3,80,84] the Geo-Wiki was used to define training
datasets in a stratified way, focusing only on areas where the desired label is depicted. The
Geo-Wiki competitions are organised by the International Institute for Applied Systems
Analysis (IIASA) and last approximately one year. A massive citizen science dissemination
campaign is initiated each time including mailing lists, conferences, papers, and social
networking incentives, with participants to be from experts to ordinary citizens [161]. The
Tomnod platform, initiated by the Digital Globe, was exploited by Guengen et al. [111] to
identify unmapped settlements in low-income countries. Continuing, the CS projects of
“Slavery from Space” (https://www.wunderground.com/; accessed on 28 February 2022)
and “Heritage Quest” (https://www.zooniverse.org/projects/evakap/heritage-quest; ac-
cessed on 28 February 2022) were initiated in Zooniverse. On the Zooniverse website,
any user registration is required and thus the number of participants is identified by their
Internet Protocol (IP) address. For both articles, a record was approved as a valid measure-
ment, when at least 4–8 participants have identified and labelled it in a similar location.
The non-volunteered crowdsourcing platform of Amazon Mechanical Turk (MTurk) was
explored by Wiesner-Hanks et al. [86], where participants were rewarded with a small price
(USD 0.03/Human Intelligence Task-HIT), and received an additional reward when the
worker completes the task (USD 0.01/HIT). Mturk represents a modern form of low-cost
labour, where citizens work on a set of self-contained small tasks that have to be completed
in a short time [162].

Technology advances in GIS and image processing software are increasingly support-
ing citizen science projects, synthesizing what Turner [163] called “neography”. Among
the literature, the open-access GIS software, Quantum GIS (QGIS) [109], and the image
visualisation and processing software of Google Earth for desktop [101,136] and eCogni-
tion [109] seemed prominent tools to monitor aspects related to physical disturbances in
ecosystems. However, Frank et al. [109] claimed that both QGIS and eCongition are full-
featured software with many functionalities, which might be chaotic to non-experienced
users. Instead, a customised, cloud-based, lightweight labelling tool was proposed, not
only to increase user friendliness but also to diminish the geospatial labelling noise in
data collection. Suggestions are made to replace any polygon-drawing tools with more
interactive procedures, capturing the relevant records in any shape. A similar approach
was adopted by Chew et al. [112], who developed a graphical user interface (GUI) to assist
users to estimate the presence of any residence, upon predefined, equally sized grids. One
operational CS system was identified across the literature and is worth mentioning. The co-
designed, online CS survey tool “My Back Yard”, where the backyard owners could declare
the land cover characteristics of their urban garden and be informed of the neighbouring
green and blue spaces [79]. On the contrary, the accuracies of the Crowd4RS system proved
insufficient for real operations [87].

Seven articles [69,77,110,119–121,154] provided raw data of temperature, soil moisture
at a depth of 0–10 cm below the surface of the ground (Flower Power low-cost sensor
developed by Parrot S.A.), aerosols and particulate matter (i.e., PM2.5) distributions over
the atmosphere, radiation measurements of radionuclide 137Cs (counting microsievert per
minute/hour-µSv/h) and GNSS signals. Reference samples and laboratory analysis were
usually performed to calibrate the measurements. All the devices were equipped with
batteries, filters, SD memory cards and GPS receivers to record their locations. Additional
seven articles [78,82,99,107,122–124] incorporate mobile crowdsourcing applications and
wireless network stations (WNS) to collect data related to water observations (i.e., wa-
ter quality [122–124] quantity [99], flooded areas [105] and vegetation properties [78,107].
Garaba et al. [124] integrated five easy-to-handle steps in the CITCLOPS’ smartphone
app to assist citizens in the collection of optical colours of water. Shupe [122] and Thorn-
hill et al. [123] performed field-based workshops to train volunteers on the collection of
water samples, whereas in the Olthof and Svacina [105] article, an android mobile applica-
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tion was developed attempting to collect geotagged photos of flooding, when a satellite
sensor is passing through the examined area, along with a short survey on the local impacts
of the event. In the WeSenseIT (WSI) project, the WSI mobile phone app was developed and
exploited by citizens to collect both static and dynamic measurements of water level and
precipitation after a flood event in the Bacchiglione catchment (Italy). Another smartphone
application, called ForestFuels was utilised to collect observations of forest fuels loading
of different vegetation species. The application was constructed to include, GPS, com-
pass, accelerometer, camera and a training guide prior to the image collection. Eventually,
Wallace et al. [78] recruited and trained 10 citizens through the USA-NPN education coor-
dinator to provide locations, where buffelgrass were identified. Finally, two articles [21,46]
built their analysis on focus-groups, without the use of any technological equipment. Mi-
alhe et al. [21] mentioned the gender balance and the fair representation of age classes and
ethnic groups as the most critical elements in those applications.

4.4. CS Data Uncertainties and Methods Dealing with Data Curation

Methodological approaches and tools were identified, aiming to analyze the incentives
of citizens during the VGI collection and therefore certify or enhance their quality. This
section will showcase the methods and incentives identified that could lead to greater
accuracy, or ertain factors that improve the quality levels of the CS observations. In
particular, the selected articles are examined as per the phase where the validation of CS
data quality is done, denoted as “ex-ante” when the VGI quality improvement methods are
implemented before the initiation of a VGI task, and “ex-post” when the evaluation method
is occurring after the data collection process [46]. Associations regarding the crowdsourcing
tasks (i.e., Classification, Digitisation, and Conflation) [57] and the corresponding effect in
the quality of the collected CS data are also presented.

4.4.1. Ex-Ante Perspectives Related to Citizens’ Engagement and Incentives

Two articles [99,116] demonstrated two quality assessment metrics that correspond
to humans’ behaviour and their engagement level. In the first, the Secondary Human
Behaviour (SHB) empirical threshold was established to exclude variations in the collected
road traces due to sudden change in citizens’ direction. Mazzoleni et al. [99] were able
to improve the predicted outcomes of the hydrological and hydraulic models with the
integration of a certain quality weight according to the Citizen Involved Level (CIL).
Furthermore, digital forms and systematic feedback using questionnaires with learning
statements [81,103,110], and short training (e.g., using videos, manuals, online decisions
with experts, and hands-on practices), declared insightful elements that could generate the
required participants’ skills for the provision of accurate information [78,81,119,122,123,136].
In particular, Baker et al. [79] proved that limited guidance to the survey responders has
a radical effect on the provision of sufficient measurements. Thus the sense of difficulty
and inconvenience gradually attenuates citizens’ interest. Experts can act as adjudicators in
order to perform a collaborative assessment of the collected data, along with the assigned
citizens, ensuring consistency and accuracy promptly in the selection [112].

Rewarding mechanisms during and after a CS campaign undeniably offer an en-
hancement in citizens’ interest, minimising, on the contrary, the erroneous judgements.
Wiesner et al. [86] complemented that more personalised payments schemes should be
designed in the future in order to generate more dedicated contributors, with less overhead
and erroneous judgements. Subsequently, dedicated engagement campaigns (e.g., using
gamification and interactive joined virtual events) based on citizens’ socioeconomic and
educational profiles are described as an impactful action that could influence the dura-
tion of a CS survey, and the number of participants [46]. An indicative paradigm of the
above is illustrated in Boyd et al. [125] study, which demonstrates the CS project under
Massive Open Online Courses (MOOC). Promotional activities on social media ascribed
the participation of more than a hundred university students, expanding the collected data
sample and the subsequent evaluation based on the majority of votes. Government agen-
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cies can give functional support in the CS campaigns, providing an appropriate funding
mechanism to extend their duration, representing a benefit to the society and an increase in
environmental awareness [123].

4.4.2. Ex-Post Methods Ascertain VGI Data Accuracy

Misclassifications in CS Datasets
(A) Classification Task (CT)
Several articles [3,7,83,84,124,125] adopted the most common validation procedure,

where crowdsourced data are tested either by using a reference dataset [75,94,95,126] vali-
dated by experts [46,64,69,78] or independent groups of people [100] and CS datasets [72].
For validation purposes, both authoritative datasets and EO data [95] were incorporated
in the analysis, with the majority voting method being the most common. Six arti-
cles [73,80,84,90,91,96] performed a stratified sample design to examine only certain land
cover classes. One article proved that continuous CS data (e.g., probability of occurrence,
or percentage of area coverage) can perform better compared to a binary schema [85].
Additionally, the following three articles evaluated decisions using probabilistic methods.
Guengen et al. [111] strengthens the reliability of users’ votes with Tomnod’s fast and
effective aggregator (FETA) algorithm. In this model, the Kullback–Leibler divergence
was estimated from the posterior probabilities of users’ votes. Wiesner-Hanks et al. [86]
performed the Jaccard similarity index over the unified sub-datasets, with each of them
including the votes of the same leaf. Fonte et al. [94] assessed the classification accuracy
of the land cover CS classes based on the classes’ separability, using the Bhattacharyya
distance. With this method, classes at a greater distance are most probable to be denoted as
separated classes. A noteworthy article [80] tried to overcome the importance of a reference
dataset or expert opinion and to estimate volunteers’ performances even when prior knowl-
edge is missing. Leveraging the Maximum Entropy (MaxEnt) principle, the best estimation
was when the divergence between the unknown probability vector and the probability
constraint was minimized. A Bayesian Maximum Entropy (BME) method then allowed
the fusion of volunteers’ opinions, interpolating their distributions at the neighbouring
locations. The method showed a significant improvement of accuracy (>98%) compared to
the CCI-LC product, indicating the spatial density of the data to be the only constraint.

Baker et al. [79] introduced a validation assessment method, where citizens had to
ascertain the garden coverage as fuzzy estimates (0-100% equally divided into 6 categories)
for each land cover type. Through this process, no prior guidance was given to the respon-
ders. The average validation accuracy proved that 73.5% of citizens’ estimations were valid,
indicating the pre-training limitation and digitization errors as the factors that contribute
the most to the variations in accuracy. Three articles [82,87,118] highlighted the importance
of integrating advanced AI methods in crowdsourcing classification tasks. Wang et al. [82]
presented the Plantix geotagged application, in which farmers can capture photos related to
pests, diseases, and nutrient deficiencies in crops. Through this application, deep learning
models are predicting the missing crop type tags in the geotagged images. Additional
rule-based filters and 2D CNN models (i.e., VGG-11, VGG-19, ResNet-18, and ResNet-50)
were applied to overcome invalid observations related to the GPS accuracy, the spatial
uniform distribution and the misplacement of the image receiver during the capturing
process. Furthermore, the active learning pool-based framework and the sum-pooled
convolutional (SPoC) feature extraction CNN architecture were tested by Chi et al. [87]
toobtain datasets with the most representative social images, and then to transform them
into semantically annotated datasets. Experimental results showed that the system im-
proved the crowdsourced decisions with the overall accuracy (OA) to increase 15.26%,
comparable with domain experts’ results (OA = 60.96%). Continuing, two articles men-
tioned a general limitation regarding the CS campaigns. Usually, the satellite images that
are used, varying over different seasons, are producing errors as a result of these variations.
Chew et al. [112] pointed out that different RS images might complicate the analysis, either
for the crowdsourced or the model’s performance. Residences have a common colour
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representation on an image with bare soil features, and thus accurate representation of their
locations are of paramount importance. RS images at different seasons or times of the day
might confuse coders’ decisions [81].

(B) Digitisation-Conflation tasks (DCT)
Articles suggesting DCT revealed several drawbacks related to the class imbalance and

the digitization errors due to citizens’ amateurism or lack of motivation (e.g., incompleteness-
omission errors and heterogeneity) [60,113]. Concerning the first limitation, the Synthetic
Minority Oversampling Technique (SMOTE) [89,90] and the Kernel Density Function (KDF)
were proposed as prominent solutions to solve imbalance distributions [92]. A majority
voting and a neighbouring spatial aggregation proved efficient in dealing with different
and inconsistent labels [114]. Wan et al. [44] explored a combination of image process-
ing and statistical methods to obtain a more reliable training dataset. In this approach,
morphological erosion was used as the generalisation technique in order to maximize
differences between classes and eliminate OSM’s offsets in boundaries. A cluster analysis
was performed using the fuzzy c-means (FCM) un-supervised algorithm to associate fea-
tures with similar characteristics and maximize the intra-variability between LC classes.
Chen et al. [113] integrated an iterative loss calculation approach to overcome artefacts
related to VGI incompleteness and label heterogeneity. The method seems to support
VGI data collection, as it executed this task in a much shorter time (i.e., 8.3 times faster
on average).
Addressing Limitations in Geolocated Datasets

Additional limitations were identified related to the position offsets and incomplete-
ness of information in GPS measurements. Rosser et al. [102] highlighted the critical
importance of standardised metadata files (e.g., Exchangeable image file format-EXIF)
as their absence leads to high levels of noise in the collected CS data and a significant
decrease in performance. In this article, only 4 images out of 205 were accompanied by
the corresponding metadata file. As a result, geostatistical approaches such as kernel
density function (KDF) and histograms of the location accuracy [82] were used to overcome
this limitation. Panteras and Cervone [104] declared that only 1–2% of the total number
of tweets are geolocated. Chi et al. [87] applied the unsupervised learning algorithm of
K-means to cope with the inaccurate GPS positions of geotagged images, identifying simi-
larities in social media content. The Min–Max Scaler (MMS) normalization method was
adopted by Li et al. [117] in order to address the uneven density of GPS-trajectory points.
Wang et al. [82] noted the tradeoffs among the presence of an always available GPS signal,
ensuring great accuracy in the geotagged image collection vs. a high battery drain, that is
demotivating users for long-term campaigns.

Ivanovic et al. [116] emphasized that information on the number of visible GNSS
satellites could assist researchers determine the quality of the retrieved traces. Furthermore,
the lack of specific protocols for data collection and storage radically increases the hetero-
geneity in spatiotemporal and thematic content. Annis and Nardi [98] addressed these
concerns by examining: (i) location error, (ii) timing error, and (iii) water depth estimation
error in the estimation of the water extent propagation model.
Addressing Limitations in Low-Cost CS Sensors

Data from low-cost personal sensors exhibited inconsistencies related to metadata
absence, low quantity of observations and their spatial distribution, misplacement of sen-
sors, solar exposition (radiative errors), device malfunction or general invalid values [120].
Empirically defined thresholds and visual inspection procedures were adopted [74,98]
as simplistic outlier detection approaches. The statistical parametric tests, such as the
two-tailed median absolute deviation (MAD) [97] attempted to detect errors and abnormal
values in temperature records [121]. An interesting and open-source tool was proposed
in Venter et al.’s [120] study, called CrowdQC (R-package), which can identify, without
any reference data, the statistical implausible temperature values due to misplacements
of sensors, solar exposition, data inconsistencies and malfunctions on the device. Subse-
quently, the e-SOTER methodology was adopted by Kibirige and Dobos [69] to determine
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the spatial distribution of the soil sensors in places with specific geomorphologic units,
certifying a lower impact in the collected soil moisture measurements.

4.5. Data Fusion Models and Evaluation Approaches

A significant range of algorithms was identified Figure 9, attempting to assimilate
both sensing types into a classification (n = 43/66) or a regression/correlation schema
(n = 17/66) [18]. The majority of the articles avoided using clustering methods, as in most
cases (n = 57|86%) crowdsourced data were collected to generate the reference measure-
ments with which the models were trained. Only eight articles [77,80,84,95,110,116,117,154]
exploited the data as an additional feature in order to achieve a higher performance rate.
Most proposed methods fused data from multiple sensors and in different data formats.
The articles using High-level (HF) or Multiple-level fusion (MUF) are the majority (77%),
further corresponding to (n = 35) for MUF, (n = 23) for HF and (n = 17) for low data
fusion, LF. There were no articles referring to the medium data fusion level (MF). Even
in articles dealing with feature extraction (e.g., shapes, textural objects, and others), the
crowdsourced data contain labels with certain information, and as such, belong to the MUF
or HF categories [114].

Figure 9. Summarised view of selected studies (i.e., [2,3,7,21,44–46,58,60,64,70–75,77–91,93–105,107,
109–126,136,154]), regarding the proposed methods and the data fusion abstraction levels. Articles
might appear more than once, indicating that in a single study multiple methods or data fusion levels
may occur. The selected articles are discriminated based on the four abstraction levels of data fusion,
as they were described in Castanedo’s literature review [40].

According to Figure 9, 32 studies chose to use traditional models, including spatial associ-
ations and significant statistical tests [21,46,69,91,92,104,121,125], regression and spatial inter-
polation models with a single or multiple explanatory variables [60,69,73–75,110,119,122,124]
probabilistic and decision making models [3,98,99,102]. Classification problems were ad-
dressed in object-based [79] and pixel-based schema with the first providing additional
image information about the scene, such as shape, length, and spectral details [164]. Em-
pirical rule-based [75,105] and statistical models, such as logistic regression predicted mod-
els [57,100,101,126] were explored in four cases [83–85,96] using the spatial proximity of
model’s predictors. Advance machine- and deep-learning techniques were adopted in 22 arti-
cles, incorporating high-level features or features from various data fusion levels (i.e., pixel-
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decision DF, object-decision DF), while 15 studies introduced ensemble models, allowing
multiple classifiers to complement each other and overcome limitations in performance gap
and small training instances [89]. Three articles [71,72,97] integrated satellite and crowd-
sourced data into physical models. Two additional cases [98,99] demonstrated the usefulness
of the assimilated EO/CS observations in the flood model predictions, as they give more
updated, accurate and less sparse observations. Those articles are listed in both statistical and
mechanistic models categories, as the assimilation of EO and CS data produced outputs at
two stages, with the first to be the input of the second approach.

In the following sections, an overview of the most noteworthy findings in the data
fusion models is given, commenting on their effectiveness and evaluation performance.
During this process, comparisons among different evaluation metrics’ rates have been
made and documented. Appendix A (Tables A1–A8) presents the critical characteristics
of each such article, and the evaluation metrics and validation methods used to verify the
efficacy of the DF methods.

4.5.1. Low-Level Data Fusion Based on Supervised Learning

Several studies showed a preference to employ linear regression methods [69,110,119]
to predict variations in collected values and relations among the explanatory variables
and the predicted values, replacing the reference dataset in unknown areas. Furthermore,
the type 2 regression (i.e., major axis regression) was found in Elmore et al.’s [74] article,
dealing with cases, where both the predicted and explanatory variables are constructed with
uncertainty. The change point estimation model was suggested by two articles [60,75] as a
method to estimate the changing patterns over time-series of spectrally derived vegetation
observations (e.g., MODIS EVI). The idea behind this model is to estimate the changing
points in the slope of the fitted line and associate them with the key turning points of
vegetation phenological behaviour. Following the same rationale, in the second article,
five more empirical rule-based methods were tested, i.e., amplitude threshold, the first,
second and third-order derivative, and the relative changing rate, defining the end and
start of season phenological dates when the EVI values reached their first local maximum
and minimum, respectively. Non-linear associations and complex patterns emphasised the
need to utilise advanced machine learning methods (e.g., neural networks—NN [75]) and
ensemble models (e.g., random forest regression) [75,154]. Venter et al. [120] supported
the use of the RF, as it has been proven more accurate in Tair predictions (RMSE = 8 ◦C
and R2 > 0.5) compared to the ordinary least squares (OLS) and support vector machines
(SVM). In three articles [77,120,154] an iterative bagging approach was applied in order
to decrease the correlation between different tree pairs, avoiding to affect the variance. In
Liu’s et al. articles [77,154] validation procedures such as the feature importance testing
and the out-of-bag error gave updated predictions achieving a lower estimated error.
Continuing, spatial interpolation methods of multivariate linear regression kriging and
co-kriging [69] were able to verify the relation of the backscatter signal and the soil moisture,
giving better results when predictions are performed in a single land-use type. The leave-
one-out cross-validation showcased the significant superiority of the regression kriging
with the Root-Mean-Square Error (RMSE) values to reach the accepted scores according to
the literature (i.e., >3).

Data assimilation methods with multi-sensory data were explored, giving more accu-
rate data inputs to physical models’ calibrations. Two articles [98,99] applied the sequential
DA model of Kalman Filter (KF) to estimate the unknown model’s states-vector based on
available observations at each time step. In the above cases, the KF formulated an ensemble
model of physical and crowdsourced observations, generating real-time updates according
to error’s distribution at each time. Under the same concept, Mehdipoor et al. [71] used
the simulated annealing (SA) probabilistic optimisation algorithm to define the optimum
set of coefficients for the three SPP models, i.e., the extended spring indices–SI-xLM, the
thermal time—TT, and the photothermal time—PTT. 2-sided p-value significant tests and
the validation metrics of RMSE and Mean Absolute Error (MAE) illustrated a more efficient
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performance with the SI-xLM (RMSE = 12 DOY), notifying, on the contrary, the need for
spatio-temporal validation processes in order to gain knowledge of variations in different
regions. Four rule-based classification algorithms (i.e., RIPPER, PART, M5Rules, and OneR)
were applied in [116], following the “divide-and-conquer” training strategy (Table 9). In
this article it is reported that the rule-based methods are more suitable in regions with
rough topography, as in these cases, models as the KF are unable to perform well.

Table 9. Summary of methods used in the low-level data fusion category.

Classification Category Methods Study IDs

Regression

Linear regression [110,119]
2 type regression (major axis regression) [74]

Change point estimation [60,75]
Amplitude threshold [75]

First, Second, Third order of derivative [75]
Relative changing rate [75]

Neural Network [75]
Random Forest [75,77,120,154]

Optimisation
algorithms

Kalman Filter (KF and EnKF) [98,99]
Simulated annealing [71]

Rule-based
classification

Repeated Incremental Pruning to Produce
Error Reduction (RIPPER) [116]

Projective adaptive resonance theory (PART) [116]
M5Rules [116]

One attribute rule (OneR) [116]

Spatial
interpolation

Multivariate linear regression kriging [69]
Co-kriging [69]

4.5.2. High-Level Data Fusion Based on Supervised Learning

Uncertainties in spatial and thematic precision and outdated information at coarser
resolution are the common factors that drove the research community to investigate the
efficiency of hybrid and fused products, (Table 10). Hence, 6 articles [3,21,92,104,124,125]
analysed the EO- or CS-driven LC data using statistical and spatial methods, such as
spearman rank correlations tests [124], spatial similarity indices [92], spatial labelling
aggregations on a predefined area [125] and the majority of voting classifiers [3,21,125].
Furthermore, geostatistical methods such as the hotspot analysis (Getis–Ord statistics and
Kernel interpolation with Barriers (KIB)) was applied by Panteras and Cervone [94] to
estimate the spatial distribution of flooded regions. Multivariate logistic regression was
adopted in three cases [57,100,101], aiming to associate different factors (denoted as pre-
disposal factors) with the likelihood of a natural hazard event. Generalized linear models
(glm) with the Bernoulli distribution [101] were applied, as well as a data harmonisation
process prior to the factors’ inclusion in the model. Supporting this method, statistical
significance tests of Wilcoxon–Mann–Whitney test, Pearson’s correlation coefficient (R),
and the backward stepwise approach applying the Wald chi-squared (χ2) test [57,100],
were applied to evaluate the significance of examined variables. Continuing, four arti-
cles [83–85,96] used the geographic-weighted regression (GWR) model to develop a fused
global LC map, which proved a valid method [85] performing marginally better (appar-
ent error rate = 0.115, sensitivity = 0.838 and specificity = 0.925), compared to the most
known machine-learning classifiers, such as Nearest Neighbour, Naïve Bayes (NB), and
the Classification and Regression Trees (CART). Yet, intense computational effort and the
multicollinearities between variables highlighted the need to further explore this method.
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Table 10. Summary of methods used in the high-level data fusion category.

Classification Category Methods Study IDs

Spatial statistics

Spearman rank correlations tests [124]
Spatial similarity indices [92]

Spatial aggregations [125]
Majority of voting classifiers [3,21,125]

Object-based image analysis (OBIA) [79]

Logistic Regression Multivariate logistic regression [57,100,101]
Geographic-Weighted Regression (GWR) [83–85,96]

Probabilistic Bayesian Data Fusion (BDF) [80]
Boosting probability graphical model [95]

Fuzzy Association Fuzzy logic [2]

Ensemble Random Forest classification (RF) [87,95]

Machine Learning

Nearest Neighbour(NN) [85,87]
Naïve Bayes (NB) [85]

Classification and Regression Trees (CART) [85]
Support Vector Machine (SVM)-Radial Basis

Function (RBF) [87]

Deep Learning

LeNet [113]
AlexNet [113]
VggNet [113]

U-Net/RUNET [117]
LinkNet34/D-LinkNet34 [117]

Single-Shot-Detection (SDD) network [7]

In another study [79], an object-based classification (OBC) algorithm was used to
explore vegetation cover in domestic areas. Reba and Seto [164] as well as Baker et al. [79],
claimed that in cases, where a VHR image is used, the OBC method might perform better
even compared to machine-learning methods. Fonte et al. [2] introduced the fuzzy logic
approach, in which additional weights were assigned to each variable transforming the pre-
liminary equation, according to the reliability of the dependent variable as per the examined
factors. Further, two probabilistic models [80,95] are presented to address inconsistencies
in the existing LC products. Gengler and Bogaert [80] explored the Bayesian Data Fusion
(BDF) algorithm to generate a hybrid crop classification map, built from an interpolated
CS crop map and the CCI-LC product. Hughes et al. [95] introduced expert knowledge
into a boosting probability graphical model, namely “cluster graph”, as preliminary input
to assist the computation of an LC class likelihood on a given region. According to the
model’s definition, the following aspects were determined, (a) a tilled-based computational
process, dividing the land cover map into sub-regions, (b) the adoption of the Tobler’s law
associating similar LC classes to neighbouring locations, (c) the convergence of the system
according to the Kullback–Leibler divergence algorithm, and finally, (d) the validation and
uncertainty assessment based on Shannon diversity index.

Four articles [85,87,113,117] examined various methods to assess the efficacy of the
proposed algorithm compared to state-of-the-art models or to compare their performance.
In these studies both shallow- and deep-learning models were used, with the first cate-
gory to include non-linear and non-parametric ML models of the Support Vector Machine
(SVM) based on Radial Basis Function (RBF), RF, and k-Nearest Neighbour (kNN). Exam-
ining the performance of these methods, the SVM-RBF had the best classification results
(OA = 60.18%). Moving to the deep-learning models, two articles [113,117] used Convolu-
tion Neural Networks (CNN) models, as they are able to process multidimensional data
and to discriminate complex features and patterns [165]. According to Guo et al. [166]
the general pipeline of the CNN consists of three neural layers, (a) the convolution layer
that utilises different kernels to convolve the image, (b) the pooling layer to reduce the
dimensions of the image, and (c) the fully connected layer, which converts the 2D image-
space into a 1D feature vector. In the first article [113], the most known CNN schemes
were used, such as the LeNet, the AlexNet, and the VggNet to generate building and road
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network classification maps. A typical LeNet architecture [167] is defined by two layers
using ReLU as the activation function, two fully-connected (FC)-Dropout-ReLU layers, and
one softmax or logistic regression classifier. In each convolutional layer, the ReLU function
truncates all the negative values to zero and leaves the positive values unchanged, whereas
the max-pooling kernel operator is responsible for the dimensional reduction of each image
layer, preventing the model from overfitting [115]. Following a similar architecture, the
AlexNet [168] and the VggNet [169] incorporate more hidden Conv-ReLU layers [113].
In this experiment, the LeNet-CNN had the highest performance, whereas all of them
had issues in the road map extraction, whatever the evaluation metric selected (i.e., F1,
Accuracy, and AUC).

Subsequently, a refined version of the U-Net CNN architecture was designed by
Li et al. [117], formulating two experiments. The first, referred to as input-based data
fusion model, concatenated the extracted CS-road and RS-road features and then trained
the images to extract the road network, whereas in the second case, both CS- and RS-road
feature datasets are separately trained using the refined U-Net model (RUNET), and then
the models’ output was fused according to a certain weight. In the RUNET architecture,
two modifications were made; first, excluding the first and the last convolutional stages
leading to a reduced complexity, and the second using a rectangle convolution kernel
at each stage instead of the square kernel, considered more suitable for the geometrical
shapes of the roads. The input-based RUNET model performed better (Sensitivity = 0.840
and OA = 0.672), compared to the state-of-the-art CNN models for road extraction, e.g.,
LinkNet34, D-LinkNet34 and U-Net, but had challenges in shorter road segments. The
last two articles incorporated the transfer learning technology using datasets of the same
type [170], to construct larger datasets [171]. Finally, the Single Shot Detection (SDD) net-
work was applied in the Herfort et al.’s [7] study, in order to extract the human settlements
with lower effort. The SDD networks follow the tilling concept, where the model is trained
in determining boxes. This way, the feature maps are learned to be responsive in particular
scales. Additional experiments were performed to identify both the spatial and the non-
spatial characteristics of the misclassifications, applying Scott’s rule [172], to calculate the
probability of a task to be misclassified. This method was evaluated introducing various
metrics, such as false negatives (FN), false positives (FP), true negatives (TN), and true
positives (TP), specificity (TNR), sensitivity (TPR), accuracy (ACC), and the Matthews
correlation coefficient (MCC). In particular, the MCC was used as an alternative metric
of F1 and precision, as the latter have been noted to provide highly biased outcomes for
imbalanced datasets [173].

4.5.3. Multiple-Level Data Fusion Based on Supervised Learning

Similar methodologies are proposed in the MUF level, (Table 11), using data with unde-
fined characteristics (e.g., unclassified satellite images) or data formulated at a higher level
(i.e., decision level). Such articles exploit numerical models, such as the weather research
forecasting model (WRF) [97], three Spring Plant Phenology models (i.e., Spring warming
model, Sequential model, and Alternating and parallel model) [72], and the 1D flood simu-
lation model [105], as well as data-driven approaches. Examples of the latter are traditional
statistical methods, such as linear regression predictions or correlations [73,78,122], non-
parametric significance tests (e.g., pairwise two-sided Wilcoxon-Mann-Whitney test [121]),
as well as hybrid classification methods [46,91]. Referring to the latter, preliminary deci-
sion maps were obtained using pattern-recognition techniques (i.e., OBIA) [46], clustering
models (“Iterative Self-Organizing Data Analysis Techniques A”-ISODATA) [91], which
are calibrated based on crowds decisions. In particular, in Vahildi et al.’s [46] study, a
citizen science campaign was designed including local groups of civil engineer students,
to identify segments in the EO-VHR image, where orchard trees potentially existed. Ac-
cordingly, the Template-Matching (TM) algorithm was implemented, assisted by Tobler’s
law (indicated the similarity of neighbouring trees), and identified the orchards’ parcels
along with their properties (e.g., tree height, growth, etc.). Binary classification models
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were identified in two articles; the first deploying a logistic regression model [126], and
the second the Bayesian probabilistic method, “Weights-of-Evidence”(WoE) [102]. Both
cases introduced multiple geospatial variables, obtained from both the CS and RS data and
established relations between them and the presence/absence of an incidence. The most
widely used probabilistic classification method, that of maximum likelihood, was utilised
by Sitthi et al. [88] in order to produce a LC map over Sapporo city, achieving an overall
accuracy of 70% and kappa-coefficient of 0.65.

Table 11. Summary of methods used in the multiple-level data fusion category.

Classification Category Methods Study IDs

Spatial statistics

Spearman rank correlations tests [124]
Linear regression [73,78,122]

Pairwise two-sided Wilcoxon-Mann-Whitney [121]
Hybrid classification methods [91]

Template-Matching [46]

Physical models
Weather Research Forecasting (WRF) model [97]

Spring Plant Phenology (SPP) models [72]
1D flood simulation model [105]

Logistic Regression Logistic regression [126]

Probabilistic Weights-of-Evidence [102]
Maximum Likelihood [88]

Ensemble

Random Forest [45,81,82,90,93,94,109,112,123,136]
AdaBoost [112]

Rotation Forest (RoF) [89]
Canonical Correlation Forests (CCFs) [89]

Customised ensemble model (CNN, RF, GBM) [89]

Machine Learning

CART [90]
C.45 DT [45]

Mahalanobis k-NN [107]
SVM-RBF [44]

kd-tree-based hierarchical clustering [111]

Deep Learning

CNNs [112,114,115]
R-CNN [118]

Inception V3 [112]
VGG16 [112]

ResNet (ResNet34) [64,86]
AlexNet [64]

GoogLeNet [64]
GANs [103]

3D UNet [82]

Furthermore, eleven articles [45,81,82,89,90,93,94,109,112,136] opted to use the RF
classifier, with all of them focusing their experiments on classification tasks. The RF is an
assemblage algorithm that uses a set of decision trees (i.e., CART) to make predictions [174].
Due to its generalised performance, the resistance in noisy datasets, the resilience to
overfit [45], the monotonic transformation allowing to avoid the scaling process, and the
high prediction accuracy, RF has attracted much attention in the field of remote sensing [175].
In RF, two parameters are taken into account, namely the maximum number of trees that
will be generated (Ntree) and the number of the variables that will be selected and tested for
the best fit (Mtry). Koskinen et al. [81] used 150 trees to calculate the forest area prediction
with an OA equal to 85 ± 2%. Johnson and Iizuka [45] and Fonte et al. [94] set their model
with a random selection of variables at each decision node and used 500 trees, thus reducing
effects of class imbalance during the training phase. Belgiu and Dragut [112] indicated
that the majority of studies use 500 trees, as it ensures that the error is stabilised before the
500th tree. Thornhill et al. [123] applied a random subset of each variable and the mean
decrease in accuracy (MDA) to identify the importance among the examined variables. The
MDA leverages the internal cross-validation technique of the out-of-bag (OOB) error [176].
Frank et al. [109] validated the performance of the RF algorithm using only certain features,
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proving that additional features can assist in noise resistance, as the algorithm performed
with a lower drop. Wang et al. [94] tried to discriminate the crop types in small-holding
parcels in India, leveraging the RF classifier and the seasonal patterns of the Sentinel-1
and 2 data values. Specifically, a discrete Fourier transform, also known as a “harmonic
regression”, was applied to S2 observations, even at cloudy images.

Additional DT and ensemble DT learners were found in the examined literature,
including the CART [96] and the multivariate C.45 DT classifier (denoted in Weka as
J48) [45], the AdaBoost [112], which according to Miao et al. [177] is based on the C5.0 DT
algorithm, Rotation Forest (RoF), and Canonical Correlation Forests (CCFs) [89]. RoFs is an
ensemble classification method, introduced by Rodriguez et al., showing to outperform the
most known ensemble methods (e.g., Bagging, AdaBoost, and RF) [175], with a significant
margin. In the CCFs [178], a Canonical Correlation Analysis (CCA) is applied to find
the maximum correlations between the features and the class labels. An ensemble-based
classifier was developed by Yokoya et al. [89], who combined three state-of-the-art models;
CNN (3 layers with ReLU to be the activation function), RF, and gradient boosting machines
(GBM) under two frameworks; the first fusing relevant features and the second fusing
models’ predictions into a LCZ map. The Markov random field (MRF) was applied as
a post-processing spatial smoothing filter, increasing the OA by 7.1% and the kappa-
coefficient by 0.08. Additional ML models were identified such as the k-NN [107] and the
SVM-RBF [44,81] classification, and the space-partitioning data structure method of the
kd-tree-based hierarchical clustering [117]. In the K-NN the Mahalanobis distance was
used instead of the Euclidean distance as it provides a better estimation, due to its ability
to identify possible correlations and trends among the features. In the presented study,
the CCA was applied to investigate the relation among the explanatory variables and the
predicted ones.

Several DCNN techniques appeared in eight articles [64,86,94,103,112,114,115] intend-
ing to extract image contents related to crop types and urbanised elements, such as urban
land use interpretations, archaeological monuments and others. Starting with the first
article, a variant of the fully-connected CNN (FCN) was adopted by Kaiser et. al [115],
generating a spatially structured labelled image of noisy crowdsourced data. The FCN
has the ability to convolve transforming the pixels into 1D label probabilities, and subse-
quently, deconvolve to gain the initial image size. The model was trained in equally sized
mini-batches using the stochastic gradient descent, reaching an average F1-score of 0.84.
Lambers et al. [118] identified the Dutch archaeological sites, using an adapted version
of the object-detection and image classification CNN denoted as Region-based CNN or
Regions with CNN features (R-CNN). In particular, within the R-CNN model, the object
identification is conducted at the beginning, generating the required features, which are
then fed into the SVM classifier to determine the credibility of the objects. Furthermore,
the Dropout strategy was adopted by two articles [112,114] omitting feature detectors that
could lead to complex co-adaptations over the training data and model overfitting [166].
In the first study, Chew et al. [112] predicted the probabilities of presence/absence of a
residency with the CNN performance exceeding 85%. The transfer learning approach was
subsequently used and tested over the pre-trained Inception V3 and VGG16 networks
and several shallow-learning models. Zhao et al. [114] designed a 5-layer CNN using
a feedforward activation function and the softmax algorithm, predicting labels over un-
known semantic EO-elements. Wang et al. [94] constructed two CNN models of 1 and
3 dimensions, exploiting both the spatial and the temporal dimensions over GCVI time-
series. Structuring the 1D-CNN architecture, a max-pooling convolutional model at the
size of 18 rows (14 S2 features and 4 S1 features) and 365 columns is comprised of multiple
convolutional layers and with each layer to use the ReLU. The cross-entropy loss function
was used during the training to provide the best-fitted model, and therefore diverse crop
types. Attempting to integrate both the spatial and temporal dimensions in the CNN
model, a 3D-UNet segmentation network was also tested, exploring the spectral infor-
mation through time and the corresponding pixels’ behaviour at the maximum distance
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of 200 m. However, evaluation metrics show that the 1D-CNN slightly produced better
results, while a potential reason for this seems to be the higher computational time and
the greater number of hyperparameters. Additional variations in CNN algorithms such as
the AlexNet, VGGNet, GoogLeNet, ResNet, and the ResNet34 were found in Li et al. [58]
and Wiesner-Hanks et al. [86], respectively. Finally, the Generative Adversarial Networks
(GAN) model was exploited by Ahmad et al. [103], aiming to detect the flooded regions
over crowd selected satellite scenes. According to the aforementioned article, GANs can
be considered as unsupervised classification learners, consisting of two competitive NNs.
More details on GANs models can be found in Abdollahi et al.’s StoA review [179].

5. Discussion

Within this scoping review, we attempted to provide a holistic overview on research
studies assimilating information acquired by Earth Observation and Crowdsourced/Citizen
Science data. We have comprehensively reviewed the selected articles according to the
collected measurements, the sensors and technological tools or equipment which were
used, and the methods that attempted to transform these data into meaningful information
regarding the research problems at hand. We adopted a scoping review methodological
framework, as a systematic literature review was neither applicable nor realistic, due to the
diverse nature of the scope of referenced articles. These variations make the quantitative
analysis and comparisons a challenge, illustrating sometimes the loose connections among
articles. Concluding, this scoping review aimed to extend previous outcomes [20,52],
highlighting gaps and future directions, in research domains that have not been explored
so far. Being in line with the previous works, we shall claim that to the best of our
knowledge this is the first literature review that examined the data/tools/algorithms
and their association withdata fusion types, demonstrating their use and performance
in given scenarios. Based on the examined categories, we summarise our review in the
following sections.

5.1. General Characteristics of This Scoping Review

This scoping review found that 66 articles (3%, 66/2205) showcased models that
integrated observations from EO sensors and citizens and verified their accuracy with
specific evaluation metrics. More than half of the studies (e.g., initially 189 articles, from
which we only kept 66) were excluded during the full-text screening process, as they did
not fulfil the inclusion of both data sources in the models. In most cases, one of the two
examined data sources was exploited for the training process, with the second contributing
to the evaluation of model’s performance. Observing the number of published articles
in the examined years, we have observed an increase in using these data and generating
hybrid forms of them. Moreover, both EO and CS data are denoted as “low-cost” solutions,
adopted even in countries with limited resources. Indeed, in citizen science projects, the
implementation costs are significantly lower, compared to the traditional methods, which
are often cumbersome and costly (i.e., costs for the equipment, the development and
maintenance of technological solutions, and the data collection campaigns) [180]. However,
many studies showed their interdependency with reference data, predominately generated
by experts (i.e., researchers, or national administrative datasets, and statistics), indicating
that they are not in the position at this stage to replace more mainstream data streams (in
situ, authoritative data).

5.2. Datasets’ Uncertainties and Future Trends
5.2.1. Discovering the Advances of Using EO-Satellite Data in Uncommon Applications

The unavailability of open and frequent satellite data is responsible for the high num-
ber of studies that opted to overcome this challenge with the integration of crowdsourced
data. As Ghermandi and Sinclair [35] stated, at this moment, passive crowdsensing is
able to provide great results in (near) real-time, generating new data sources that could
complement EO data with close to real time observations. Additional factors such as clouds,
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outdated scenes, or the complete absence of observations in remote regions have been
noted as the most common limitations in Remote Sensing. The Savitzky-Golay filter is
also used in time-series models to fill up the cloudy or missing data, applying a 7 point
median moving method [75]. Moreover, the so-called “brute force approach” [45] has been
proposed, noting that a greater volume of data could overcome noise issues related to
clouds, haze, and shadows resulting from the spectral variations in regions with intense
inclinations. This approach was applied only with data by the same satellite sensor [90] or
explicitly with sensors, which monitor the same spectral range [104].

On the other hand, articles rarely incorporated SAR data in their analysis. John-
son et al. [91] have stated that, in addition to the advantage of SAR sensors to acquire data
in every weather condition, they are sensitive to the vegetation structure, as microwaves
at specific wavelengths (e.g., L-band) can penetrate the vegetation canopy receiving in-
formation of stems and branches. Recent studies have examined the explicit use of the
polarimetric [181], as well as the interferometric synthetic aperture radar (InSAR) data
to discriminate different backscatter behaviours of vegetation types, such as forests, crop
types, etc. [182]. One of the greatest challenges of using SAR data so far was the geometric
distortions (e.g., foreshortening, layover, shadowing), caused by the local topography and
the right orientation of the satellite. A solution to these variations in the backscatter signal
is the terrain-flattened algorithm that can be used to reduce the terrain effects and thus to
retrieve “flattened” gamma observations [156]. Complementary studies were even able to
tackle the cloud occurrence problem in optical sensors, by fusing SAR and MSI data. Specif-
ically, the DSen2-CR model was based on an image reconstruction task, aiming to predict
the missing pixels, denoting as missing the ones covered by clouds. Moreover, we observed
that researchers have formulated their models with data from satellite missions that are
at the end of their operation. One reason for this is that in some cases it was important to
receive knowledge regarding the temporal change of the environment, and thus satellite
missions such as the Landsat (revealed in most of the studies) were used the most, as the
whole mission (from Landsat 4 to 8) was designed with the same characteristics, enabling
time-series observations. However, we claim that the StoA satellite missions, such as the
Sentinel missions and the Cube-based platforms (e.g., PlanetScope), give a new challenge in
the analysis of this countless data volumes and new perspectives regarding the possibility
of observations almost on daily basis.

5.2.2. Addressing the Data Scarcity

Massive volumes of data capture every single spot on earth and this encourages finding
new methods of generating annotated data. Nevertheless, the involvement of citizens in
this process has been characterised as prone to erroneous judgements, with the citizens
revealing additional limitations such as lack of experience, high level of complexity and
lack of interest. Subsequently, another restriction in the CS data concerns the preservation
of data accessibility. Usually, after the end of the participatory campaign, the acquisition
of crowdsourced measurements simply ends, which in some cases (e.g., soil erosion, land
cover change, etc.) might not cause a significant consequence, as the monitoring of such
kind of phenomena is not necessary to be continuous. Contrarily, in time-series observations
or during critical events, such as in air quality, natural hazard rapid events (e.g., floods,
earthquakes, fires, etc.) the absence of such information is of paramount importance.
On the contrary, referencing other sources of information, such as social media, users
effortlessly share important information about the things that matter, usually accompanied
by information on time, place, emotions, describing the level of emergency. According
to Owuor et al. [183] in 2020 the number of citizens that had access to a personal social
media account had reached more than half of the globe’s population. Social media could
be characterised as a less labour-intensive, less costly, and less time-consuming approach,
and certainly, a scalable approach, as it can be applied at large scales, and at any time and
location [35]. In the plethora of applications, social media could assist in the direct provision
of critical information, closing the gap of the so far coarse satellite data acquisition. In
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addition to the general tendency to describe social media as a satisfactory data source,
limitations of citizen-generated news, the potential data loss in cases of internet connection
absence [104], and the uncertainty of the credibility of such content revealed the need to
address the lack of control that still exists [100].

From the model’s perspective, several studies (n = 8|[7,64,112–115,117,118]) applied
the transfer learning method (or domain adaptation [184]), as a potential solution to
overcome the sparse and small reference data. The major benefit of this method is that
with limited data samples, the model can be trained and fine-tuned, achieving optimal
performances in every new task. Yuan et al. [165] mentioned that the transfer learning
(TL) framework can be applied using two models; the regional-based TL model, which
generates a robust model that can be adapted in various regions, and the data-based TL
model that attempts to solve the problem of model generalisation and train with features of
multiple sensor images (indicating both satellites and the crowds). However, one limitation
was discussed by Chen et al. [113], in cases where the examined objects (e.g., buildings)
reveal similar spectral response with neighbouring objects (e.g., the road network) or a
completely different because of the diversity of the materials that are used. Both cases are
met in low-income regions as a substantial percentage of the urban population living in
slums, which are constructed with bricks and other spectrally similar materials to unpaved
roads. Additionally, the active learning (AL) algorithm was adopted by two studies [87,113]
with the first including both TL and AL in the deep-learning DF model. AL algorithms
propose an iterative process of data querying in order to identify the most representative
data, using only a small data sample. AL has been applied in studies that lacked labelled
data, giving users the samples that had the higher chance of being correctly annotated [87].
On the contrary, two challenges are observed when the AL and DL are incorporated: i.e.,
the labelling cost, as the AL initiates the training process with a small amount of data,
and the data uncertainty, on which the AL model is based. An additional constraint is the
data shortage of features. Obtaining training data from existing generalised datasets was
adopted in most articles, including data augmentation schemes of image rotations, features
with certain properties (e.g., spectral indices, textural features) and the use of generalised
datasets (e.g gold-standard benchmark datasets). In addition, deep-learning models, such
as the Fast Region-Based CNN or Faster R-CNN [118], the You-Only-Look-Once (YOLO),
and the Single-Shot-Detection (SSD) [7], have been introduced to reduce the burden of
manual annotation in object detection. Nevertheless, a growing research field targets the
development of more elaborate techniques to generate accurate training data that could
assist models to perform more efficient predictions.

5.2.3. Data Fusion Leveraging on EO and CS Data

Reviewing the literature, we found that the majority of studies combines EO and CS
data with the ultimate aim to develop a model for a specific thematic domain, whereas fewer
articles aimed to address “data imperfection” of one of the two data sources. Only Panteras
and Cervone [104] exploited the increased temporal resolution of the crowdsourced data,
to close the temporal gaps among two consecutive satellite data acquisitions. Section 4.5
verifies this assumption, claiming that in most studies the crowdsourced data were used to
generate knowledge in cases, where certain information is not available. In these cases, the
crowdsourced information is offered at the highest level of their semantic content, whereas
any traditional DF model has difficulties in combining such information with EO-data, as
they are described by semantic contents of different levels. Due to this fact, the majority of
the articles (n = 35) were assigned to the last level of data fusion.

Considering the DF algorithms, we unexpectedly observed that traditional algorithms
still gain significant attention (42.7%), comprising mainly the low- and high-level DF
categories. In many articles, models gained knowledge regarding the associations among
the two data sources, and preliminary predictions (i.e., linear regression) in unknown areas.
Within this category, the GWR had the highest performance in all studies. Additional
non-linear extensions of the GWR model, such as the GWR within the artificial neural
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networks [185] is considered a very promising method. Furthermore, urban applications
exhibit a preference in CNN models using satellite imageries at the highest spatial resolution
level. Global- or regional-scale applications adopted both data and algorithms with lower
computational demands, e.g., geostatistical, and machine-learning models. In general,
pre-defined features with coarser characteristics cannot detect objects over a VHR image,
when traditional ML algorithms are applied. To remedy this, deep learning strategies can
overcome such limitations, enabling to classify popular geospatial datasets [114]. According
to Guo et al. [166], deep-learning models have the ability to learn high-level features and
be tolerant in heterogeneous and noisy data. Definitely, the existence of the CS and the
CNN in the same framework opens a new intriguing possibility to address the enormous
demand for annotated training datasets.

Moreover, many models treated data quality as the most important aspect of their
research, since various experiments, statistical tests, and evaluation metrics were found
across the literature. Experiments were usually conducted to test their theory or to prove
the superiority of the model against the StoA algorithms. However, we found two stud-
ies [82,113] that integrated two additional metrics for the evaluation of the implemented
method, the computational runtime (computed in hours of labelling conduction) and
the overall labour (% of the representative images for annotation). The corresponding
articles [82,86,113,117] attempted to accelerate the computational process of model train-
ing with hardware modules, such as NVIDIA GPUs (i.e., GeForce GTX1080 Ti, TITAN-X,
GTX1070 Ti, and Tesla K80) and parallel computing platforms, such as the NVIDIA-docker
images [113], and the Hadoop map-reduce framework [111]. Applications that avoided
deploying a central workstation explored the computational capabilities of the Google
Earth Engine (GEE) cloud-based platform [45,81,82,90]. Within the GEE environment,
various combinations of EO datasets at multiple scales and temporal solutions may be
accessed, and further generate training datasets for the StoA ML algorithms of CART, RF,
NB and SVM. The cloud-based satellite repository of Amazon Web Service (AWS) was used
by Yokoya et al. [89] to download the Sentinel-2 archive dataset, which was resampled at
100 m resolution. Li et al. [117] generated and publicly shared a large-scale training dataset,
leveraging the GeoServer (http://geoserver.org/; accessed on 28 February 2022) and the
use of the Open Geospatial Consortium (OGC) compliant Web Map Service (WMS).

A challenging but rather necessary direction for the data fusion models is to move for-
ward from the evaluation of the model’s accuracy to its adaptation to different regions, and
with different datasets. Following this pathway, we identified five articles [64,89,112,113,115]
that tested the reproducibility of their approach. In all cases, the models were evaluated with
respect to the effect that changes in the training dataset have in the classification task. In
this context, a very interesting direction would be to explore synergies among the physical
models and the ML/DL. Being aligned with Yuang et al.’s [165] recommendations, this
integration could be achieved in the following ways: using the DL to save the enormous
computational cost that the physical model simulations require; the calibration of physical
model’s outputs with data-driven models to eliminate uncertainties of the input data pa-
rameters, and, last, the physics-constrained modelling to achieve an improved optimisation
of model’s loss function, and therefore a better understanding of the intermediate processes
that occur in the observed phenomenon.

5.2.4. Crowdsourcing Data Curation Challenges and Future Trends

Ensuring the provision of accurate observation from citizens remains a predominant
concern of the scientific community, when VGI data are used. However, the precise
collection of reference labels of VGI data is still challenging, as it tends to be biased
or reveal spatial and thematic discrepancies [186]. In the reviewed articles, class/data
imbalance was observed, with the extracted datasets remaining noisy, leading to a lower
classification accuracy [113]. Johnson et al. [91] admitted that the inaccurate or limited
data provision and the enormous data quantity could also lead to lower performances
because both the data and the reference samples must be identically increased. From our
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perspective, the ability to assess the quality of the CS observations “on-the-spot” during
data collection campaigns seems to be an emerging trend. In the 5G era, the increasing
need for emergent crowdsourcing applications promotes the use of decentralised mobile
systems, as they can consume in real-time the “wisdom of the crowds” and provide a
direct validation mechanism [187]. Eventually, immersive platforms (e.g., Virtual Reality
(VR)/Augmented Reality (AR)) could have a critical role in citizens’ engagement and
training process. AR/VR mobile or web applications could be the “virtual globes” that
could assist citizens in familiarising themselves with the crowdsourcing task and thus
provide less noisy measurements [188].

As it was observed in the majority of articles, an unorthodox phenomenon is still
present; VGI data is on one hand embraced by scientists as the new and auspicious source of
information and, on the other hand, is frequently criticised for their discrepancies in quality.
Several approaches have been proposed to overcome this challenge, and are described
in detail in Section 4.4, including initial statistical methods (e.g., the majority of voting,
etc.), probabilities (Naïve Bayes binary classification), and the more complex frameworks
of deep-learning NNs. However, a small number of articles investigated the impact of
the active involvement of citizens and the behavioural and emotional factors that could
contribute to an influential citizens’ engagement. This way, it might be fruitful to shape
the direction of future research towards the identification of these societal needs. Ideally,
participation in CS projects should have a goal to strengthen citizens’ trust in science and
encourage multi-stakeholder partnerships. In this direction, it is mandatory to prioritise
citizens’ concerns and apply methods that could obtain a better understanding of the
engaged citizens. Such scenarios can result to person-centric approaches (e.g., Latent
Class Analysis-LCA and Experience Sampling Method-ESM) [189] and self-assessment
questions [136], formulated on the basis of different socioeconomic profiles (i.e., geographic,
demographic, non-cognitive and cognitive personal characteristics) [190] and incentives.
Therefore, Vohland et al. [189] stated that fruitful outcomes might be generated if such
methods could be leveraged in order to trace the heterogeneity in a group or between
homogeneous subgroups.

The future of citizen science should go beyond the limits of academic science, in order
to be in the position to shape innovation policies and sustainable governmental plans. Social
and governmental plans that aim to tangibly contribute to the achievement of Sustainable
Development Goals (SDGs) require a collaborative and holistic approach with all the
actors (i.e., citizens, policymakers, scientific communities, industrial and social actors) to
be engaged. Citizens can offer both bottom-up and top-down perspectives, generating
valuable knowledge to scientists and contributing to SDGs’ diversity (bottom-up). On the
other hand, citizens may be able to support the initiation of local and global communities
that could mobilise governments and businesses to take action (top-down). The role of
CS for SDGs has already been acknowledged. Nevertheless, proper transformations of
the SDGs to a “common language” is a mandatory activity in order to invest in citizens’
active and continuous involvement [191]. However, without funding schemes and tangible
benefits, long-term commitment of CS in SDGs pathways could be at risk. Finally, such
activities should be accompanied by relevant dissemination and democratisation of the
research findings, targeting the preservation of citizens’ independent views, their social
innovation and self-reflection on SDGs [192].

6. Conclusions

In this scoping review, we attempted to provide an overview of the data fusion models
that assimilated the remotely sensed and crowdsourced data streams, both of which have
emerged as promising, scalable and low-cost ways to provide insights in many domains.
The extraordinary increase in articles targeting this research field seized our interest to
explore the use cases, where the data is used, the technological equipment and tools,
under which a CS survey is leveraged, and eventually, the algorithms that integrate this
information, categorised under the data fusion abstraction levels. We carefully reviewed
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the literature, following the guidelines of the systematic scoping review, and emphasised
the strengths and challenges of identified methods overcoming concerns related to data
quality, data sparsity, biases related to human cognitive level, and big data related obstacles.
Our analysis revealed the necessity of deploying a multi-sensory approach, combining the
traditional satellite observations and the next generation StoA missions to confront the
spatiotemporal gaps. On the contrary, big data solutions, such as cloud-based platforms,
high-performance computing, and datacubes, are a mandatory pathway to take in order
to address this countless data volume and the exploitation of EO data in less common
research domains.

The beneficial contribution of CS data is depicted across the literature, characterised
as a low-cost, low-intensity and scalable data source, which could overcome the limited
sample condition. Furthermore, automated object-based or regional-based classifiers and
active and transfer learning technologies seemed insightful methods, enabling the provi-
sion of an immense amount of annotated training datasets in only a fraction of the time.
However, Frank et al. [109] stated their concern regarding the future role of crowdsourcing
as the primary receiver of labelling data and the tendency to ultimately substitute users’ in
the mapping tasks with automated means [115]. Addressing this conclusion, we attempted
to sculpture the future role of citizens by initiating the concepts of collaborative partner-
ships with multiple actors, person-centered behavioural examination approaches, and
most importantly, the democratisation and vulgarisation of scientific-related information,
promoting their self-reflection in the existed criticalities and their actual contribution to
the mitigation and adaptation policies. Even though the combined exploitation of CS and
EO is still underrepresented in the literature, we have shown the huge potential that the
aforementioned could achieve. An exciting addition to AI-DF models would be to see the
valuable contribution of the geographical information to the quality improvement of the
data-driven models and their benefits to the physical environmental models.

Author Contributions: Conceptualization, A.T.; methodology, A.K.; software, A.K.; validation, A.K.
and G.T.; formal analysis, A.K.; investigation, A.K. and G.T.; resources, A.A.; writing—original draft
preparation, A.K.; writing—review and editing, A.K. and G.T.; visualization, A.K.; supervision, A.T.,
G.T. and A.A.; project administration, G.T.; funding acquisition, A.A. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the DIONE project under grant number 8703788, supported
by European Union’s Horizon 2020 research and innovation program.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ACC Accuracy
AFOLU Agriculture, Forestry And Other Land Use
AI Artificial Intelligence
AL Active Learning
AlexNet Convolutional Neural Network (CNN) Architecture, designed By Alex Krizhevsky
ALI Advanced Land Imager
ALS Airborne Laser Scanning
AOD Aerosol Optical Depth
AOT Aerosol Optical Thickness
API Application Programming Interface
APS Active Participatory Sensing
AR Augmented Reality
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AR6 6th Assessment Report
ARC American Red Cross
ARD Analysis-Ready Data
AWS Amazon Web Service
BDF Bayesian Data Fusion
BME Bayesian Maximum Entropy
BSI Bare Soil Index
BuEI Built-Up Index
C/N0 Carrier-To-Noise Ratio
CART Classification And Regression Trees
CC Climate Change
CCA Canonical Correlation Analysis
CCF Canonical Correlation Forests
CCI-LC Climate Change Initiative Land Cover
CDOM Coloured Dissolved Organic Matter
CEOS Committee On Earth Observation Satellites
CGD Crowdsourced Geographic Data
CGI Crowdsourced Geographic Information
chl-a Chlorophyll-A
CHM Canopy Height Model
CIL Citizen Involved Level
CNN Convolutional Neural Network
CO Citizen’s Observatory
CS Citizen Science
CT Classification Task
CTI Compound Topographic Index
DA Data Assimilation
DB Database
DBSCAN Density-Based Spatial Clustering Of Applications With Noise
DCT Digitisation-Conflation Tasks
DEM Digital Elevation Model
DF Data Fusion
DMS-OLS Defense Meteorological Satellite Program’s Operational Linescan System
DP Developed Platforms
DSM Digital Surface Model
DTM Digital Terrain Model
EO Earth Observation
EO4SD Earth Observation For Sustainable Development
EOS End Of Season
EVI Enhanced Vegetation Index
EXIF Exchangeable Image File
FAO Food And Agriculture Organization
FCM Fuzzy C-Means
FCN Fully Connected Neural Network
FETA Fast And Effective Aggregator
FN False Negative
FP False Positive
FUI Forel-Ule Colour Index
FWW Freshwater Watch
GAN Generative Adversarial Networks
GBM Gradient Boosting Machines
GCC Green Chromatic Coordinate
GCOS Global Climate Observing System
GEE Google Earth Engine
GEO Group On Earth Observations
GEOBIA Geographic Object-Based Image Analysis
GF-2 Gaofen-2
GHG Greenhouse Gas
GLC2000 Global Land Cover Project
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GLCM Grey-Level Co-Occurrence Matrix
glm Generalized Linear Models
GNSS Global Navigation Positioning Systems
GPS Global Positioning Systems
GSV Growing Stock Volume
GUF Global Urban Footprint
GUI Graphical User Interface
GWR Geographic-Weighted Regression
HF High Data Fusion Level
HIT Human Intelligence Tasks
HOT OSM Team For Humanitarian Mapping Activities
HRSL High-Resolution Settlement Layer
HV Horizontal—Vertical Polarisation
IBI Index-Based Built-Up Index
IIASA International Institute For Applied Systems Analysis
Inc/Exc Inclusion/Exclusion
InSAR Interferometric Synthetic Aperture Radar
IPCC Intergovernmental Panel on Climate Change
ISODATA Iterative Self-Organizing Data Analysis Techniques
ISPRS International Society for Photogrammetry And Remote Sensing
KDF Kernel Density Function
KF Kalman Filter
KIB Kernel Interpolation with Barriers
kNN K-Nearest Neighbour
LC Land Cover
LCZ Local Climate Zones
LDA Latent Dirichlet Allocation
LeNet Convolutional Neural Network (CNN) Structure Proposed By Yann Lecun
LF Low Data Fusion Level
LST Land Surface Temperature
MAD Median Absolute Deviation
MAE Mean Absolute Error
MaxEnt Maximum Entropy
MCC Matthews Correlation Coefficient
MCS Mobile Crowd-Sensing
MDA Mean Decrease in Accuracy
MF Medium Data Fusion Level
ML Machine Learning
MMS Min–Max Scaler
MMU Minimum Mapping Unit
MNDWI Modified Normalised Difference Water Index
MNF Minimum Noise Fraction
MODIS Moderate Resolution Imaging Spectrometer
MRF Markov Random Field
MTurk Amazon Mechanical Turk
MUF Multiple Data Fusion Level
NB Naïve Bayes
NBAR Nadir Bidirectional Reflectance Distribution Function-Adjusted Reflectance
NDBI Normalised Difference Build-Up Index
NDVI Normalised Difference Vegetation Index
NDWI Normalised Difference Water Index
NIR Near Infrared
NLP Natural Language Processing
NN Neural Networks
NPN National Phenology Network
OBC Object-Based Classification
OBIA Object-Based Image Analysis
ODbL Open Database
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OGC Open Geospatial Consortium
OLS Ordinary Least Squares
OneR One Attribute Rule
OOB Out-Of-Bag
OSM Openstreetmap
OsmAnd Openstreetmap and the Offline Mobile Maps and Navigation
OSSE Observing System Simulation Experiment
PART Projective Adaptive Resonance Theory
PCA Principal Component Analysis
PCS Passive Crowdsourcing
PEAT Progressive Environmental and Agricultural Technologies
PH Photograph Sharing Services
PM10 Particulate Matter with Diameters of 10µm
PM2.5 Particulate Matter with Diameters of 2.5µm
PRISM Parameter-Elevation Regressions on Independent Slopes Model
PTT Photothermal Time
PWSN Personal Weather Station Network
QGIS Quantum GIS
RBF Radial Basis Function
R-CNN Regions with CNN Features or Region-Based CNN
ReLU Rectified Linear Unit
ResNet Residual Neural Network
RF Random Forest
RGB Red-Green-Blue
RIPPER Repeated Incremental Pruning to Produce Error Reduction
RMSE Root Mean Square Error
RoF Rotation Forest
RS Remote Sensing
S1 Sentinel-1
S2 Sentinel-2
SA Simulated Annealing
SAR Synthetic Aperture Radar
SD Secure Digital
SDD Single Shot Detection
SFDRR Sendai Framework for Disaster Risk Reduction
SHB Secondary Human Behaviour
SI-xLM Extended Spring Indices
SM Social Media-Networking Services
SMOTE Synthetic Minority Oversampling Technique
SoEI Soil Index
SOS Start Of Season
SP Smartphones
SPM Suspended Particulate Material
SPoC Sum-Pooled Convolutional
SPP Spring Plant Phenology
SSD Single-Shot-Detection
SSL Signal Strength Loss
SSLR Scoping Systematic Literature Review
StoA State-of-the-Art
SVF Sky View Factor
SVM Support Vector Machine
TAI True-Colour Aerial Imagery
TFL Tobler’s First Law Of Geography
TL Transfer Learning
TM Template-Matching
TN True Negative
TNR Specificity
TP True Positive
TPR Sensitivity
TT Thermal Time
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TWI Topographic Wetness Index
UAV Unmanned Aerial Vehicle
UHI Urban Heat Island
UN-SDG United Nation-Sustainable Development Goals
USFS United States Forest Service
VGG Visual Geometry Group
VGI Volunteer Geographic Information
VHR Very High Resolution
VOC Visual Object Classes
VR Virtual Reality
WHO World Health Organisation
WMS Web Map Service
WNS Wireless Network Stations
WoE Weights-of-Evidence
WRF Weather Research Forecasting Model
WSI WeSenseIt
WUDAPT World Urban Database and Access Portal Tools
WUI Wildland-Urban Interface
YOLO You-Only-Look-Once
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Appendix A

Table A1. Summary table of Vegetation Monitoring studies included in this scoping review. Abstraction levels of data fusion and Technological equipment of
CS data collection are described as assisted by the categories and abbreviations presented in Sections 3.5.1 and 3.5, respectively. Methods are categorised as the
following, AI: Artificial Intelligence, S: Statistical method, ES: Ensemble methods, FS: Fuzzy Association, and M: Mechanistic models.

Reference EO Data Source of CS DF Level Method Validation Evaluation Metric and Score

[79] Aerial DP/My Back Yard
tool HF GeoBIA/S A manually digitised reference layer and a

stratified separation of the dataset was used

Overall Accuracy using Multinomial Law
equation (73.5% classification result, and 76.63%

CS valid decision)

[154] Satellite/GNSS Sensors/GPS
receivers LF RF Regression/ES Out-of-Bag error estimation leveraging on

reference data of forest attributes

RMSEs: mean tree height = 14.77–20.98% Mean
DBH = 15.76–22.49%; plot-based basal

areas = 15.76% and 33.95%, stem volume and
AGB = 27.76–40.55% and 26.21–37.92%;

R = 0.7 and 0.8

[77] Satellite/GNSS Sensors/GPS
receivers LF RF Regression/ES Out-of-Bag error estimation comprising of

reference data with forest attributes

The combination of the GLONASS and GPS
GNSS signals slightly better results than the

single GPS values.

[60] Satellite/MSI DP/NPN LF Linear change
point estimation/S Ground-based phenological dates

RMSE, bias, MAE and Pearson’s R evaluation
metrics were used, revealing a weak significance
when the CS data were used (Best result: r = 0.24,

MAE = 23.0, bias = −14.8, and RMSE = 28.0)

[73] Satellite/MSI DP/PlantWatch MUF L-Regression/S Stratification based on the GLC2000 land
cover map

Green-up date RMSE unsystematic (RMSEu) and
systematic (RMSEs) were 13.6 to 15.6 days, R and

p < 0.0001

[85] Satellite/LULC DP/Geo-Wiki HF

k-NN, Naïve
Bayes, logistic

regression, GWR,
CART/AI + S

10-fold cross validation

Binary classification: Apparent error rate (GWR:
AER = 0.15), Sensitivity (CART: Sen = 0.844),

Specificity (GWR: Spe = 0.925), pairwise
McNemar’s statistically significance test (GWR:
p = 0.001); % Forest cover: GWR: AER = 0.099,
CART: Sen = 0.844, GWR: Spe = 0.927, GWR:

p = 0.001
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Table A1. Cont.

Reference EO Data Source of CS DF Level Method Validation Evaluation Metric and Score

[84] Satellite/LULC DP/Geo-Wiki HF GWR/S Equal-area stratified random sampling
LULC OA forest recognition (89 %),

specificity = 0.93, Sensitivity = 96%; Estimation of
% forest cover R2 = 0.81, RMSE = 19

[83] Satellite/LULC DP/Geo-Wiki HF GWR/S Validated with a random distribution of
reference data

Apparent error % Hybrid predicted dataset = 4
(Best score for Russia), and 5 for the

Sakha Republic

[71] Hybrid/in situ and
DEM DP/NPN LF Sprint Plant

Phenolog/M
Resubstitution error rate between the observed

and the estimated days

RMSE and MAE of the Day of the Year (DOY)
resulted in 11.48 and 6.61, respectively

(Best model)

[3] Satellite/LULC

DP/53,000 CS data
samples were

gathered on the
Geo-wiki platform

HF

Convergence
of evidence

approach (IDW
interpolation)/S

(1) Stratified dataset from 2 CS campaigns.
Finalised with experts’ evaluation. (2) 1033 pixels
with high disagreement randomly classified by

2 experts.

(1) Stratified dataset from 2 CS campaigns.
Finalised with experts’ evaluation. (2) 1033 pixels
with high disagreement randomly classified by

2 experts.

[78] Hybrid/Rainfall
Satellite/MSI

DP/ CS campaign
archived in NPN MUF

L-Regression
Spearman’s

correlation, Binary-
thresholding

classification/S

(1) Reference data collected on the field,
(2) CLaRe metrics

(1) R2 > 0.5 between field observations and
independent variables; (2) T-tests between CLaRe,

native and invasive Buffelgrass depicted
significant differences. (3) OA Buffelgrass
classification was equal to 66–77%, with

trade-offs in UA, PA accuracies

[46] Satellite/MSI Other/CS
campaign MUF

Template match
binary

thresholding/S

Validated with reference training samples
applying hold-out dividing the dataset in

train-testing

Completeness (C = 69.2 to 96.7), Thematic
accuracy metrics: positive predictive value

(PPV = 0.926 to 1.000), false positive (FDR = 0.037
to 0.550), false negative rate (FNR = 0.033 to

0.308), F1 = 0.545 to 0.964, Positional accuracy
metrics: Diameter error for a correctly identified

ITC (ed) RMSE for tree crown diameter
measurement for crowdsourced observation

(RMSEcd = 0.67 to 0.93) and tree crown centroid
position measurement (RMSEcc = 0.28 to 1.01)
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Reference EO Data Source of CS DF Level Method Validation Evaluation Metric and Score

[86] Aerial/MSI DP/Amazon’s
Mechanical Turk MUF ResNet34 CNN

model/AI
Hold-out dataset separation in train, validation

and test based on [193] method
OA = 0.9741, precision = 0.9351, recall = 0.9694,

F1 = 0.9520

[72]
Hybrid/MSI and
rainfall (gridded

and in situ)

DPtextbackslash
NPN and

PH/PhenoCam
MUF

13 SPPs + Monte
Carlo optimisation/

M
in situ phenological data

Best optimised parameters were determined with
95% confidence intervals for each parameter,
using the chi-squared test. AICc was used to

select the best model for all the species.
R = 0.7–0.8, RMSE = 5–15, and Bias = ±10 days

[81] Satellite/SAR,
MSI, DEM

Other/2 week
CS campaign MUF CART/AI

Reference data set of 7500 sample points was
generated and stratified based on the first stage

land cover classes

Forest plantation area was estimated with high
overall accuracy (85%)

[74] Satellite/MSI DP/NPN LF Type 2
Regression/S -

Non-significant results, R2 = 0.014; p = 0.052;
Rule #1 R2 = 0.19; p < 0.001 & Rule #2 R2 = 0.29;

p < 0.001. Median MODIS values improved
R2 = 0.67; p < 0.001. Lilac revealed the greatest

results R2 = 0.32–0.73; p < 0.001. R2 = 0.23 to 0.89
across species.

[80] Satellite/LC
product DP/Geo-Wiki HF Bayesian data

fusion (BDF)/AI
Stratification keeping only those where CS data

were at hand (i.e., 500)

BDF has proven a suitable method as the
log-likelihood ratio (G2) and the chi-squared (χ2)

were 0.2511 and 5.991, corresponding to a
p-value = 0.8820. The OA of the

cropland = 98.00%.

[75] Satellite/MSI DP/NPN LF
6 S models 1, NN

AI and RF
regression ES

10-fold cross validation with the analogy of 80/20
RF outperformed with r = 0.69, WIA = 0.79,

MAE = 12.46 days and RMSE = 17.26 days (for
deciduous forest)

[82] Satellite/MSI
and SAR SP/Plantix MUF

1D and 3D
CNN/AI and RF

harmonic
coefficients/ES

Feature Importance via Permutation; using also
governance district statistics

(A) 3-crop type classes: Accuracy: 74.2 ± 1.4%,
Precision = 75.9 ± 1.7%, Recall = 74.2 ± 1.4%,

F1 = 73.7 ± 1.4%; (B) crop-type map
accuracy = 72%

1 S: Threshold, amplitude threshold, delayed-moving window, first and higher-order derivate, function fitting method.
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Table A2. Summary table of Land Use/Land Cover studies included in this scoping review. Abstraction levels of data fusion and Technological equipment of
CS data collection are described as assisted by the categories and abbreviations presented in Sections 3.5.1 and 3.5, respectively. Methods are categorised as the
following, AI: Artificial Intelligence, S: Statistical method, ES: Ensemble methods, FS: Fuzzy Association, and M: Mechanistic models.

Reference EO Data Source of CS DF Level Method Validation Evaluation Metric and Score

[90] Satellite/MSI DP/OSM MUF CART, RF/ AI + ES Stratified random validation using ground truth
(1), Landsat-based LC maps (2)

OA and kappa coefficient of urban land can reach
88.80% and kappa-coefficient 0.74 (1), and 97.08%

and 0.92 (2)

[44] Satellite/MSI MUF SVM RBF/AI
5-fold CV, using

a manually
digitized LC

OA = 93.4 and kappa coefficient = 0.913

[95] Satellite/LC DP/OSM HF Probabilistic
Cluster Graphs/ES

Resubstitution using the ATKIS national Digital
Landscape Model (1:250,000)

Scenario 4 with the general class-weighting factor
predicted with OA = 78% and kappa: 0.67.

Class-wise balanced accuracy produced more
accurate results

[96] Satellite/LC DP/Geo-Wiki HF Logistic-GWR/S
Stratification scheme based on Zhao et al. [194]
using an independent validation dataset, and

2 Geo-Wiki campaigns

Generated two-hybrid maps with the first to
perform better (OA: 87.9 %). The tree-cover land
class presented the best results among all classes,
in both maps, PA_1: 0.95, UA_1: 0.94 and PA_2:

0.97, UA_2: 0.93

[91] Satellite/SAR
and MSI DP/OSM MUF

ISODATA and
Estimation

fractional cover of
LC/S

Stratification random sampling approach
(50 validation points per LCC class)

The confusion matrix of the LCC classification
map shows an OA = 90.2%. “Tree cover” and

“cropland/grassland” reveal the greatest
confusion in change classes.

[88] Satellite/MSI PH/Flickr MUF
Naïve Bayes CS

LULC, Maximum
likelihood/AI

Stratified the train/testing dataset having an
analogy of 70/30

LULC (Landsat-5 TM + CS LULC map), with OA
and kappa equal to 70% and 0.625, respectively.

The accuracy level was mostly driven by
urban areas.

[45] Satellite/MSI DP/OSM HF NB, DT-C.45/AI,
RF/ES

(a) Random Subsampling-Hold out: 50/50 (b)
SMOTE stratification method

DT C.45 gave the lowest OA values. In the LULC
system, NB achieved OA = 72.0%, followed by

RF in the 5 and 4-classes LULC system
(OA = 81.0% and OA = 84.0%)
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Reference EO Data Source of CS DF Level Method Validation Evaluation Metric and Score

[92] Satellite/MSI
SM/SINA WEIBO

and Baidu
DP/OSM

HL
Binary

Thresholding,
Similarity Index/S

Random Subsampling-Hold out, based on 289
visual inspected testing parcels

LU Level I classes: OA = 81.04% and
kappa-coefficient = 0.78; LU Level II classes:
OA = 69.89% and kappa-coefficient = 0.68%

[21] Satellite/MSI Other/Focus
groups HF Statistical

analysis/S Resubstitution method using reference data Confusion matrices were computed in the sense
of measuring the deviation in LU-class coverage

[89] Satellite/MSI DP/OSM MUF
RF (RoFs and DT),

XG- Boost, and
CNN/ES

15 randomly defined training datasets (10
uniformly divided, 5 last extracting 500 samples

for all the classes

LCZ OA = 74.94%, kappa = 0.71 (the greater score
using RF method, and experts handcrafted

features). The classification accuracy increased
with the imbalanced dataset

[93] Hybrid/MSI
and DEM DP/OSM HF RF Classifier/ES

Random Subsampling-Hold out randomly
selecting validation points, splitted in training

and testing dataset

Out-of-bag error = 4.8% and OA = 95.2%, with
95.1% of the forested areas to be correctly

classified. Low user’s accuracy of 57.4% was
revealed on commercial lands

[136] Satellite/MSI DP/Google Earth MUF RF Classifier/ES Reference dataset by LCZ expert OA = 0 to 0.75 (produced by several iterations)

[64] Satellite/MSI DP/OSM SM/FB
and Twitter MUF SVM and

DCNN/AI
Transfer performance learning with UC-Merced

dataset and 10-fold Cross-Validation

OA is based on the mean and standard deviation
of all the results. OA_train = >90% and

OA_test = 86.32% and 74.13%

[87] Satellite/MSI DP/Crowd4RS MUF
Ac-L-PBAL and

SVM RBF, RF,
k-NN/AI

260 labelled samples were provided by
RS experts

Three-cross-validation technique of the 3
algorithms. OA = 60.18%, 59.23% and 55%

[2] Satellite/MSI DP/OSM HF Fuzzy logic/FS Stratified random sampling of 200 points
per class

5 tests were evaluated with the final one to reveal
OA = 70%. Population true proportions (pi) [195],

UA and PA per class also calculated.

[94] Satellite/MSI DP/OSM MUF RF Classifier/ES Stratified random sampling OA = 78% (study area A) and OA = 69% (study
area B)
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Table A3. Summary table of Natural Hazards studies included in this scoping review. Abstraction levels of data fusion and Technological equipment of CS data
collection are described as assisted by the categories and abbreviations presented in Sections 3.5.1 and 3.5, respectively. Methods are categorised as the following, AI:
Artificial Intelligence, S: Statistical method, ES: Ensemble methods, FS: Fuzzy Association, and M: Mechanistic models.

Reference EO Data Source of CS DF Level Method Validation Evaluation Metric and Score

[101] Hybrid/Satellite
and in situ

DP/VGI mappers
using Google Earth HF

Multivariate
Logistic

regression/S
Resubstitution DFO map

Log-Likelihood, chi-squared, and p-value tests,
revealed −15,952 465.94, and 2.2× 10−16 16 for

the outside of the city model, and −7534,
273.41 and 2.2× 10−16 for the inside.

[110] Aerial Sensors LF Univariate
L-Regression/S Resubstitution between CS and DOE R2 = 0.87

[109] Aerial
DP/QGIS,
Web-based
eCognition

MUF RF Classifier/ES Hold out human-labelled training data

Estimation of feature importance of the model.
Pixel-based classification seemed more noise
resistant with the AUC to drop 2.02, 7.3, and
0.85% for NAR, label noise and random noise

when 40% of the damage is contaminated.

[104] Satellite/DEM SM/Twitter HF Getis–Ord
Gi*-statistic/S Using an elevation threshold Evaluation of statistical significance based on

z-score values ± 1.64

[100] Hybrid/in situ,
DEM SM/Baidu HF

Multivariate
logistic

regression/S

Resubstitution with Wuhan water authority flood
risk maps

Backward stepwise significance method (Wald
chi-square test = 0.001), AUC = 0.954, asymptotic

significance = 0.000

[98] Satellite/DTM,
LiDAR

SM/YouTube
and Twitter LF EnKF/S Resubstitution using the observed water

depth values
Nash–Sutcliffe efficiency (NSE) > 0.90 and

R > 0.97 (Best results)

[102] Satellite/MSI, DEM PH/Flickr MUF WoE/S Random Subsampling-Hold out with 120 points

ROC for Flickr images was 0.6 (train) and 0.55
(test). EO was 0.88 and 0.90, and AUROC

posterior = 0.95 and 0.93. Pair-wise conditional
independence ratio = 6.38

[103] Satellite/MSI

DP/JORD app,
SM/Twitter,

YouTube,
PH/Flickr, Google

MUF V-GAN/AI Two-fold cross-validation strategy

Matthews correlation coefficient for the binary
classification = 0.805. OA = 0.913,
precision = 0.883, recall = 0.862,

specificity = 0.943, and F1 = 0.870
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Reference EO Data Source of CS DF Level Method Validation Evaluation Metric and Score

[99] in situ Sensor, Smartphone LF Kalman Filter/S Resubstitution error rate between the reference
and simulated values

4 experiments were evaluated using NSE and
Bias’s indexes. However, no general conclusions

can be derived.

[107] Satellite/MSI, DEM Smartphone MUF Mahalanobis
K-NN/AI LOOCV leveraging on the reference dataset

Canonical correlation (F = 2.77 and p < 0.001)),
Wilk’s lambda = 0.007. RMSD investigated

professional (P), non-professional (NP), raw data
(R) and corrected by experts (C) 2

[105] Hybrid/Satellite
and in situ Smartphone MUF Flood-fill

simulation/S
in situ reference measurements and experts’

quality control Kappa-coefficient = 0 to 0.746

2 Best results: RMSD was estimated for the indicators related to the wildland-urban interface (WUI) fuel model, which are Conifer crown closure (All = 22.5%), Conifer crown base
(P = 1.9 m), Suppressed conifers (All = 114.0 stems/ha), Surface vegetation (All = 21.6%), Large woody debris (All = 28.3%), Fine woody debris (All = 33.2%).

Table A4. Summary table of Urban Monitoring studies included in this scoping review. Abstraction levels of data fusion and Technological equipment of CS data
collection are described as assisted by the categories and abbreviations presented in Sections 3.5.1 and 3.5, respectively. Methods are categorised as the following, AI:
Artificial Intelligence, S: Statistical method, ES: Ensemble methods, FS: Fuzzy Association, and M: Mechanistic models.

Reference EO Data Source of CS DF Level Method Validation Evaluation Metric and Score

[57] Satellite/MSI DP/OSM HF Logistic
regression/S Validation by experts

OA = 89%, Sensitivity = 73%, Precision = 89%,
F1-score = 0.80, and 25% volunteers contribute

80% of the classification result

[115] Satellite/MSI DP/OSM MUF FCN (VGG-16)/AI Hold-out equally divided the dataset into
train-test-validation

The best model “ISRPS Gold standard data” with
average F1 = 0.874, Precision = 0.910,

Recall = 0.841 and F1 = 0.913, 0.764, 0.923 for the
building, road, and background classes.

[116] Hybrid/GNSS,
DEM, LC, Aerial Smartphone LF RIPPER, PART,

M5Rule, OneR/AI
10-fold Cross-Validation (CV) and

Visual inspection

Evaluation of CS traces using Shapiro-Wilk,
skewness and kurtosis tests. RIPPER’s best

results: Precision = 0.79, recall = 0.79, F1 = 0.79
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Table A4. Cont.

Reference EO Data Source of CS DF Level Method Validation Evaluation Metric and Score

[113] Satellite/MSI
DP/OSM,

MapSwipe,
OsmAnd

HL LeNet, AlexNet,
VggNet/AI

Random Subsampling Hold-out with MapSwipe
and OsmAnd as ground-truth

Precision, Recall, F1, and AUC of combined CS
data were higher with an average of 9.0%, 4.0%,

and 5.7%

[114] Satellite/MSI DP/OSM;
SM/Baidu MUF

FCNN, LSTM,
RNN (1)/AI; SVM,

LDA (2)/AI
Random Subsampling Hold-out (4:1 train/test)

OA was increased from 74.13% to 91.44%.
Building and road categories were increased by
around 1% (1); OA_SVM = 72.5%, LDA = 81.6%,

PM = 93.1% (2)

[117] Satellite/MSI Smartphone/GNSS HF U-Net, LinkNet,
D-LinkNet/AI

Fusion RS with the outputs of road
centerline extraction

Completeness (COM), Correctness (COR) and
Quality (Q) equal to 0.761, 0.840, 0.672

[118] Satellite/LiDAR
Other/Focus
Groups and

DP/Zooniverse
MUF Faster R-CNN/AI Model division in Train, Test, Validation Recall, Precision, F1, MaF1 evaluation metrics

presented in [196]

[111] Satellite/MSI DP/Tomnod MUF
kd-tree-based
hierarchical

classification/AI

Stratification based on population density classes,
and reference data, created by citizens’

visual inspection

Logistic and beta regressions were applied for the
precision (0.70 ± 0.11) and recall (0.84 ± 0.12)

metrics, evaluating the village boundaries of (1)
the examined areas, and (2) six cities of the globe.

Evaluation of the Population density by the
normalised correlation (NC), and the normalised

absolute difference (ND).

[7] Satellite/MSI DP/OSM,
MapSwipe HF

DeepVGI model
(Single Shot

Detection (SSD)
CNN)/AI

Hold out dataset division in train and test.
Maximum training epochs was set to 60,000

Specificity, Sensitivity, OA (ACC), Matthew’s
correlation coefficient (MCC) metrics. DeepVGI
model revealed similar results to MapSwipe, i.e.,

OA = 91–96%, MCC = 74–84%,
specificity = 95–97%, and sensitivity = 81–89%

[112] Hybrid/MSI
and LULC DP/OSM MUF

Bagging CNN, V3,
VGG16/ES(1); SL

models 3/AI(2)

Hold-out (85//15 train/test) using a
reference dataset.

Ensemble model revealed the best results in both
Nigeria and Guatemala, OA_N = 94.4%,

OA_G = 96.4%, and F1_N = 92.2%, F1_G = 96.3%.
Transfer Learning models performed with OA_N

= 93% and OA_G = 95%, Human benchmark
(OA_N = 94.5%, OA_G = 96.4%). AdaBoost and

logistic regression performed better.
3 7 classification algorithms: Decision trees, Gradient boosting trees, AdaBoost, Random Forest, logistic regression, support vector machines, and k-nearest neighbour.
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Table A5. Summary table of Air monitoring studies included in this scoping review. Abstraction levels of data fusion and Technological equipment of CS data
collection are described as assisted by the categories and abbreviations presented in Sections 3.5.1 and 3.5, respectively. Methods are categorised as the following, AI:
Artificial Intelligence, S: Statistical method, ES: Ensemble methods, FS: Fuzzy Association, and M: Mechanistic models.

Reference EO Data Source of CS DF Level Method Validation Evaluation Metric and Score

[121] Hybrid/DEM,
LULC and in situ Sensors MUF

Non-parametric
significant tests

LCZ/S
Reference weather stations

1-way ANOVA (Kruskal-Wallis test), pairwise
2-sided Wilcoxon-Mann-Whitney and

Holm-Bonferroni. Difference CS = 1.0 K and
Reference = 1.8 K; Difference between the 2

datasets ≤ ± 0.2–2.9 K

[119] Hybrid/in situ
and Satellite Sensors LF L-Regression/S in situ PM2.5 US EPA Air Quality concentrations,

and Aeronet AOD R2 = 0.04

[120] Satellite/MSI +
LiDAR Sensors LF

RF Regression;
ANOVA test for
the explanatory

variables/ES

Hold-out (70/30) with bootstrapping repeatedly
occurred 25 times

Annual mean, daily maximum and minimum
Tair can be mapped with an RMSE = 0.52 ◦C ,

R2 = 0.5), 1.85 ◦C (R2 = 0.5) and 1.46 ◦C
(R2 = 0.33); Transferability revealed an

RMSE = 0.02 ◦C difference.

[97] Hybrid/LULC and
in situ

S/Personal
Weather Station MUF WRF model/M Compared with measurements from in situ

weather stations

RMSE = 0.04 K and Mean Bias = 0.06 K (p = 0.001).
Weak positive correlation (r = 0.28) of the

elevation with variations in model’s performance

Table A6. Summary table of Ocean/marine monitoring studies included in this scoping review. Abstraction levels of data fusion and Technological equipment of
CS data collection are described as assisted by the categories and abbreviations presented in Sections 3.5.1 and 3.5, respectively. Methods are categorised as the
following, AI: Artificial Intelligence, S: Statistical method, ES: Ensemble methods, FS: Fuzzy Association, and M: Mechanistic models.

Reference EO Data Source of CS DF Level Method Validation Evaluation Metric and Score

[124] Satellite/MSI Smartphone HF Multi-Linear
Regression/S -

Spearman rank coefficient; R2 = 0.25, 0.32; mean
absolute difference = 21 ± 16%, 22 ± 16%), mean

difference = 6 ± 26%, 6 ± 27%

[122] Satellite/MSI Smartphone MUF
Backward step
Multi-Linear-
Regression/S

Field measurements

Spearman rank coefficient; Adjusted R2 = 0.50,
standard error 0.274 with stream distance

weighted mixed forest and urban, and
riparian percentage

[123] Satellite/MSI, DEM Sensor MUF RF Regression/ES out-of-bag using 10–fold cross-validation

Turbidity: OA = 65.8%, kappa = 0.32, Error
good—bad evaluation 34.6% and 36.0%; Nitrate:
70.3%, 0.26, 58.8%, 14.7%; Phosphate: 71.8%, 0.39,

50.0%, 22.6%
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Table A7. Summary table of Humanitarian and crisis response studies included in this scoping review. Abstraction levels of data fusion and Technological equipment
of CS data collection are described as assisted by the categories and abbreviations presented in Sections 3.5.1 and 3.5, respectively. Methods are categorised as the
following, AI: Artificial Intelligence, S: Statistical method, ES: Ensemble methods, FS: Fuzzy Association, and M: Mechanistic models.

Reference EO Data Source of CS DF Level Method Validation Evaluation Metric and Score

[125] Satellite/MSI DP/Zooniverse HF Averaged density
of kilns/S

Random sample selection; Visual inspection by
an Independent adjudicator OA = 99.6%; Error of experts = 0.4%; of CS = 6.1%

[126] Satellite/Nightlights DP/Syria tracker MUF Logistic
regression/S - Statistical significance of all models is below 5%.

Best model result AIC = 127,967

Table A8. Summary table of Soil moisture studies included in this scoping review. Abstraction levels of data fusion and Technological equipment of CS data
collection are described as assisted by the categories and abbreviations presented in Sections 3.5.1 and 3.5, respectively. Methods are categorised as the following, AI:
Artificial Intelligence, S: Statistical method, ES: Ensemble methods, FS: Fuzzy Association, and M: Mechanistic models.

Reference EO Data Source of CS DF Level Method Validation Evaluation Metric and Score

[69] Satellite/SAR, MSI, DEM low-cost soil moisture
sensorsc S LF

multiple regression analysis
(MLR), regression-kriging and

cokriging/S

leave-one-out
cross-validation

MLR_R2 = 0.19 to 0.35 and
MLR_RMSE = 5.86 to 4.14; regression
kriging RMSE = 1.92–4.39; cokriging

RMSE = 4.61–6.16
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