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Abstract: Fighting Earth’s degradation and safeguarding the environment are subjects of topical
interest and sources of hot debate in today’s society. According to the United Nations, there is a
compelling need to take immediate actions worldwide and to implement large-scale monitoring
policies aimed at counteracting the unprecedented levels of air, land, and water pollution. This
requires going beyond the legacy technologies currently employed by government authorities and
adopting more advanced systems that guarantee a continuous and pervasive monitoring of the
environment in all its different aspects. In this paper, we take the research on integrated and large-
scale environmental monitoring a step further by providing a comprehensive review that covers
transversally all the main applications of wireless sensor networks (WSNs), unmanned aerial vehicles
(UAVs), and crowdsensing monitoring technologies. By outlining the available solutions and current
limitations, we identify in the cooperation among terrestrial (WSN/crowdsensing) and aerial (UAVs)
sensing, coupled with the adoption of advanced signal processing techniques, the major pillars at the
basis of future integrated (air, land, and water) and large-scale environmental monitoring systems.
This review not only consolidates the progresses achieved in the field of environmental monitoring,
but also sheds new lights on potential future research directions and synergies among different
research areas.

Keywords: environmental monitoring; wireless sensor networks (WSNs); unmanned aerial vehicles
(UAVs); crowdsensing; signal processing; pollution monitoring; natural disasters

1. Introduction

Preserving and protecting the environment is, today more than ever, an imperative
requirement for modern society. Unmanageable levels of pollution, unpredictable climate
changes, and over-exploitation of natural resources are severely harming human health
and the general well-being of society while at the same time hindering a sustainable
growth of the global economy. According to the Sixth Intergovernmental Panel on Climate
Change (IPCC) report released by United Nations in 2021 [1], human activities have
caused an average increase in global temperatures of about 1.1 ◦C compared to the period
before the industrial revolution: global warming has not only increased the frequency
and intensity of disastrous environmental phenomena such as wildfires, toxic rains, and
floodings, but has also damaged and aggravated the situation of ecosystems worldwide.
Notably, the uncontrolled greenhouse gases generated from the increasing urbanization
and industrialization, agricultural imbalances, and aggressive de-forestation are at the basis
of dramatic human diseases such as asthma, lung cancer, chronic pulmonary disease, and
pneumonia, causing more than 7 million premature deaths per year [2,3]. To counteract
such unprecedented issues, it becomes necessary to exploit all the commercially available
technologies to guarantee a continuous and pervasive monitoring of the environment in all
its different aspects (air, land, and water). In view of the continually growing sources of
pollution and natural hazards, monitoring systems should be able to dynamically adapt to
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different contexts, to manage a huge amount of heterogeneous environmental data, and
to operate over large geographical scales. This requires rethinking the way such systems
have been designed so far, following a new paradigm in which environmental monitoring
is not merely intended as a passive collection of environmental data in different contexts,
to be used for detecting possible breaches of safety-critical thresholds, but involves more
advanced processes that aim at extracting more accurate and complete knowledge about
the monitored phenomena, possibly in real-time, to devise both proactive and reactive
strategies able to limit the environmental damages and predict their potential impacts.

More traditional monitoring systems currently adopted by government authorities
consist of a few fixed stations, equipped with advanced sensors and measurement units,
which are sparsely deployed over large geographical areas. Practical examples include the
meteorological monitoring stations [4], the diffused seismographs systems for earthquake
detection [5], or the oceanic report systems [6], just to name a few. To complement such
terrestrial systems, observations from satellite and airborne platforms have been largely
considered, not only for strict monitoring purposes [7–10], but also for building accurate 3D
models of the earth’s surface [11]. Despite the quite high precision provided through their
dedicated equipment, such systems are tailored for single or limited types of environmental
analyses and can provide observations of the physical phenomena only at a very small
number of locations. For the specific cases of satellite and airborne systems, the rate
of data acquisition can be as low as a few observations per day, and the measurement
accuracy is severely impaired in the presence of bad weather conditions (clouds, fog, rain).
Unfortunately, most of the main environmental indicators (e.g., air quality, temperature,
pressure, water turbidity) has the intrinsic characteristic of experiencing rapid changes even
at distances in the order of a few meters, especially in highly dynamic environments such
as urban areas [12]. Chiefly, the cost and time required to install and periodically maintain
the sophisticated hardware and software components is often unaffordable [13]. In this
respect, a paradigm shift is necessary where pervasive and fine-grained environmental
monitoring is performed by means of a larger number of low-cost sensing units which,
by providing a more capillary coverage of the target areas and an increased sensing rate,
are able to correctly capture the spatio-temporal variations of the physical phenomena
of interest.

A first step in this direction is represented by the adoption of terrestrial wireless sensor
networks (WSNs). WSNs applied to monitoring contexts are a practical example of the
emerging internet-of-things (IoT) paradigm, where hundreds or thousands of intercon-
nected tiny devices are collaboratively used to observe and react according to a given
phenomenon in the surrounding environment [14]. Fostered by the rapid advances in the
field of sensor miniaturization, microelectronics, and low-power wireless communications,
WSN nodes are realized as smart and compact devices equipped with a number of inex-
pensive sensors measuring different environmental parameters such as particulate matters,
temperature, pressure, pH level, water conductivity, among many others [15]. Compared
to the above-discussed traditional monitoring systems, a strategic deployment of a WSN
offers a substantial opportunity to obtain a more accurate knowledge of environmental
phenomena by leveraging the finer sampling capabilities of the sensing network. Although
WSNs have been transversally applied to different environmental contexts such as air
pollution monitoring [16], wildfire early detection [17], and water monitoring [18], this
technology is not without significant limitations. Indeed, WSNs are typically installed
at fixed and static locations and can provide a sufficient coverage only over very small
target areas. Moreover, WSN nodes are characterized by a quite limited autonomy, a short
communication range, and reduced processing and storage resources.

Over the last two decades, there has been a growing interest in the adoption of un-
manned aerial vehicles (UAVs), also known as drones, for environmental monitoring
purposes. Thanks to their aerial inspection capabilities, UAVs can reach remote and
hardly accessible locations and exploit their flexible flying characteristics to perform mon-
itoring operations at different spatial resolutions (namely, different altitudes and view
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angles) while guaranteeing much higher sampling rates. The ongoing downsizing of
integrated sensor technologies allows UAV platforms to be endorsed with a multitude
of different sensors, ranging from common optical (RGB) cameras to more advanced
multispectral/hyperspectral and LIDAR sensors. By capturing detailed environmental
data over different spectral ranges, UAVs promoted the design of new approaches to
reveal the physical characteristics of materials dispersed in a monitored site, discriminat-
ing between natural and pollutant materials and reconstructing accurate 2D/3D maps of
the land surfaces even in areas where other airborne or spaceborne technologies are not
applicable [19,20]. Furthermore, UAVs proved to be valuable tools for supporting public
authorities in managing all the phases of a natural disaster (e.g., wildfire, flood, earthquake),
from prevention and preliminary assessment of the damages to the final recovery [21,22].
There are, however, some open issues, including the potential safety threats related to the
use of UAVs [23–25], leading to restrictions on their flight operations, the correct calibration
of mounted sensors [26], and the need for accurate localization and spatial contextualization
of the collected data [27], which should be still faced before considering UAVs as a fully
matured technology for environmental monitoring.

Nowadays, the capillary diffusion of smartphones and wearable devices (smart
watches, smart wristbands) along with the rich set of built-in and Bluetooth sensors (e.g., an-
tennas, microphones, cameras) are the key enablers driving the successful application of
the crowdsensing paradigm to the field of environmental monitoring. Crowdsensing re-
lies on the idea of exploiting the sensing and communication capabilities embedded in
daily used mobile devices to opportunistically collect, process, and store environmental
data at practically zero-cost [28]. Stimulated by the possibility of actively contributing to
environmental protection, citizens can be personally involved in the sensing campaign and
additionally provide their subjective perceptions about the environment, further enriching
the information obtained by a mere sampling of environmental data [29]. Besides people,
also the most common private/public transportation systems such as cars, buses, taxis,
bicycles, and trains represent valuable crowdsensing platforms, which can carry sensors
for different pollution monitoring (e.g., air pollution, acoustic noise pollution) and exploit
their mobility to cover larger areas [30]. With the forthcoming vehicle-to-anything (V2X)
communication technologies, smart vehicles can also collaborate among each other, further
increasing the potential of crowdsensing in the emerging contexts of smart cities and intelli-
gent transportation systems (ITSs) [31,32]. Evidence shows that even with a small set of
recruited crowdsensing devices, it is possible to identify areas with systematically higher
levels of pollution. The success of crowdsensing is strongly related to the willingness of
citizens to collaborate by making their private smartphones or vehicles available for the
sensing campaigns. Unfortunately, selfish and privacy concerns still hamper the wide
diffusion of such a paradigm [33].

The intrinsic multidisciplinarity of the environmental monitoring problem has led
to a plethora of different methodologies and algorithms available in the literature, scat-
tered across a number of different research communities. Considerable research efforts
have been made to improve the monitoring capabilities of each individual technology
(WSN/UAV/crowdsensing) and, recently, the possible combinations of multiple technolo-
gies have started to be investigated. Despite the evident advances achieved with respect to
legacy monitoring systems, there still exist significant technological and methodological
gaps to be filled in order to ensure an integrated monitoring of the environment in all its
aspects (air, land, and water) while offering a cost-effective and scalable solution to support
a coverage over a large geographical scale. More specifically, the considerable complexity is
mainly related to the great diversity among the air, land, and marine contexts, to the huge
heterogeneity of environmental data that need to be jointly processed, and more generally
to the specific characteristics of each monitoring task.

Different survey papers have been already proposed in the literature, mainly fo-
cused on each individual aerial (UAV) or terrestrial (WSN/crowdsensing) technology and
its applications in environmental monitoring, as summarized in Table 1. Specifically, a
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number of reviews have been devoted to the use of WSNs, highlighting their benefits
compared to legacy monitoring systems [34] and their role in different contexts such as
marine monitoring [35], water quality assessment [36], air pollution monitoring [37], urban
noise monitoring [38], and precision agriculture [39]. Several surveys also investigated the
sensing capabilities of UAV platforms by considering the available hardware/software
technologies [40] and the current practices related to their use [41] and studying their
application in agriculture and forestry monitoring [42], coastal habitat mapping [43], early
detection of forest fires [44], landslide monitoring [45], and air quality assessment [46]. The
shift toward the use of mobile crowdsensing as a viable and cost-effective data collection
paradigm has been thoroughly discussed in [47] and further investigated in [48], where the
emerging technologies of wearable sensors have been classified and characterized in detail.
A rather complete overview of the potential uses of mobile crowdsensing in smart agricul-
ture was provided in [49], while [50] illustrated the main applications of smartphone-based
environmental monitoring in the rising IoT era. In addition, a comprehensive analysis on
the use of social media as a promising crowdsensing tool for natural-disaster management
has been conducted in [51]. Recently, some review papers started to appear that consider
collaborative monitoring systems based on a combination of two technologies—for instance,
WSN-UAV [52,53] and WSN-crowdsensing [54]—but with the main purposes of improving
specific tasks such as the management of natural disasters or the monitoring of pollution in
urban areas, without, however, taking into account all the remaining aspects involved in
environmental monitoring.

In this respect, the general scope of this paper is to provide a comprehensive review
that transversally considers the three sensing technologies (WSN, UAV, and crowdsensing)
and combines their benefits in a synergistic manner, taking into account all the different ap-
plication contexts at hand (air, land, and water) and jointly considering the main involved
tasks, from data acquisition to communication and processing. The review not only sim-
plifies the understanding of the current solutions and available techniques, but also sheds
new light on the major ingredients that should be considered to design future integrated
and large-scale environmental monitoring systems. Specifically, the main contributions of
the paper are as follows:

(i) An in-depth review of the main applications of each individual technology (WSN,
UAV, and crowdsensing) to environmental monitoring is conducted, classifying the
existing solutions based on their specific fields of application: (a) air monitoring,
(b) land monitoring, and (c) water/marine monitoring. Based on such a classification,
the main benefits and current limitations of each technology are then outlined.

(ii) A detailed overview of the signal processing techniques applied in the field of envi-
ronmental monitoring is presented, showing how they provide elegant and efficient
solutions to many pivotal aspects of monitoring tasks, from the optimal deployment of
sensing nodes to the accurate modeling and reconstruction of the physical phenomena
of interest.

(iii) The main components of a high-level architecture that leverages the different air–
ground sensing capabilities of WSNs, UAVs, and crowdsensing, to enable an inte-
grated and large-scale monitoring of the environment, are identified. The architecture
includes all application scenarios (air, land, and water) and interprets the whole
ecosystem (WSN/UAV/crowdsensing) as a unified multi-agent and multi-system
framework, using advanced signal processing for low cost and scalability.

(iv) Promising future research directions and synergies between different research areas
envisioned as key enablers for integrated large-scale environmental monitoring are
finally discussed.

The structure and organization of the paper is depicted in Figure 1.
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Table 1. Related survey papers on WSN/UAV/crowdsensing environmental monitoring.

Techn. Title Ref. Main Content
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SN
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Environmental Sensor Networks:
A Revolution in the Earth System Science? [34] A review on technological evolution

from legacy systems to WSNs

Marine Environment Monitoring
Using Wireless Sensor Networks:

A Systematic Review
[35] An overview of applications of WSNs

to marine environmental monitoring

Energy Efficient Solutions in Wireless
Sensor Systems for Water Quality Monitoring:

A Review
[36] A review of applications of WSNs

to water monitoring

Advances in Smart Environment
Monitoring Systems Using IoT and Sensors [37] A review on technological advancements

in the development of modern WSNs

Review of Wireless Acoustic Sensor Networks
for Environmental Noise Monitoring

in Smart Cities
[38] A review of most relevant WSN-based

approaches for acoustic noise monitoring

Energy-Efficient Wireless Sensor Networks
for Precision Agriculture: A Review [39] A review on recent applications of WSNs

in precision agriculture research

U
nm

an
ne

d
A

er
ia

lV
eh

ic
le

s
(U

A
V

s)

On the Use of Unmanned Aerial Systems
for Environmental Monitoring [40] A survey on applications of UAVs in natural

and agricultural ecosystem monitoring

Current Practices in UAS-based
Environmental Monitoring [41] A review of UAV-based environmental

monitoring using passive sensors

Hyperspectral Imaging: A Review on
UAV-Based Sensors, Data Processing and
Applications for Agriculture and Forestry

[42] A review of UAV-based hyperspectral
remote sensing for agriculture and forestry

Unmanned Aerial Systems (UASs) for
Environmental Monitoring: A Review with

Applications in Coastal Habitats
[43] A review of emerging applications of UAVs

for mapping coastal habitats

A Review on Early Forest Fire Detection
Systems Using Optical Remote Sensing [44] A review on UAV-based optical remote

sensing for early detection of forest fires

Thermal Remote Sensing from UAVs:
A Review on Methods in Coastal

Cliffs Prone to Landslides
[45] A review on UAV-based thermal remote

sensing for monitoring landslides

A Review on Air Quality Measurement
Using an Unmanned Aerial Vehicle [46] A review on the use of UAVs

for air quality monitoring

C
ro

w
ds

en
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ng

A Survey on Mobile Crowdsensing Systems:
Challenges, Solutions, and Opportunities [47] A survey on applications of crowdsensing

for data collection in different contexts

Sensors and Systems for Wearable
Environmental Monitoring Toward

IoT-Enabled Applications: A Review
[48] An overview on the emerging

wearable environmental monitoring systems

On Enabling Mobile Crowd Sensing for Data
Collection in Smart Agriculture: A Vision [49] A survey on the use of mobile

crowdsensing for smart agriculture

A Survey on Mobile Crowd-Sensing and
Its Applications in the IoT Era [50] A survey on the use of smartphones’

built-in sensors and their applications

Use of Social Media Data in
Disaster Management: A Survey [51] A survey on methodologies that use social

data crowdsensing for disaster management

W
SN

-U
A

V A Survey of Collaborative UAV–WSN
Systems for Efficient Monitoring [52] A survey on the joint use of WSN and UAV

for efficient monitoring tasks

Wireless Sensor Networks and
Multi-UAV Systems for

Natural Disaster Management
[53] A review of the main applications involving

WSNs and UAVs in disaster management

W
SN

C
ro

w
d. Prospects of Distributed Wireless

Sensor Networks for Urban
Environmental Monitoring

[54] A survey on the joint use of WSN and
crowdsensing for urban pollution monitoring
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Towards Integrated Large-Scale Environmental Monitoring using WSN/UAV/Crowdsensing: A
Review of Applications, Signal Processing, and Future Perspectives

1. Introduction

2. Environmental Monitoring based on Wireless Sensor Networks Technologies

2.1 WSN for Air Monitoring

2.2 WSN for Land Monitoring

2.3 WSN for Marine and Water Monitoring

2.4 Main Challenges and Limitations of WSN Environmental Monitoring

3. Environmental Monitoring based on Unmanned Aerial Vehicles Technologies

3.1 UAV for Air Monitoring

3.2 UAV for Land Monitoring

3.3 UAV for Marine and Water Monitoring

3.4 Main Challenges and Limitations of UAV Environmental Monitoring

4. Environmental Monitoring based on Crowdsensing Technologies

4.1 Crowdsensing for Air Monitoring

4.2 Crowdsensing for Land Monitoring

4.3 Crowdsensing for Marine and Water Monitoring

4.4 Main Challenges and Limitations of Crowdsensing Environmental Monitoring

5. Signal Processing for Environmental Monitoring

5.1 Optimal Sensors Location for Environmental Sensing

5.1.1 Linear Inverse Problems

5.1.2 Sensor Placement Problem Formulation and Possible Solutions

5.2 Sampling and Reconstruction of Environmental Phenomena

5.2.1 Sampling and Reconstruction without Additional Information

5.2.2 Sampling and Reconstruction with A-Priori Information

5.3 Environmental Monitoring based on Hyperspectral Image and Signal Processing

5.3.1 Hyperspectral Image Acquisition and Representation

5.3.2 Hyperspectral Image Classification

5.3.3 Hyperspectral Unmixing

5.3.4 Hyperspectral Change Detection

6. Integrated Large-Scale Air-Ground Environmental Monitoring

6.1 Hybrid Environmental Monitoring Systems

6.2 Combining WSN/UAV/Crowdsensing and Advanced Signal Processing

6.3 Future Perspectives

7. Conclusions

Figure 1. Structure and organization of the review.
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2. Environmental Monitoring Based on Wireless Sensor Network Technologies

The general architecture of an environmental monitoring system based on a terrestrial
WSN consists of hundreds or thousands of low-cost sensor nodes located in strategic
points of the monitored site (whose position is assumed to be known) and of one or more
monitoring centers responsible for collecting and processing all the data acquired by the
sensor nodes, as illustrated in Figure 2.

WSN
Node Sensed

Phenomenon

Communication
Network

Monitoring Center

Wireless Sensor Network

Figure 2. General architecture of an environmental monitoring system based on a WSN.

Each sensor node in the WSN is a low-power device equipped with:

• A microprocessor unit to control and manage the local tasks and to perform basic
computations on the acquired data.

• An internal memory with limited capacity used to store small batches of collected data
before transferring them to the monitoring centers.

• A transceiver for establishing communication links with the other nodes in the network
and with the monitoring centers.

• A sensing unit equipped with several dedicated sensors (e.g., chemical, thermal, bio-
logical) to measure and monitor the environmental parameters of interest.

WSN nodes can collect different types of environmental data in different formats and
resolutions, e.g., analog or digital, static or dynamic, spatial or temporal, and images or
video sequences, just to name a few. At the monitoring center, the high volume of collected
data is properly stored in dedicated databases and processed through high-performance
computing systems. Data are typically pre-processed to remove possible outliers before
being analyzed and visualized using, e.g., common Geographic Information Systems (GISs),
in combination with additional information from satellites (maps) and, possibily, coupled
with the predictions produced by spatial–temporal models of the pollutants. The results of
the analyses are subsequently made available through specific web platforms to guarantee
seamless access to all the authorized entities (private and/or public).

Compared to more traditional systems based on few fixed monitoring stations, WSNs
revolutionize the sensing task by enabling an accurate, pervasive, and real-time monitor-
ing of the main environmental processes and parameters thanks to the increased spatial
resolution and differentiated sensing capacity of the network. Commercial off-the-shelf
(COTS) sensors mounted on the sensing unit of WSN nodes can measure a number of
physical parameters such as temperature, humidity, and pressure, as well as some of the
most important chemical pollutants. In Table 2, we report the most common type of sensors
used in WSN-based environmental monitoring systems, including their operating range
and manufacturing technology. For more comprehensive discussions about the various
environmental sensors, we refer the interested reader to the dedicated surveys [55–60].
In the following, we provide a review of some representative approaches proposed in
the domain of WSN-based environmental monitoring, classified based on their fields of
application (air, land, or sea). On the basis of the reviewed literature, we then conclude the
section by highlighting the common challenges and the main limitations of WSN-based
monitoring systems.



Sensors 2022, 22, 1824 8 of 65

Table 2. Typical sensors used in WSN-based environmental monitoring systems.

Physical Environmental Parameters

Type Sensor Technology Operational Range

Temperature thermal resistor, resistance temperature detector (RTD) −60 to +90 °C
Pressure integrated electromechanical, piezoresistive 700–1100 mbar
Turbidity nephelometric 0–4000 NTU
Air Flow thermal anemometric, mechanical 0–80 m/s
Radiation radiation thermocouples, photodiode 0–1500 W/m2

Chemical Environmental Parameters

Type Sensor Technology Operational Range

PM2.5/PM10 optical scattering, radiating particles, light detection 0–500 mg/m3

NOx electrochemical, chemiluminescence 0.05–5 ppm
SO2 electrochemical, ultraviolet fluorescence 0.05–5 ppm
O2 chemiluminescence 0.01 mg/L–2000 mg/L
O3 ultraviolet photometry, chemiluminescence 0.05–5 ppm
CO electrochemical, MOX 0.05–500 ppm
CO2 NDIR 0.1–5000 ppm

VOCs mechanical resonator 1–1000 ppm
pH electrochemical 0–15 pH

2.1. WSN for Air Monitoring

WSN technologies have received significant attention in the area of air environmental
monitoring. With the progressive evolution toward the emerging reality of smart cities,
monitoring the quality of the air in all its aspects (chemical, electromagnetic, and acoustic
noise pollution) in crowded urban areas is becoming a major concern. Indeed, the highly
dynamic nature of such environments triggers frequent changes in the concentrations of the
air pollutants, which in the worst cases may occur in the scale of few seconds over time and
of few meters in space [61]. Enabling real-time air monitoring in these harsh environments
through a scalable, reprogrammable and low-cost WSN deployed over traffic/street lights
is the objective of some important projects such as [62–64]. Another important aspect of
WSN-based air monitoring concerns the quite high power and response time required
by greenhouse gases sensors (CO, CO2, SOx, NOx, O2), especially those based on MOX
technology. In [65–68], such issues are explicitly taken into account at the design stage and
solved using a combination of power reduction techniques that operate at both sensors
and network levels, also including some context-adaptive strategies [69]. Minimal inva-
siveness is another desired property when designing and deploying effective WSN-based
air monitoring systems, especially for indoor environments. In [70–73], different multilayer
architectures are presented that enable a distributed monitoring of the air environmental
parameters using only a limited number of deployed sensors while still preserving the
low-cost and flexible characteristics of a WSN. The optimal deployment of WSN nodes for
finer spatio-temporal air monitoring is addressed in [74–76]. The optimization problem is
formulated by explicitly taking into account the dynamic diffusion of the air pollutants,
represented by means of atmospheric dispersion models, including also some realistic
connectivity issues among the nodes in the WSN. Preliminary experiments on real datasets
indicate that the actual sensing capabilities of the WSN are strongly affected by the weather
conditions, with the estimation performance that tends to increase when the sensors are
deployed at an altitude close to the main concentrations of the air pollutants. Moreover,
the deployment costs, which are quantified as the total number of WSN nodes required
to guarantee a predefined error-bounded coverage, can be progressively lowered as the
number of pollutant sources or the number of emissions from a single source increases.

WSN technologies have also proven their validity in monitoring different sources
of environmental acoustic noise (ranging from those generated by common transporta-
tion systems to industrial manufacturing and building construction) that can be found in
most human-centric areas [38,77,78]. Compared to sensing chemical air pollutants, which
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involves the processing of separate data from each dedicated sensor, acoustic noise mon-
itoring introduces additional challenges related to the correct separation, classification,
and identification of the several noise contributions that are superimposed at the receiving
microphones [79]. In this respect, a lot of work has been devoted to the design of advanced
acoustic signal processing techniques that elaborate on well-known methods such as beam-
forming [80], source localization [81], array calibration [82], and noise reduction [83]. An
evident trade-off between accuracy and deployment costs tends to emerge from the re-
viewed literature: on the one hand, approaches such as [84–86] consider class-A acoustic
sensors to build near real-time maps that provide a detailed analysis of the acoustic envi-
ronment, including the classification of all the diverse sources of noise. Such approaches are
however limited to very small areas (WSNs with less than 10 nodes), being that their costs
are prohibitive and do not allow a flexible adaptation of the signal processing algorithms at
the sensor9 level. On the other hand, the systems presented in [87–89] aim at providing
a fairer balance between deployment costs and achieved accuracy by relying on low-cost
acoustic sensors that can only measure global aggregated levels of equivalent noise, but
they enable a more pervasive installment of the WSN over the monitored area.

2.2. WSN for Land Monitoring

WSN technologies have found several application contexts in the field of soil moni-
toring. The ever increasing urbanization of the modern society is leading to a significant
growth of the total amount of waste produced per year [90], which calls for adequate
monitoring systems to supervise the storage, treatment, and recycling processes. Such
systems should guarantee that some pivotal parameters (e.g., level of radiation, percent-
age of chemical and biological pollutants) are within the tolerated ranges and, whenever
possible, prevent the illegal dumping of solid/liquid waste in the environment. As an
enabling technology of the emerging Industry 4.0 paradigm, WSNs have been employed to
monitor nuclear storage facilities [91,92], the disposal of chemical materials and waste [93],
and, more generally, harsh industrial environments [94,95]. A common challenge faced in
all these scenarios is represented by the extreme environmental conditions in which the
WSNs are deployed. More specifically, very high temperatures, hazardous gases and the
possible presence of chemical acids in the surrounding of sensors can severely impair the
correct sensing capabilities of the WSN. Building a reliable and robust WSN monitoring
system in harsh environments has been a topic of interest in the literature [96]. The pro-
posed solutions typically augment the sensing systems by adding multiple backup sensors
equipped with supplementary modules. This, however, comes at the price of an increased
power consumption, which in turn calls for the necessity of proper energy harvesting
technologies [97,98].

WSN monitoring systems play a crucial role also in fostering the prevention, early
detection and quick management of natural disasters. Critical though recurrent phenomena
such as wildfires can be combated by using WSN monitoring systems based on long-range
(LoRa) wireless communication technology, which provides sufficient coverage for small
and mid-size areas [99–101]. WSN monitoring systems turn out to be effective also for
landslides prediction [102]. Due to the several factors that influence these phenomena (e.g.,
characteristics of soil, altitude, vegetation, etc.), the data collected by the WSN should be
fused with geotechnical and hydrological models [103] and further processed within GIS
in order to perform accurate analyses [104].

Precision agriculture is another important field of application for WSN-based monitor-
ing systems. Introducing sensing technologies into the basic farming processes, from the
optimal provision of soil nutrients up to an efficient management of the irrigation systems
and fertilizers, is pushing agriculture toward the new emerging dimension of smart agricul-
ture (also called Agriculture 4.0) [105]. A lot of work has been devoted to the adoption of
WSN technologies to monitor the main soil parameters such as the moisture, temperature,
pH, and wind direction [39,106], as well as the quality of crops [107] and the efficiency of
the irrigation systems [108,109]. From the surveyed literature, it appears that the Arduino
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platform is one of the most adopted technologies to integrate a variety of soil sensors, while
Tiny OS is the leading operating system installed on the WSN nodes. Among the main
open challenges, it is worth mentioning the trade-off between the optimal deployment of
sensor nodes to guarantee full coverage of the farming area and the choice of the low-power
wireless communication technology to overcome attenuations and blockages due to the
presence of dense crops.

2.3. WSN for Marine and Water Monitoring

During the last decades, marine environments have been severely threatened by effects
related to anthropological activities such as tourism, urbanization, and industry [35,110].
Compared to traditional systems based on oceanographic research vessels, WSNs have pro-
vided dramatic improvements in terms of real-time analyses and monitoring of marine and
coastal areas: on the one hand, the high cost associated with the startup and maintenance
of the vessels is completely avoided [111]. In addition, the higher sensing resolution in
both time and space promotes a more timely response against unexpected critical events
such as flooding or water contamination [112]. A typical WSN-based marine monitoring
system consists of a set of nodes deployed near the coast and/or in strategic points of
the sea surface. The general architecture of each WSN node comprises a floating support
(usually a buoy) to isolate the main electronic parts and RF communication modules from
the water along with a sensing subsystem equipped with underwater sensors measuring
different physical parameters such as pH, temperature, pressure, level of salinity, turbidity,
oxygen density, and chlorophyll. Differently from land or air applications, WSNs operating
in marine environments face three main additional challenges: (i) sensor nodes need to be
protected against corrosion and adverse conditions such as tides, high waves, cold/hot
currents, and typhoons, which undermine both the stability of nodes and sensing accuracy;
(ii) preserving and harvesting energy is of utmost importance since sensor nodes are often
deployed in unapproachable points of the sea and use long-range power-hungry wireless
communication protocols to send data to the monitoring centers; (iii) underwater commu-
nications are highly unreliable due to extremely low channel capacities and high signal
attenuations experienced when communicating through water. To address the first issue,
biofouling protection capabilities have been added to the underwater sensors [113,114],
and more advanced flotating buoys have been designed to better support the sensing
nodes [115]. The energetic problems have been tackled by using both overwater [116,117]
and underwater solar energy harvesting technologies [118] as well as by leveraging the
kinematic energy from waves [119]. For underwater communications, acoustic waves
represent the mostly adopted technology, even if they still suffer from high attenuation,
significant delays in propagation, and fading effects. In some cases, a combination of
optical, acoustic, and electromagnetic communications should be used to overcome the un-
reliability of the underwater links [120,121], possibly coupled with advanced routing [122]
and hop-counting strategies [123] for improved efficiency.

Monitoring the quality of fresh-water courses and related drinkable water supply
systems is another appealing application of WSN technologies. Providing clean and con-
trolled drinking water typically involves a manual collection of water samples followed
by intensive laboratory-based analyses. These approaches are, however, highly inefficient
and expensive and cannot provide real-time information about water quality, prevent-
ing the possibility of timely identifying accidental or malicious contamination. In this
respect, WSNs provide an important shift in the monitoring paradigm, enabling a real-time,
low-cost analysis of the main water parameters (e.g., turbidity, pH, conductivity, etc.)
with improved spatial and temporal resolution [36,124]. Given the absence of accurate
biological and chemical sensors on common low-cost WSN nodes [125,126], most work in
the literature has focused on the design of advanced contamination detection algorithms
that properly fuse the different data collected from multiple sensors [127]. This kind of
approach intrinsically suffers from increased false alarm rates, which in turn calls for more
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sophisticated methods that correlate the decisions with additional information coming
from other external sources [128].

2.4. Main Challenges and Limitations of WSN Environmental Monitoring

Despite their transversal applicability to almost all the main environmental contexts
(from air to land and up to sea), WSN technologies are still subject to a number of important
issues that should be carefully considered when employing them for monitoring purposes.
The main open challenges and limitations include:

• Power Management and Node Lifetime: The limited autonomy of WSN nodes, equipped
with reduced-capacity batteries, is a major concern for WSN-based environmental
monitoring systems, especially when nodes are deployed strategically though hardly
accessible areas. Sophisticated strategies need to be conceived to ensure minimum
energy consumption, with a particular focus on the most demanding RF compo-
nents. Two main approaches are typically followed: (i) developing energy-efficient
algorithms and communication protocols; (ii) using energy-harvesting techniques to
restore energy based on solar cells, piezoelectric vibration-based devices, etc. Recently,
new approaches for wireless energy replenishment started to be explored, relying on
the availability of an additional set of mobile rechargeable units to prolong the lifetime
of WSN nodes [129,130]. Preliminary results showed that such methods can signifi-
cantly extend the duration of the sensing campaigns, thus representing a promising
solution for WSN-based environmental monitoring [131].

• Communication Range: Communications in WSNs are typically performed using rel-
atively low-power wireless technologies (e.g., ZigBee), which can only guarantee
limited coverage. In most environmental monitoring scenarios, the harsh propagation
conditions could lead to frequent obstructions or blockages of communication signals,
potentially jeopardizing the whole sensing process. Some attempts have been made
to improve the connectivity by studying the optimal placement of sensors under
the assumption of some underlying wireless channel model. However, the practical
solution adopted in most real deployments is still to increase the density of nodes in
the WSN, with a consequent increase in the overall cost. In recent years, the use of
connected dominating sets started to emerge as an effective way to reduce routing
costs between sensing nodes and to generally improve the communication range,
especially when WSN nodes are unevenly distributed over the target area [132,133].
Such approaches can be thus used to support node deployment and to make data
collection/dissemination within the network much more efficient [134].

• Sensor Data Quality: Typical low-cost physical and chemical sensors employed for en-
vironmental monitoring return measurements that can be highly inaccurate, especially
in the presence of miscalibration of the sensing units. Assessing the quality of the
collected data becomes a priority when multiple heterogeneous sensors are used to
monitor the same environmental phenomenon. Advanced outlier detection and data
fusion algorithms are currently under investigation in the literature to avoid instances
of a few unreliable measurements compromising the entire acquisition campaign.
Accurate time synchronization of all the collected data represents another crucial
aspect for obtaining reliable analyses [135]. As a prerequisite for most data-fusion
algorithms [136], temporal information is combined with positional information to
spatially contextualize the sensed data and outline the spatio-temporal correlations
existing among them. This is of particular interest when dense WSNs are employed,
for instance, to monitor environmental phenomena over very small areas [137]. In
these cases, measurements collected by each WSN node are likely correlated among
each other as well as with the measurements carried by neighboring nodes in the
network. Notably, accurate clock/data synchronization is of utmost importance when
some relevant environmental parameters, inferred from data, are used to detect pos-
sible violations of safety-critical thresholds in real-time or used to feed numerical
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prediction models to assess the possible evolution of phenomena both on a temporal
and geographical scale [138,139].

• Reliability and Fault Tolerance: Robustness against possible hardware, software, and
communication failures is a crucial aspect for WSNs to be effective in environmental
monitoring. Given the low-cost nature of sensor nodes, even common phenomena
such as rain, humidity, and wind can induce circuitry faults or frequent system reboots.
Guaranteeing a highly reliable WSN is of utmost importance, especially when mon-
itoring dangerous environmental phenomena (e.g., wildfires, water contamination,
radiation) in real time, which requires that any potential emergency be promptly
reported to the competent authorities. Enhanced reliability and fault tolerance are
typically achieved by introducing redundancy of the main hardware components and
by designing proper routing mechanisms and topology control schemes.

• Scalability and Cost: Most of the main environmental phenomena usually occur on
a large spatial and temporal scale, following highly dynamic evolution processes.
Monitoring them would thus require scaling up the WSN so as to cover vast areas
with a significant number of sensors. Unfortunately, it is not often possible to deploy
a dense WSN over a large-scale environment, for both physical and economic reasons.
This is widely confirmed by the reviewed literature, where it emerges that WSNs are
mainly used for monitoring relatively small areas.

3. Environmental Monitoring Based on Unmanned Aerial Vehicle Technologies

Over the last decade, UAV systems have progressively evolved toward a level of
maturity that makes them powerful and versatile platforms for improving environmental
monitoring tasks [40,41]. Figure 3 illustrates a general UAV-based monitoring architecture,
which comprises a swarm of UAVs acquiring data over a specific monitored site defined
by a set of target points, coordinated by one or more ground control stations, which are
also responsible for the processing and preliminary analysis of the collected data. UAVs
are available in the market under different models based on the type of propulsion (fixed
wing or multi-rotor) and the maximum payload that can be carried. In Table 3, we report
the main type of UAV platforms used for environmental monitoring purposes, together
with their average coverage and main characteristics.

``

Target
view-point

altitude

coverage area

UAV

Communication
Network

ground control station

Figure 3. General architecture of an environmental monitoring system based on UAVs.
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Table 3. Common UAV platforms for environmental monitoring.

UAV Type Average Coverage Main Characteristics

Fixed wing greater than 20 km2 ability to survey large areas, higher velocity
reduced startup time

Multirotor from 5 km2 up to 30 km2 ability to hover, flexible and stable,
low altitude and low speed inspection

Hybrid VTOL in the order of 100 km2 ability to hover, survey very large areas,
vertical take-off and landing capabilities

UAV nodes are equipped with a local microprocessor, an internal memory, a sensing
and communication unit, as well as by some additional subsystems:

• A navigation and guidance unit responsible for obtaining real-time geolocation infor-
mation using a GNSS receiver, usually coupled with a set of inertial and odometry
sensors (e.g., accelerometer, gyroscope, etc.), as well as ensuring that a predefined
trajectory is followed according to a specific path-planning strategy (mission).

• A propulsion unit using engines, motors, and batteries as power sources, as well as
propellers or propulsive nozzles to generate and control the UAV motion.

UAV systems exhibit excellent monitoring and sensing capabilities: indeed, thanks to
their aerial inspection ability and flexible characteristics (small size, rapid maneuvering),
wider areas of interest can be covered in a timely manner, guaranteeing at the same time
accessibility also to sites that would be inaccessible for other technologies such as WSNs
or fixed monitoring stations. Although optical and multispectral/hyperspectral cameras
remain the primary source of data on UAV nodes, other sensors such as thermal cameras,
LIDARs, and gases sensors can be mounted as well. We summarize in Table 4 the most
common types of sensors used in UAV-based environmental monitoring systems and refer
the interested reader to [140] for a comprehensive review. It is worth noting that some of
the sensors can be equipped only on specific types of UAVs, mainly due to the still too-high
weight, cost, and maintenance of some components.

Table 4. Typical sensors used in UAV-based environmental monitoring systems.

Type Sensor Technology Main Applications

Optical Camera optical RGB
aerial photogrammetry, detection,
3D modeling and reconstruction

Thermal
resistive bolometers,
pyroelectric devices

thermography, heat mapping,
water temperature, level of soil water

Multispectral
filtering,

infrared and ultraviolet sensors
wildfire detection, soil classification,
vegetation mapping, water analysis

Hyperspectral modular spectrometer
wildfire detection, soil classification,

materials analysis, water analysis
environmental mapping

LIDAR pulsed laser
3D mapping, wildfire verification,
erosion analysis, forestry analysis

Compared to the more traditional manned airborne systems or satellite systems,
UAV systems represent a cost-effective technology able to provide acquisition campaigns
at an increased spatial and temporal resolution, offering the possibility to accurately
track the dynamics of the main environmental processes occurring at very fine scales.
High flexibility and easy adaptability to different application contexts make them suitable
candidates to meet some of the crucial requirements of environmental monitoring: first,
they enable real-time inspection of targeted areas thanks to their ability to perform rapid
and repeated acquisitions of environmental data. Second, monitoring of hazardous or
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contaminated sites becomes possible using UAVs, with practically no risks for human
operators. Third, the possibility to quickly reschedule UAV missions in the presence of
unfavorable meteorological conditions (e.g., cloudy, rainy, etc.) allows for overcoming the
main limitations of both airborne and satellite systems. In addition, UAV operations can be
in principle guaranteed over the whole day and not limited only to specific hours as is the
case of most satellite systems, enabling in turn a continuous environmental monitoring.
Particularly, the costs involved in the deployment of a UAV-based monitoring system are
not a limiting factor as for airborne or satellite systems: indeed, the main expenses are only
linked to the initial investment in terms of hardware, software, and on-site equipment.

The above-discussed advantages, combined with the continuous evolution in the
miniaturization of electronic and sensor technologies, led UAV systems to be widely
applied across different domains of the environmental monitoring. In the following, we
provide a review of some representative approaches proposed in the literature, classified
based on their fields of application: (i) air monitoring, (ii) land monitoring, and (iii)
water/marine monitoring. On the basis of the reviewed literature, we then conclude
the section by highlighting the common challenges and the main limitations of UAV-based
monitoring systems.

3.1. UAV for Air Monitoring

Although UAV technologies are mainly recognized for bringing disruptive enhance-
ments to land and maritime monitoring, their aerial inspection capabilities have opened a
new frontier also in the field of air pollution monitoring. Some experimental campaigns,
conducted in crowded urban areas, revealed that the level of expansion of the main atmo-
spheric aerosols and gases varies dramatically with the relative elevation from the emitting
source. Therefore, monitoring the air pollution only at a ground level (in the order of 1–5 m)
could not be sufficient to carry out an accurate air quality assessment. In these contexts,
one or more UAV nodes equipped with dedicated gases sensors (as those described in
Table 2) can be employed to monitor and track the pollutant concentrations at different
altitudes [141,142], delivering at the same time richer real-time information that can be
stored and used for long-term analyses [46,143]. Given the quite limited payload that needs
to be shared among multiple sensors, some research efforts have been devoted to the design
of lightweight gases sensing units for UAV nodes [144,145]. Finding the optimal placement
of air monitoring sensors on UAV platforms is another challenging issue, given that the
sampling and estimation processes are strongly affected by the dynamic nature of the
wind and by the vortex fields generated by the propellers [146,147]. The high spatial and
temporal sensing capabilities of UAV nodes have been also employed to build fine-grained
air quality index (AQI) maps. Accurate profiling of the air pollution in urban/suburban
environments can be achieved in nearly real time [148–150], especially when the AQI maps
are combined with statistical plume models (such as the Gaussian) that characterize the
physical dispersion in the air [151].

UAV nodes equipped with miniaturized infrared thermal cameras offer the possibility
to enhance tasks related to the microthermal environmental monitoring, which consists in
providing high-resolution analyses of the land surface temperatures and their variations,
even at a microscopic level [152]. This information, combined with data related to humidity,
solar radiation, and wind speed, is used to support important services such as weather
forecasting or to infer the chemical composition of clouds (e.g., near a volcano, or after a
chemical disaster) [153].

In recent years, some studies started to investigate the potential of exploiting the
flexibility of UAV sensors to perform spatial, temporal, or spatio-temporal spectrum sensing,
with the aim of revealing and possibly localizing sources responsible for electromagnetic
pollution [154]. The same principle has been applied for monitoring acoustic noise in
urban and suburban areas, leveraging UAV nodes equipped with an array of microphones.
However, the proposed solutions are still at a preliminary stage, with such contexts being
much more challenging to handle due to the presence of additional disturbances such as
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the wideband noise induced by the propellers and the narrowband noise generated by the
engines [155].

3.2. UAV for Land Monitoring

UAV technologies have radically revolutionized the panorama of land environmental
monitoring, enabling new horizons that were unconceivable until only a decade ago. The
undisputed widespread use of such technologies across a wide range of soil monitoring
tasks is strictly correlated with the progresses in the miniaturization and portability of RGB
cameras and multispectral/hyperspectral imaging technologies, which allow to bridge the
gaps with conventional satellite or airborne remote sensing platforms while providing a
cost-effective way to obtain data at high spatial and temporal resolution [156,157]. By in-
specting target areas at a very fine scale, UAV platforms are foreseen as potential tools to de-
tect and counteract the illegal dumping of solid/liquid waste in the environment [158,159],
for actively monitoring the operations in existing landfills [160], and for general prevention
of soil contamination [161]. Preventing the diffusion of unauthorized constructions or
their illegal demolition is another important application field for UAV-based monitoring
systems [162]. From the surveyed literature, it emerges that these monitoring problems
can be addressed using statistical change detection approaches operating on a temporal
series of images or video sequences. Specifically, the availability of accurate a priori geo-
metrical information (e.g., digital surface maps), possibly in combination with real-time
kinematic information from the onboard inertial sensors, is a necessary ingredient for effec-
tive detection of soil contaminants with reduced false-alarm rates. Furthermore, since high
resolution UAV images could likely trigger many undesired changes, advanced registration
algorithms that properly align images acquired at different elevations and under different
perspectives should be used at the pre-processing stage. In particular, when processing
spectral data, change detection algorithms should expect higher in-class variances due to
different acquisition conditions (e.g., illumination, shadows) and more complex scenes at
hand [163].

UAV systems represent an indispensable technology to support onsite real-time mon-
itoring of wildland areas subject to risks of natural hazards or disasters. Thanks to their
aerial capabilities, environmental operations can be quickly conducted even in situations in
which ground-level technologies could not be applicable and human intervention is too
dangerous. The most prominent use case of UAV-aided natural disaster monitoring is the
recurrent problem of forest wildfires [44]. Typically, high-resolution images acquired by
RGB or infrared cameras are combined with information from the onboard inertial sensors
and processed through advanced image processing algorithms to detect wildfires at their
early stages and track their temporal evolution. Traditional computer vision approaches
such as median/Gaussian filtering, image segmentation, and color analysis (in both RGB
or HSV spaces) have been successfully applied to perform smoke detection and successive
identification of the fire location in terms of altitude, latitude, and longitude [164,165].
When the ground control stations are equipped with significant computational power,
deep learning algorithms such as convolutional neural networks and deep neural net-
works with an underling YOLOv3 architecture can be used to achieve improved flame
and smoke detection performance at reduced false-alarm rates, even in the presence of
adverse cloud and sunlight conditions, as well as undesired reflections from objects in the
scene [166–168]. Image/video-based analytics have proven their effectiveness mainly for
wildfires localized in relatively small areas. When the wildfire spreads over much larger
scales, different measurements (e.g., temperature, wind) collected by a swarm of UAVs
are fused within advanced filtering approaches (e.g., Kalman-based) that include wildfire
propagation models such as the Rothermel or the Canadian forest fire behavior [169,170].
In addition to data processing, suitable distributed control frameworks need to be devised
to design time-varying trajectories that enable a close monitoring of wildfires through
multiple coordinated UAVs while minimizing the risk of in-flight collisions or damages,
as well as to reduce the total number of transmissions toward the ground control sta-
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tions [171,172]. Based on these advanced control schemes, some proactive approaches have
started to appear in the literature that exploit the payload of UAVs to drop fire retardants
or extinguishing agents at the epicenter of the wildfire [173].

Besides wildfire monitoring, UAVs have been employed to counteract geological haz-
ards such as landslides using both optical [174] and thermal remote sensing techniques [45],
and even to perform vulnerability analyses after natural disasters such as tornados [175].
Apart from the benefits brought to each individual application context, a common advan-
tage of using UAVs in natural disasters monitoring, from prevention to recovery, is their
ability to rapidly reproduce high-resolution maps of the target areas, a task usually called
land-use land-cover mapping (LULC). Such maps, which can be either two-dimensional
(surfaces) or three-dimensional (volumes), are at the basis of any emergency response
application supported by a UAV system [20].

Proliferation of UAV systems brought new opportunities also in the field of vegetation
analysis for both natural and agricultural environmental aspects [176]. Assessing vegetation
health is a complex process that requires a combination of several indexes extracted from
multiple sensors (ranging from optical images, infrared, and multispectral/hyperspectral).
UAV platforms have been used to retrieve important information from natural habitats and
ecosystems, including the monitoring of plant infection [177], average tree mortality [178],
and level of diffusion of serious diseases such as the Xylella fastidiosa [179], with a granular-
ity that can even reach the tree-level. Across all the considered technologies, hyperspectral
imaging turned out to be a preferable tool to rapidly detect the level of vegetation stress
based on the examination of pigments and chlorophyll [42]. On the other hand, a combina-
tion of data from optical cameras and LIDAR represents the most reliable solution when a
3D reconstruction of trees and crops is the main objective of the monitoring task.

Precision agriculture is another application context that can reap great benefits from the
use of UAV-based monitoring. Compared to more traditional systems (e.g., satellite-based),
UAVs provide field-level analyses that can be fruitfully exploited for the early diagnosis
of agricultural problems, enabling in turn timely corrective actions from the farmers
and, consequently, a significant reduction in both costs and environmental impact [180].
Prominent examples concern the use of UAV platforms to monitor the status of crops [176]
and the quality of the soil [181], which allows for obtaining accurate predictions of the
ultimate yield. From a technological point of view, RGB and thermal data have proven their
usefulness for quantifying the main soil moisture contents, while accurate estimation of the
water contents in the subsurfaces can be achieved by additionally exploiting mathematical
models (e.g., the Soil Moisture Analytical Relationship) that link measurements collected at
the surface to the parameters of interest [182].

3.3. UAV for Marine and Water Monitoring

Coastal and marine environments represent exciting application fields for the use of
UAV monitoring technologies. Despite that most of the aerial remote sensing techniques in
these contexts are based on satellite or airborne systems, mainly due to their wide coverage,
UAVs open up a new set of significant opportunities to overcome the still too-limited
imagery resolution, as well as the coarse and often discontinuous acquisition rate. By
exploiting the improved spatial and temporal resolution and the availability of multiple
sensors, UAVs can be used to carry out in-depth water quality analyses based on multiple
correlated parameters [183]. More specifically, peculiar characteristics of the water surface
reflectance captured by hyperspectral cameras can be used to detect suspended solids [184],
particulate matter [185], and even toxic agents (chemical, biological) [186], while machine
learning tools (e.g., SVM) turned out to be very powerful solutions to identify the presence
of oil spills in optical images [187,188]. Using the Nemerow index and traditional regression
techniques, the presence of smelly water can be readily identified [189], and the level of
water transparency can be assessed in near real-time [190]. Spectral cameras carried by low-
cost UAVs have been also used to monitor the sedimentation levels in natural reservoirs,
and to assess the presence of submerged vegetation and algae species that are considered
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microbiological indicators of good water quality [191]. Notably, UAV technologies recently
started to be adopted as a means to counteract the main phenomena of seaside degradation
such as the dispersion of litters on the beach [192], or the uncontrolled dumping of plastic
debris that are seriously threatening the aquatic wildlife [193].

The integration of water observations collected from UAV sensors with hydrological
models allows for significantly enhancing the accuracy in describing the dynamics of rivers,
lakes, and seas, enabling in turn a more effective monitoring of critical phenomena such
as inundations and floodings. A number of proofs of concept have been proposed in the
literature to demonstrate the feasibility of applying UAV optical techniques to perform
distributed estimation of kinematic parameters such as the velocity of surface flow fields
(e.g., using Large-Scale Particle Image Velocimetry) [194], which are used to delineate
candidate flooding zones. Interestingly, some experiments revealed that an accurate survey
can be obtained by just letting the UAVs hover for a few seconds around the target area,
provided that orthorectification and photometric calibration phases have been correctly
performed. When advanced deep learning algorithms are used to process and classify RGB
images, accurate mapping and tracking of the flood routing and its probable extent can be
inferred in near real-time [195]. Proper fusion of data coming from different sensors and an
accurate modeling of the main hydrological parameters and their mutual dependencies
remain the main open challenges to be faced before UAV platforms can be fully considered
to support civil protection agencies in critical water monitoring tasks.

3.4. Main Challenges and Limitations of UAV Environmental Monitoring

The huge potential of UAV technologies is largely demonstrated by the several envi-
ronmental application fields in which they brought not only significant improvements, but
also radical revolutions. At the same time, we are witnessing the emergence of a significant
number of methodologies based on specific combinations of hardware technologies (e.g.,
sensors, platforms) and algorithms (either for path planning, sensor calibration, or data
processing) that are tailored only to the peculiar needs of each selected case study. In
this respect, a major substantial challenge that should be addressed concerns the proper
harmonization and standardization of processes involving the application of UAVs for
environmental monitoring purposes. In addition to such a general challenge, from the
analysis of the reviewed literature, some common though important open issues tend
to emerge:

• Policy and Regulations for UAV Operations: The operations of UAV platforms are subject
to regulations and restrictions imposed by governments that generally differ across
different countries. Such limitations are imposed to guarantee the general public
safety (especially in the presence of damages of the UAV platforms) and to ensure
that the UAVs do not interfere with other aerial systems that share the same flight
areas. To date, most of the regulatory frameworks do not allow fully autonomous
UAV missions but require the presence of a licensed pilot to carry out even the most
basic operations. Since these requirements inherently restrict the minimum distance
at which UAV platforms can sense environmental data (known as Ground Sample
Distance (GSD)), they represent one of the greatest obstacles toward a diffuse use of
UAVs for environmental purposes.

• Sensor Calibration and Error Correction: Most of the lightweight sensors designed for
UAV platforms typically experience significant geometric and spectro/radiometric
limitations, calling for the need of adequate self-calibration and pre-processing proce-
dures. Radiometric calibration includes several steps (such as the adjustment of colors,
removal of noise, and deblurring) and requires the presence of spectral targets with
known reflectance properties. Unfortunately, such a process is severely threatened
when UAVs operate in adverse weather conditions (rain, wind) due to induced unde-
sired spectral effects such as variable illumination, alterated reflectivity of materials,
partial absorption, etc. On the other hand, the rapid maneuvers and frequent changes
in flying altitude and orientation typical of the motion of UAVs introduce undesired
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impairments such as lens distortion and misalignment of the fundamental camera
parameters (e.g., focal length, distortion coefficients, etc.) that should be compensated
by means of a geometric calibration process. The overall correction process is known
as orthorectification and represents one of the main research topics [196].

• Flight Time and Path Planning: The limited flight time of UAV platforms represents
another crucial aspect that should be carefully taken into account when planning an
environmental sensing campaign. This problem can be generally managed in two
alternative ways: one possibility is to devise optimized path-planning strategies that
take as input the extent of the area under investigation and the energy constraints of
each involved UAV node and produce a set of trajectories (expressed as sequences
of points of interest, as shown in Figure 3) that try to guarantee a satisfactory trade-
off between coverage, sensing accuracy, and total duration of the data acquisition
campaign. In this respect, recent studies have demonstrated that even the specific
geometry of the flight path, passing through all the selected points of interest, can
also have a strong impact on the achievable coverage and timely data acquisition
capabilities of UAVs [197]. In particular, simple geometric flight patterns easily meet
short path length and minimum mission execution time requirements but may conflict
with other requirements such as energy consumption, being that short and simple
paths are more likely to contain abrupt maneuvers, which in turn consume more
energy [198]. A second possibility consists in leveraging the recent advances in
lightweight battery technologies, which promise extended flight durations from about
1 h up to 5 h if solar-panel-based energy supplying systems are also integrated onboard.
Overall, the experimental campaigns conducted so far have revealed that current UAV
technologies can be considered cost-effective monitoring tools mainly for areas of
quite limited extent (0.2 km2), while for larger areas, other technologies need to be
adopted as complementary solutions.

• Localization and Tracking: Accurate estimation and tracking of the position and ori-
entation information of UAVs over time is a fundamental prerequisite for all tasks
involved in the monitoring process, from the initial pre-flight path planning until the
data processing and subsequent analyses stages. On the one hand, ground control
stations need to accurately predict UAV trajectories in order to design distributed
control strategies that effectively coordinate the monitoring operations, especially
in the presence of swarms of UAVs, without the risk of collisions or damages. On
the other hand, any aerial photogrammetry-based method strongly depends on the
accuracy of the georeferencing process. This task, also called registration, consists in
associating the collected digital images to physical locations in the space through the
definition of a set of ground control points (GCPs). Current practices in UAV envi-
romental monitoring consider the use of onboard GNSS and inertial measurements
combined with the navigation and guidance unit to directly determine the UAV’s
position and orientation [199]. However, such solutions turn out to be inaccurate or
even unavailable in some practical operational scenarios since most of the hardly
accessible sites monitored by UAVs are usually also GNSS-denied environments.

4. Environmental Monitoring Based on Crowdsensing Technologies

The pervasive, almost ubiquitous spread of smart mobile devices (smartphones, smart-
watches, wearables, in-vehicle, etc.) featuring enhanced wireless communication capabili-
ties and a rich set of built-in sensors (e.g., cameras, GPS, accelerometers, microphones) is
progressively pushing the well-known benefits of the crowdsensing paradigm, in terms of
large-scale sensing and information sharing, also into the context of environmental mon-
itoring [47,50]. The general architecture of an environmental monitoring system relying
on crowdsensing technologies consists of a pool of mobile smart devices leveraging their
embedded sensors to collect different environmental data across different areas of the
territory, according to the activities of the specific users (e.g., people moving in an urban
center, vehicles traveling in forest or coastal areas, etc.), which are then sent to dedicated
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monitoring centers that are responsible for storing, integrating, and analyzing the huge
volume of crowdsensed data, as shown in Figure 4. Sensed data are generally transmitted
using different communication technologies, from ad hoc wireless networks (e.g., Bluetooth,
Wi-Fi) to infrastructure-based networks (e.g., cellular 3G/4G/LTE). Thanks to the rapid
evolution of portable sensor technologies, smart devices are equipped with an impressive
number of built-in sensors that can be used to sense and monitor different physical pa-
rameters, e.g., electromagnetic fields, sound, temperature, humidity, etc. In Table 5, we
summarize the most common types of sensors currently found in crowdsensing-based
environmental monitoring systems.

Communication
Network

Monitoring Center

Scenario #1

Scenario #2

Scenario #3

Sensor LTE

GPS

Sensor Wi-Fi

GPS

Sensor Wi-Fi

GPS

Figure 4. General architecture of an environmental monitoring system based on crowdsensing.

Table 5. Common sensors used in crowdsensing-based environmental monitoring systems.

Sensor Type Main Applications

Visual Camera
real-time imaging, natural hazard detection

3D modeling and reconstruction

Microphone acoustic noise monitoring

Wi-Fi and Bluetooth Antenna
electromagnetic pollution monitoring,

spectrum sensing

Magnetometer electric field level monitoring

Radar surface monitoring, subsurface material mapping

Thermal Camera heat pollution monitoring, natural gases/CO2 detection

Pressure/Humidity/Temperature heat island detection, temperature monitoring

Particle Radiation particulate radioactivity monitoring

Particulate Matter fine particulate monitoring

Chemical Pollutants
chemical pollutant monitoring,
chemical substance detection

Crowdsensing technologies offer enhanced monitoring capabilities compared to more
traditional systems such as fixed stations and satellites. The key idea consists in building
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a collective view of the environment by exploiting data sensed by citizens in their daily
routines. This can be practically implemented by using the concept of crowdsourcing: a
formidable task such as the large-scale monitoring of the environment, traditionally per-
formed by specialized and complex infrastructures, is distributed among ordinary users
that leverage their own smart devices to sense data. In this respect, two different sensing
modalities can be adopted: (i) participatory sensing in which users voluntarily collaborate
to accomplish the sensing tasks, possibly receiving some kind of reward for their contribu-
tion; (ii) opportunistic sensing where conversely users do not need to undertake specific
actions and are even unconscious of the sensing process that is passively carried out. The
crowdsensing paradigm brings two main advantages to the environmental monitoring
field. First, the frequent temporal and spatial variations of natural phenomena can be
more accurately captured by fusing the big environmental data collected across separated
spatial locations at different time instants. This huge amount of information can be used
to extend the scale of the sensing campaign, overcoming the often limited spatial and/or
temporal coverage provided by other existing monitoring systems without any additional
deployment cost. Second, introducing human intelligence into the sensing process comple-
ments the information collected by the sensors with a much deeper understanding of the
operational contexts [200].

Although the general architecture in Figure 4 may somewhat resemble that of a WSN-
based monitoring system, profound differences can be found between the two technologies.
First, WSN nodes are deployed over fixed locations and are tailored to specific types of
environmental analyses. Their specificity usually leads to data of higher quality, but at
the same time involves increased cost for the deployment and management of nodes.
Conversely, since crowdsensing nodes are general-purpose mobile devices equipped with
different kinds of sensors, they can be reused for different environmental monitoring
tasks without requiring the deployment of specific infrastructures, thus representing an
appealing cost-effective solution. Second, WSNs nodes are low-cost devices with very
limited processing, memory, and energy, which constrains their local capabilities and makes
it difficult to perform continuous monitoring tasks. On the other hand, crowdsensing nodes
benefit from improved processing capabilities and the possibility of recharging their own
batteries, which significantly extends their operational range. Another important difference
concerns the limited monitoring scale of WSNs compared to crowdsensing. A study
conducted in [201] revealed that about 100,000 WSN nodes would be required to enable
environmental monitoring of a mid-size city, while guaranteeing full spatial coverage and
sufficient connectivity with the monitoring stations. In particular, the inherent mobility of
crowdsensing nodes (along planned or random trajectories) can be exploited to sample
natural phenomena at an increased spatiotemporal resolution [202].

In the following, we provide a review of some representative approaches proposed
in the literature, classified based on their fields of application (air, land, or sea). On the
basis of the reviewed literature, we then conclude the section by highlighting the common
challenges and the main limitations of crowdsensing-based monitoring systems.

4.1. Crowdsensing for Air Monitoring

Crowded urban areas are recognized among the main sources of worldwide air pol-
lution, but at the same time are the perfect places where several crowdsensing nodes can
be recruited [203]. People equipped with smart devices, vehicles routinely traveling along
city streets, taxis, buses, and any transportation system at large are only some prominent
examples of the multitude of crowdsensing nodes that can be exploited to estimate sources
of air pollution and to infer their potential impacts on human exposure, allowing in turn
to mitigate and prevent their negative side effects [204,205]. Thanks to the availability
of a huge amount of urban environmental data, a number of pilot research projects have
been funded in recent years with the aim of assessing the feasibility of air monitoring
via participatory crowdsensing. The HazeWatch application, developed as one of the
first crowdsensing-based approaches, is nowadays actively used by the National Envi-
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ronment Agency of Singapore [206]. GasMobile, CommonSense, Third-Eye, AirSense,
and 3M’Air are other examples of monitoring systems that demonstrate the possibility
of building accurate air pollution maps using only off-the-shelf sensors available on citi-
zens’ smart devices [207–211]. Focusing on vehicles and road transportation systems as
crowdsensing platforms, the paradigm of drive-by sensing has been coined, and interest-
ing experimental campaigns have been conducted in New York City to first quantify the
sensing power of crowdsourced vehicle fleets [212,213] and then assess how the different
mobility patterns (either predictable or completely random) impact the discrete-time sam-
pling process [214,215]. Some theoretical work considered the adoption of a network of
crowdsensing vehicles and mapped the problem of estimating the air pollution levels into
a problem of spatial field reconstruction from samples randomly gathered in a multidimen-
sional space [216]. Improved accuracy and efficiency can be obtained when the correlations
among the sensed data are explicitly considered in the model and the unsensed regions are
properly characterized [217]. By exploiting analytical models for the variations of the air
pollutants concentrations, a cost-effective balance between performance in terms of joint
sensing accuracy and communication costs using a vehicular sensor network can also be
achieved [218]. In the presence of a sparse number of crowdsensing nodes, compressed
sensing techniques can be employed as viable tools to reconstruct accurate air pollution
maps using only a small selected set of samples [219,220].

In addition to air pollution monitoring, an increasing number of environmental ap-
plications harness microphones embedded in mobile crowdsensing nodes to measure the
levels of ambient acoustic noise (e.g., generated by an intense urban traffic) and to infer
fine-grained noise maps by fusing the aggregated information at both geographical and
temporal levels [221]. Citizens’ mobile phones are the primary sources of noise measure-
ments used across a number of important projects such as NoiseTube [222], NoiseMap [223],
NoiseSpy [224], and 2Loud [225], just to mention a few. In most of the considered experi-
mental campaigns, it has been shown that recording the sound pressure signals at frames of
about 1 s (with 48 kHz sampling rate and quantization between 16 and 32 bits) is sufficient
to enable an accurate prediction of people’s exposure [226] and to localize the main sources
of acoustic noise [227]. Compressive sensing techniques turned out to be effective also in
recovering noise maps when the number of crowdsensed nodes was very limited and the
available samples were incomplete [228]. Noise features can be estimated at a significantly
improved granularity (e.g., road level) when the measurements collected by crowdsensing
nodes are coupled with advanced noise simulation models [229]. Once the accurate and
large-scale noise maps have been reconstructed, advanced analytics can be applied to
support proactive interventions aimed at abating noise annoyances [230].

A less investigated but still very promising application field concerns the use of
crowdsensing nodes to actively monitor the levels of electromagnetic pollution [231,232].
Received signal strength (RSS) measurements opportunistically gathered from surround-
ing Wi-Fi access points have been used to build accurate maps of the electromagnetic
environment, providing real-time information on the instantaneous power levels of each
transmitting source [233,234]. A recurrent issue in this field is how to ensure the trust-
worthiness of the identified electromagnetic pollution sources while explicitly taking into
account the intrinsic inefficiency of the sensors (e.g., antennas) used by crowdsensing nodes
[235]. Some work tried to tackle this issue by formulating the spectrum sensing problem
as a robust optimization problem, using a generalized modeling approach to take into
account the possible presence of incomplete [236], abnormal, or untrustworthy data [237],
also including possibly malicious users [238]. Another interesting solution considered the
application of a maximum likelihood ratio test over a binary hypothesis, where the non-null
hypothesis denoted the effective presence of a non-negligible source of electromagnetic
pollution. To explicitly include possible sensor inefficiencies, an expectation-maximization
(EM)-inspired approach has been applied to alternate estimation of the probability of
successful source identification with the estimation of the sensor efficiency. To further
increase the source identification accuracy, the maximum likelihood ratio test can be re-
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peated multiple times as a sequential probability ratio test (SPRT) [239]. Recently, some
preliminary work investigated the adoption of deep learning approaches to cope with the
presence of very few crowdsensing nodes, especially when operating in harsh propagation
environments [240].

4.2. Crowdsensing for Land Monitoring

The widespread availability of crowdsensing platforms gathering environmental data
across different physical locations (from urban to rural areas) can offer an important sup-
port for monitoring the state and quality of soil parameters and to combat land degradation
at large. A successful example in this field is the Danger Maps project developed in China,
which is a crowdsensing-based monitoring system whose primary goal is to stimulate
citizens in reporting the presence of sources of soil pollution such as illegal garbage dumps
generated by toxic-waste treatment facilities, oil refineries, and power plants [241]. A single
alert can be quickly triggered by simply reporting a textual description of the pollutant
sources, possibly together with pictures captured via the embedded camera. Following the
same line of Danger Maps, a general paradigm called citizens as sensors was recently intro-
duced, which aims at actively involving citizens in the fight against land degradation [242],
from monitoring the quality of the road surfaces [243] up to facing the rising threat of trash
dumping [244].

The ever-increasing number of smart devices disseminated worldwide, combined
with the almost ubiquitous availability of mobile communication networks, is opening new
opportunities for the use of crowdsensing monitoring techniques to foster the prevention,
early detection, localization, and management of large-scale natural disasters. The main
advantages reside in the possibility to exploit real-time and geolocated information pro-
vided by users to delimit areas that deserve careful attention from the emergency response
teams. For instance, some authorities started to consider the potential of such a paradigm
to counteract wildfires [245]. While the idea of engaging citizens with their smart devices
in the data-gathering process is relatively straightforward, several practical aspects need
to be taken into account to guarantee timely and accurate detection of wildfires events, so
as to minimize the probability of large-scale damages. More specifically, the crowdsensed
data need to be properly processed to extract meaningful information: first, a preliminary
coordination strategy needs to be conceived in order to identify the most appropriate type
of data to be collected and, consequently, the characteristics of the candidate crowdsensing
nodes. Then, the acquisition campaign should be carried out by including appropriate
mechanisms to manage underlying non-idealities such as sensor failures and user errors,
both accidental and intentional [246]. At the end, some kind of pre-evaluation of the col-
lected data is required to select the most informative sources: Naive Bayes classification
has been used to rank the reported data based on the user credibility [247], while multiple
binary hypotheses tests have been employed to estimate the probability that the same
wildfire event occurred on multiple locations of interest [248]. Social networks represent
another valuable source of crowdsensed data but require additional data mining techniques
to convert users’ public posts (e.g., Facebook, Twitter, Instagram, . . . ) into meaningful
features that can be used in the processing steps [51,249,250]. From an algorithmic perspec-
tive, the support vector machine (SVM) classifier has been largely used to map posts over
social networks into textual features [251], possibly in combination with a natural language
processing method such as the Bag-of-Words to extract additional information conveyed
through shared videos [252]. Furthermore, some modeling approaches such as logistic
regression may be required to track how the information flows across different groups of
users and assess its correctness [253]. To generate knowledge from the aggregated data
while satisfying the real-time requirements of wildfire management, efficient data-fusion
techniques that operate over short time windows (comparable with the dynamics of the
wildfire) must be applied to combine the different categories of reported data and simulta-
neously filter out any redundant information. The final analyses and visualization phases
are responsible for superimposing the positions of identified wildfires on real-time maps
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and to infer the envelope of the interested areas, predicting the possible evolution of the
fire based on propagation models fed with local meteorological data [254].

Besides wildfire monitoring, participatory crowdsensing has been employed for near
real-time detection of other disaster events such as earthquakes [255], landslides [256],
and floods [257]. A common approach in these contributions is to consider only sensor
readings with an associate position information (either from GPS or cellular networks).
Since such phenomena cannot be easily characterized with a single analytical model,
stochastic inference tools such as the particle filter are used to reconstruct a spatial model
from the collected observations, which is then used to estimate an approximate location of
the hazard event.

Very recent studies have foreseen crowdsensing monitoring techniques as indispens-
able components in the emerging contexts of smart agriculture [49]. Thanks to the evolution
in the worldwide economy, even in underdeveloped countries, an increasing proportion of
farmers have at least one smart device and would be willing to use it for further increasing
their income [258]. Compared to other application fields, in which citizens may not have a
specific expertise, the experience accumulated by farmers during their professional career
represents an extremely valuable source of information that can be deeply integrated and
used as a boosting component in most farming processes. Although this paradigm, also
known as farmers as sensors, is still in its infancy, very promising directions have already
been investigated, such as the identification of possible crop pests and diseases via deep
learning approaches applied to recorded photos and videos [259,260], prediction of possible
agricultural disasters due to adverse meteorological conditions [261], accurate estimation
of the cultivated lands by exploiting farmers’ mobility [262], assessment of the quality of
fruits [263], as well as for planning the annual production in all its phases [264].

4.3. Crowdsensing for Marine and Water Monitoring

Crowdsensing technologies represent a valuable resource to enhance the study and
monitoring of seas, lakes, and oceans, with the aim of forecasting possible catastrophic
events, to support marine-related activities, and to prevent the environmental degradation
of any marine or coastal area at large. Interesting research projects have been funded in
recent years, especially in the south of Italy: the University of Cagliari, in collaboration
with the Mediterranean Sea authorities, designed and validated a crowdsensing-based
monitoring system whose main goal is the safeguarding of coasts against the negative
effects caused by the raising phenomenon of mass tourism [265]. By integrating feedback
sent by users in the monitoring processes, the system is able to accurately predict the actual
occupancy rate of bathing establishments and to identify potential sources of littering. The
SmartWave project developed by the University of Palermo (Sicily) is another example of a
crowdsensing-based prototype that aims at monitoring the main phenomena characterizing
the marine environment. To do so, the major research challenge was to design a data fusion
module able to standardize and properly combine the huge amount of heterogeneous,
possibly incomplete data collected by citizens [266]. A pilot study has been conducted
in Greece to investigate the impact of the COVID-19 pandemic restrictions on tourism
demand, and a prototype platform that exploits data crowdsensed by volunteer tourists
has been developed to monitor a 16,000 km extended coastal zone [267].

Participatory crowdsensing can play an important role also in predicting and min-
imizing the impacts of some catastrophic marine events. By integrating crowdsensing
monitoring with the use of social media, a more accurate estimation of fundamental geo-
physical models for the propagation of oil spills in the oceans’ surfaces can be obtained.
A prominent example has been reported in [268], where images related to the disaster of
the Deepwater Horizon in the Gulf of Mexico were collected from Flicker and used to
support the forecast of the GNOME model parameters. Interestingly, the use of metadata
information (location and time) associated with the crowdsensed images brought signif-
icant improvements in the estimation of the rate of oil spill diffusion and the coefficient
of diffusion while also highlighting important correlations between currents and surface
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winds. Another relevant application field is the context of flood risk management. Due to
the severe climate changes experienced in the last few years, flood occurrences increased
considerably, and containing their effects requires up-to-date and accurate knowledge of
some critical environmental state variables [269]. Some studies have demonstrated that
smartphones can estimate important parameters such as water levels, with an accuracy
that can even achieve the cm level when the images captured by cameras are fused with the
builtin orientation sensors [269,270]. The main drawback resides in the still too-involved
operations that are demanded of the volunteers in order to carry out meaningful mea-
surements. Moreover, few maps representing an updated overview of the flood risk areas
are available.

Monitoring the fresh water sources and related infrastructures is another potential
application field of crowdsensing technologies. Preliminary work investigated the behav-
ior of the involved citizens when solicited to participate in the sensing campaign [271].
A data analysis conducted using the theory of planned behavior demonstrated that some
demotivational factors could severely impact the willingness of citizens in reporting their
collected information. To overcome such a drawback, a gaming approach for urban wa-
ter crowdsensing has been designed and validated in [272], where citizens are provided
with a kind of entertainment by means of a gamified interaction with the environment.
Although promising, such an application context is, however, less investigated in the
available literature.

4.4. Main Challenges and Limitations of Crowdsensing Environmental Monitoring

Undoubtedly, crowdsensing technologies represent a very versatile solution to im-
prove most of the processes involved in the environmental monitoring tasks, as they
transversally impact all air, land and marine scenarios. Compared to the other existing
technologies, they provide two fundamental benefits: (i) cost-effectiveness, as the sensing
processes are entirely run on users’ mobile devices, which leverage their embedded sensors
to sense or generate data, and hence they do not require the deployment of additional
infrastructures, eliminating the need for purchasing new monitoring devices; (ii) scalability,
since the number of crowdsensing nodes recruited for the monitoring tasks can grow
significantly according to the willingness of citizens to contribute to the measurement
campaigns, enabling in turn a potential large-scale analysis of the main environmental
phenomena thanks to the improved spatial coverage. However, from the analysis of the
surveyed literature, it can be observed that some important research challenges still need
to be properly addressed:

• Incentive Mechanisms: To be effective, crowdsensing-based environmental monitor-
ing must rely on a sufficient number of users participating in the sensing campaign.
Although the timely topic of environmental protection may stimulate the general
interest, people can be reluctant in providing some kind of “access” to their own
smart devices, for either ethical or private concerns. In addition, for some specific
monitoring tasks, the sensing process could require an intensive use of processing
and communication resources, resulting in an inevitable consumption of energy for
users’ devices [273]. Indeed, users may be asked to move to specific target locations
and to perform certain actions in order to accomplish the sensing task, possibly de-
viating from their planned routine. Therefore, suitable incentive mechanisms need
to be devised for compensating users’ contributions and promoting their participa-
tion in the monitoring tasks. Research approaches can be categorized in two main
groups: monetary incentive mechanisms, in which users are paid with a monetary
reward [274,275], and non-monetary mechanisms where instead users are rewarded
with alternative incentives such as gaming, social entertainment, or virtual credits
(e.g., coupons) [276,277]. In the former case, the monitoring system has the additional
burden of implementing suitable automatic strategies to select the more convenient
users, usually based on the distance from the task location.
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• Task Allocation and Workload Balancing: The goodness of the environmental monitoring
process also depends on the way the related sensing tasks are allocated to users. There
are indeed several factors that should be jointly considered. First, users may have
very different skills and expertise, which in turn produces a significant diversity in
the quality of the crowdsensed data [278]. This is in trade-off with the limited budget
typically available by the monitoring centers, whose main goal is to maximize the
quality of data while minimizing the incentives delivered to users. Thus, obtaining
high environmental data quality under budget constraints is a complex problem that
requires advanced task allocation algorithms able to select proper users while explicitly
taking into account crucial factors such as the position of users, their reliability, and
the involved sensing cost [279]. In this respect, different approaches are currently
under investigation: a first possibility is to adopt learning-driven approaches, where
the crucial information required in the task allocation problem is directly provided
by users at the recruitment stage. Another category of approaches considers the
spatial and temporal correlations existing among different environmental tasks and
allows users to share sensed data and infer information from other related tasks.
Besides these aspects, it should be also considered that since each individual user
has a limited processing and communication capacity (due to limited battery and
hardware constraints), the number of maximum tasks that can be completed on a
daily basis is typically quite limited. To avoid burdening the users with a too-high
number of tasks, proper workload balancing methods must be designed to quantify
the maximum tolerable overload for each user and decide accordingly the best tasks
to be allocated.

• Data Trustworthiness: A still-open issue in crowdsensing-based environmental moni-
toring is how to prevent participating nodes from contributing to unreliable data and
potentially jeopardizing the sensing campaign. Generally, two main possible scenarios
are distinguished: in a first case, data unreliability is mainly due to faults and defects
in the users devices, which unintentionally provide corrupted data. On the other
hand, malicious users may contribute with fake sensing data (e.g., fake GPS readings,
fake images, . . . ) just to earn the associated rewards, affecting in turn the integrity of
the data collected by the monitoring system [280]. Some attempts have been made
to counteract the former scenarios, using sophisticated algorithms (e.g., compressive
sensing) that aim at detecting and correcting false or missing information [281]. The
latter scenarios are much more difficult to handle and require appropriate reputation
models that correctly rank the level of trustworthiness of all the users involved in
the crowdsensing process [282]. Few works have also tried to jointly deal with mali-
cious participants and corrupted sensor data by combining different reputation and
trustworthiness metrics [283].

• User Privacy: Another important factor that could lower the willingness of citizens to
participate in the crowdsensing campaign is the risk of compromising their privacy.
On the one hand, the monitoring platform needs to know the location of mobile
smart devices so that sensing tasks can be allocated on a minimum distance basis.
This potentially reveals the user movements and may disclose his/her common
routines. On the other hand, crowdsensed data may contain sensitive information
such as private pictures or personal health information. To deal with the first issue,
location-preserving mechanisms that aim at masking user position are currently under
investigation [284]. For sensitive data protection, advanced anonymization techniques
that either remove, obfuscate, or encrypt part of the reported information seem to be a
promising solution, ref. [285], though there are still several drawbacks to be fixed.

• Mobile Node Localization: The correct aggregation and fusion of the big environmental
data collected by crowdsensing nodes strongly depends on the accuracy of their
position information over time. From task allocation up to data visualization over
maps, almost all the processing steps involved in the environmental monitoring
process are based on the underlying assumption that users have a certain knowledge
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of their own position. In most cases, however, such an information is simplistically
deduced from the onboard GNSS receivers, without considering that the latter should
be frequently switched off to save energy and, moreover, are highly inaccurate or
completely unavailable in many operational contexts (e.g., urban areas). To overcome
such limitations, fully adaptive localization algorithms based on advanced signal
processing techniques need to be conceived, which aim at providing ubiquitous
though accurate positioning by combining all the sources of information onboard
(e.g., GNSS, inertial sensors, visual sensors) with that available from cooperation with
other crowdsensing nodes as well as with the surrounding infrastructures (e.g., cellular
base stations, other existing systems) [286]. In this respect, the almost ubiquitous
connectivity together with the advent of the emerging fifth generation (5G) and
beyond (6G) cellular communications is offering promising opportunities to achieve
seamless centimeter-level positioning in all the diverse contexts that are found in the
environmental monitoring domain [287,288].

5. Signal Processing for Environmental Monitoring

The vast number of technologies reviewed in the previous sections, associated with
an ever-increasing amount of heterogeneous environmental data collected from different
sensors across different domains (from air to land, up to sea), calls for the need of the-
oretical methodologies that guide the process of maximizing the information extracted
from the monitoring systems, while guaranteeing at the same time satisfactory levels of
cost, complexity, and scalability. Clearly, substantial differences exist between the more
controllable conditions experienced in WSNs scenarios, where sensors are static and lo-
cated at known positions, and the more dynamic UAV and crowdsensing scenarios, where
conversely sensing nodes move along time-varying trajectories, leading to a number of
issues that need to be addressed. In this respect, signal processing theory provides elegant
analytical tools to model some of the main issues that characterize the environmental
monitoring tasks by representing them in proper spaces where specific signal methods can
be applied [289]. This allows a better understanding of the considered phenomena as well
as a proper planning of the sensing campaign [290]. In this section, we provide a review
of some important applications of signal processing techniques to environmental sensing,
showing their key role in enabling (i) enhanced real-time (short-term) and long-term anal-
yses of the environment in all its aspects (air, land, sea) and (ii) an efficient deployment
of the monitoring systems over larger scales. We propose a harmonization of the existing
literature by classifying the surveyed methods according to three macro categories, each
corresponding to a fundamental step performed in the environmental monitoring contexts.

5.1. Optimal Sensor Locations for Environmental Sensing

In a nutshell, a generic environmental monitoring task can be interpreted as the
problem of inferring accurate information about a physical phenomenon (e.g., air pollution,
temperature variation, acoustic noise, . . . ) that can be observed only through a limited set
of sensors. This creates an intrinsic link between the sensed phenomenon and the position
of the sensors and suggests that the ultimate accuracy in retrieving the desired information
depends on the spatial distribution of the sensors.

5.1.1. Linear Inverse Problems

Mathematically speaking, this relationship can be formalized through the definition of
an inverse problem, which in the continuous joint time-space domain can be expressed as
the following linear relationship (as opposed to non-linear inverse problems, which are
much harder to handle and thus are approximated to linear inverse problems for the sake
of mathematical tractability in typical environmental monitoring applications):

y(p, t) =
∫ t

0
A(p, t, τ)x(τ)dτ (1)
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linking the measured physical field y(p, t) at position p ∈ Rd (with either d = 2 or d = 3)
and time t with the underlying physical phenomenon x(τ) through the spatio-temporal
kernel A(p, t, τ). Since in practice the phenomenon can be sensed only at a limited number
of points in space (corresponding to positions of sensors) and over finite time instants, a
discretized version of (1) is usually considered

y = Ax (2)

where y ∈ RN contains the values measured by a set of N sensors placed at p1, . . . , pN ,
respectively; x ∈ RK denotes the parameters of the physical phenomenon to be estimated;
and A ∈ RN×K, sometimes called the sensitivity matrix, describes the linear relationship
between the phenomenon and the measurements. It is worth noting that (2) can be ex-
tended to model more complex scenarios. For instance, if a sampling kernel is applied to
the measurements, y can be expressed as a linear combination of the physical field and, ac-
cordingly, the sensitivity matrix can be factorized as A = ΨΘ with Θ the physical field and
Ψ the sampling kernel. In general, A is an arbitrary complicated matrix whose entries are
functions of some variables affecting the physical phenomenon at hand (e.g., for radioactive
emissions, A could depend on the weather conditions and on the type of materials) and on
the position of the source generating the physical field. When (2) is tailored to air pollution
scenarios, A is typically generated using the Lagrangian Dispersion Models (LDM), which
emulate the pollutant dispersion using random particles moving along arbitrary trajectories
in space and time [291]. The entries of x depend instead on the specific inverse problem
at hand. If the main goal of the sensors is to localize potential sources of pollution, a
reasonable choice of x could be the pair intensity-position of each source [292]. If instead
sensors are used to infer the whole physical field from the collected measurements, entries
of x can be a lower-dimensional representation of the phenomenon [293]. We refer the
interested reader to [294,295] for a good overview of linear inverse problems.

5.1.2. Sensor Placement Problem Formulation and Possible Solutions

To formulate the general sensor placement problem, we consider the linear model
in (2) and assume that a physical phenomenon x can be sensed with a number of sensors
L ≤ N, as shown in Figure 5. The latter condition explicitly takes into account realistic
contexts in which some of the environmental sensors may not be available, either due to
damages or faults, or simply to preserve their energy, or for any other reason of temporary
unavailability. Although this scenario may resemble a typical WSN-based monitoring
system, in which sensor nodes can be carefully located during the deployment phase, it can
be also adapted to UAV or crowdsensing scenarios when the mobile nodes can be assumed
static for the limited duration of the sensing campaign. Let us denote with L = {`1, . . . , `L}
the set of indexes corresponding to the actual measurements positions andN = {1, . . . , N}
the set of indexes associated to the overall sensors positions, with L ⊆ N . Accordingly, we
can rewrite a reduced system of linear equations from (2) as

yL = ALx (3)

where yL ∈ RL contains the reduced set of measurements collected by sensors in the set L,
and AL ∈ RL×K is obtained by selecting only the rows of A corresponding to the indexes
in L. The linear inverse problem can be then recast as finding an estimate of x using only
L ≥ K measurements. We first notice that, given yL, a solution x̂ to (3) may be not unique,
or may not even exist. For this reason, the estimation problem is usually formulated in a
least-square sense as

x̂ = arg min
x
‖ALx− yL‖2 (4)

with ‖ · ‖ denoting the norm operator. Assuming that AL is full-rank, a closed-form solution
to (4) is given by

x̂ = A†
LyL (5)
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with A†
L = (AT

LAL)−1 AL the Moore–Penrose pseudoinverse. Assuming that the measure-
ments yL are corrupted by additive white Gaussian noise with zero mean and variance σ2,
we can express the mean squared error (MSE) on the estimation of x in closed-form as [296]

MSE(x̂) = ‖x̂− x‖2 = σ2
K

∑
k=1

1
λLk

(6)

with λLk , k = 1, . . . , K denoting the eigenvalues of the matrix TL = AT
LAL. From (6),

it clearly emerges that the reconstruction of the environmental phenomenon x strongly
depends on the spectrum of TL, which is itself a function of the sensor locations indexed
by L. Therefore, the optimal sensors locations can be obtained by solving the following
constrained optimization problem:

Lopt = arg min
L

K

∑
k=1

1
λLk

subject to |L| = L. (7)

It is important to notice that the above optimization problem is combinatorial in nature,
hence any brute force algorithm evaluating all the possible combinations would require
an execution time that exponentially increases with the number of trial positions in L,
rendering the sensor placement problem impractical even for moderate values of N. To
overcome such a drawback, alternative approaches that trade off the optimality of the
obtained solution for a reduced complexity have been investigated in the literature. Some
preliminary work has applied approximate greedy algorithms with the aim of directly
minimizing the MSE. However, it has been found that MSE does not lend itself to being
easily optimized due to the presence of several local minima. This called for the need of
finding surrogate cost functions that tightly approximate the MSE while being much more
efficient to optimize [75,297].

All Sensors

Active Sensors
1

2

N

Subset of Sensors in

sensed area with measurements 

Figure 5. General setup of the sensor placement problem. White circles represent all the N sensors.
Circles with red contour denote the active L ≤ N sensors producing the measurement vector yL.

The methodologies used to solve (7) can be classified in three distinct groups:

• Greedy algorithms;
• Convex optimization;
• Heuristic strategies.
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Greedy algorithms are appealing due to their polynomial complexity and the possi-
bility to infer a certain degree of confidence about the solution’s quality by exploiting the
submodularity of selected families of objective functions [298,299]. On the other hand, no
guarantee in terms of actual MSE can be provided, and the optimization processes typi-
cally involve the inversion of very large matrices [300]. Convex optimization algorithms
transform the original problem into a convex problem by relaxing the boolean constraints
in (7) into a convex set [301,302]. Unfortunately, there is no easy way to establish the tight-
ness of the relaxation and, consequently, to ensure the quality of the suboptimal solution.
Furthermore, when the involved sensors should be distributed over a quite large area (e.g.,
in crowdsensing-based monitoring scenarios), efficient computational methods such as the
alternating direction method of multipliers (ADMM) or the accelerated proximal gradient
method (APGM) must be employed to speed up the sensor location process [303]. Heuristic
approaches significantly lower the computational complexity required by the exhaustive
combinatorial search but lack any kind of guarantee compared to convex and greedy
approaches, both in terms of the optimality of the solutions and convergence [304,305].
Besides the approximation strategies, another important aspect concerns the nature of the
physical field to be estimated. If x can be assumed to be a spatio-temporally stationary
stochastic process, as is the case for instance in flooding and long-term precipitation mon-
itoring, more advanced approaches can be used to combine multiple snapshots using a
proper deployment of fixed sensors that guarantee a cost-effective solution in terms of
both processing time and energy [306,307]. On the other hand, if the physical field x is
assumed to be non-stationary, a condition experienced in crowdsensing and UAV-based
environmental monitoring tasks due to sensor mobility, higher-order statistics need to be
computed from multiple snapshots and included in the optimization problem to obtain
a proper dynamic deployment of the sensors, so that the dynamics of the physical field
can be accurately tracked [308]. There exist also low-complexity approaches that solve
the optimal sensor location problem under some specific conditions. This happens, for
instance, when the monitoring system is inherently distributed and the sensors are sparsely
disseminated over large target areas (a condition typically found in crowdsensing-based
monitoring). For these scenarios, sparsity can be enforced in the optimization problem and
exploited to obtain more convenient, relaxed versions of the original cost function, leading
to the so-called sparsity-aware sensor location methods [309,310]. Given their promising
performance, such approaches have stimulated rich research activity in the last years [311].

5.2. Sampling and Reconstruction of Environmental Phenomena

One of the primary tasks performed by any environmental monitoring system is the
accurate modeling of the specific natural phenomenon at hand, starting from a set of its
samples. Prominent applications can be, for instance, the monitoring of water quality,
for which suitable models able to predict the presence of pollutants need to be built.
Typical samples may include the concentration of chemical pollutants or other related
parameters such as the humidity, turbidity, or temperature. Other application fields are
air quality monitoring in urban areas, analysis of the level of electromagnetic radiations,
or the study of the soil moisture and related vegetation growth, just to name a few. In
the signal processing literature, this process is known as spatio-temporal sampling and
reconstruction of the specific physical phenomenon of interest. Thanks to the enhanced
communication technologies available on sensor nodes, all the environmental data can
be efficiently collected and further elaborated by centralized data processing algorithms,
which leverage the link between the values of some selected environmental variables
measured at specific locations and the position information itself to infer the behavior of
the whole physical phenomenon, as shown in Figure 6. A physical phenomenon can be
generally represented as a continuous function of two independent variables f (p, t), with t
denoting the time and p the space variable (in either two or three dimensions). As discussed
before, sensing nodes can only provide samples (or snapshots) of the continuous physical
phenomenon collected at a finite number of locations {pn}N

n=1 and over a limited number of
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time instants tk = kT, with k ∈ Z, and T being the chosen sampling period. Questions that
naturally arise are whether the discrete samples f (pn, tk) faithfully represent the physical
phenomenon, and how the original function f (p, t) can be reconstructed from them, in
either exact or approximate form. As an ubiquitous problem embracing several domains of
the signal-processing literature, the process of reconstructing a physical field f (p, t) from a
discrete set of its samples has received a lot of attention so far, and a number of different
approaches have been investigated to solve it. The existing methodologies can be broadly
classified in two main groups based on whether some a priori knowledge about the field
f (p, t) is available or not. In the former case, more tailored approaches can be applied
that benefit from the prior information (if e.g., f (p, t) admits a sparse representation or
can be statically characterized according to a certain distribution) to achieve improved
reconstruction performance. Conversely, in the latter case, the more classical tools from the
sampling theory need to be adopted.

UAV node

fixed node
interpolated value

mobile node

Physical Field

Figure 6. Sampling and reconstruction of an environmental phenomenon f (p, t). The WSN, UAV, and
crowdsensing nodes measure the phenomenon at different physical locations. After reconstruction,
the value of the field can be inferred also at unseen positions through interpolation.

5.2.1. Sampling and Reconstruction without Additional Information

The main results in terms of sampling and reconstruction root back to the celebrated
Whittaker–Kotelnikov–Shannon (WKS) sampling theorem, which demonstrated that a
physical field f (p, t) can be recovered with no errors if it is sampled regularly in the spatial
domain with a sampling rate which is at least twice its bandwidth [312]. Clearly, the
underlying assumption behind the theorem is that f (p, t) should have a limited band-
width; unfortunately, this condition is hardly satisfied in practice, hence f (p, t) needs to
be preliminarily filtered with a low-pass antialiasing filter. This operation intrinsically
imposes that the field reconstructed from a limited set of filtered samples represents at
most the optimal L2 approximation of the original f (p, t). Such a pioneering work has
been then extended to more specific scenarios or multidimensional domains [313]. A more
exhaustive analysis of regular sampling over multidimensional fields (also called lattices)
has been conducted in [314], where authors were able to provide a closed-form expression
of the MSE. With the aim of keeping the sampling and reconstruction process as general
as possible, interesting approaches based on a probabilistic quantization framework have
been devised, which only impose minor restrictions on the possible variations of some se-
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lected environmental variables [315]. Almost along the same lines, the authors of [316,317]
presented very flexible pdf-unaware estimation approaches to reconstruct environmental
fields having a homogeneous spatial distribution, able to operate also in the presence of
very limited bandwidths.

In practical environmental monitoring applications, guaranteeing a regular distribu-
tion of sensor nodes (either fixed or mobile) over a target area is seldom possible and,
more often, irregular sampling strategies need to be adopted [318]. The most important
result in the field of sampling theory for nonuniform (but deterministic) sampling has been
provided by Landau [319], who was able to derive the necessary density of samples that
should be used to guarantee an exact reconstruction of the environmental field. In [320],
further studies have been conducted to take into account realistic conditions such as the
presence of errors on sensor positions and signals with non-limited bandwidth. It has been
shown that theoretical insights can be obtained only when restricting to specific classes of
f (p, t) possessing the shift-invariance property, and when linear interpolators are used to
reconstruct the whole field.

A deterministic deployment of the sensor nodes (either regular or nonuniform) may
not be possible when the monitoring system operates in hazardous or remote areas (as
is the case in most natural disasters scenarios). In such contexts, sensors are randomly
scattered over target areas (for instance, through airdrop) and their sampling process is
inherently stochastic. If samples’ positions can be assumed to be realizations of a ho-
mogeneous Poisson point process (PPP), the MSE of the reconstructed field can still be
analytically characterized under rather ideal conditions [321]. The effects due to realistic
impairments such as quantization errors, energy constraints, and limited capacity further
complicate the analyses, but some insights on the accuracy of the reconstruction process
can be still extracted [322,323]. Recent studies have started to investigate possible exten-
sions to the case of inhomogeneous sampling density [324], also considering stochastic
sampling processes different from the PPP [325], so as to include additional aspects such as
possible clustering effects [326] and the repulsion between points in the process [327]. An
interesting comparison analysis between the deterministic and random sampling schemes
has been conducted in [328], showing that the former provides improved reconstruction
performance mainly in the high-SNR regime, while in the presence of low SNRs, both
schemes behave in essentially the same way. A recent work explicitly analyzed the problem
of reconstructing an environmental phenomenon f (p, t) from a set of samples randomly
collected by crowdsensing vehicles [216]. By taking into account also the presence of a
WSN infrastructure gathering data at fixed locations, it is demonstrated that stochastic
sampling via crowdsensing leads to significantly improved reconstruction accuracy, es-
pecially when the WSN provides insufficient sampling information. Robust approaches
able to infer environmental parameters from non-homogeneous and distribution-free data
opportunistically gathered by crowdsensing nodes have also been considered [329].

The increasing availability of large unstructured datasets containing several different
environmental data is stimulating the adoption of fully data-driven approaches to infer
the behavior of environmental phenomena. A preliminary work tried to represent such
“big environmental data” using the theory of graph signal processing [330]. An exploratory
analysis has been conducted in [331] for the specific case of urban air pollution data,
showing how the latter could be represented as a high-dimensional and geometrically
structured graph signal. The analysis has been conducted on a real dataset of PM2.5 and
NOx measurements from New York City, and the results demonstrated that interesting
information such as the identification of the most polluted areas could be readily inferred.
This pioneering work opened up a promising research direction in which methods from
the emerging field of graph signal processing can be used to analyze the complex dynamics
of environmental phenomena [332,333].
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5.2.2. Sampling and Reconstruction with A Priori Information

When additional information on the physical field f (p, t) is available, more tailored
sampling and reconstruction approaches can be used to further lower the number of
required samples.

Deterministic A Priori Information: In some more controlled environments, it is
possible to gain a better understanding of the physical phenomenon and establish determin-
istic (either physical or chemical) laws that accurately relate the involved environmental
variables in time and/or spatial domains. An environmental monitoring system can be
viewed as a set of heterogeneous sensors measuring different environmental variables.
Let us denote with f1(t), . . . , fM(t) the M different environmental variables measured by
the sensors, where we considered the 1D case only to ease the notation. Assuming that
{ fm(t)}M

m=1 represent different manifestations of the same environmental phenomenon
f (p, t), they can be linked through some underlying analytical relationship. For instance, if
the behavior of the functions { fm(t)}M

m=1 can be linked via a system of linear differential
equations with constant coefficients, describing the physical correlations among them, an
additional constraint can be exploited in the reconstruction process

A(ω)[F1(ω) · · · FM(ω)]T (8)

where Fm(ω) denotes the Fourier transform of the m-th function fm(t) and A(ω) is a known
P×M matrix, with P number of differential equations in the linear system. Interestingly, if
we assume that the functions have a limited bandwidth in the interval [−B, B], but sensors
are able to gather measurements only at a fraction of the corresponding Nyquist sampling
rate fc = 2B/K, with K > 0 denoting the undersampling factor, a perfect reconstruction of
the original functions { fm(t)}M

m=1 is still guaranteed if [334]

K ≤ M
M− P

. (9)

The inequality in (9) conveys a rather important message: being that the upper bound
is an increasing function of P, which we recall is the number of equations describing the
physical model in (8), the more prior information about the environmental phenomenon is
available, the less samples are required to perfectly reconstruct it.

A number of papers investigated different declinations of such a general framework
to tackle more specific environmental monitoring problems, based on the availability of
suitable physical models. For instance, the authors of [335] considered an array of chemical
sensors and proposed novel algorithms to detect and localize potential sources of polluting
vapors based on a generalized likelihood ratio test (GLRT). Flick’s law of diffusion has been
used to model the pollutants released by a single source, emitted with a constant rate and
starting from an unknown time instant. The same idea has been then extended to the case
in which the chemical sensors are moving instead of fixed [336] and to more general air and
ground scenarios [337]. To accurately model the diffusion of chemical pollutants in arbitrary
2D environments, a finite-element (FE) method has been integrated in [338] to linearize
the spatial and temporal derivatives of the original differential equations. In addition to
the detection and estimation of a biochemical source, the space–time pollutant concen-
tration diffusion and its future evolution have been estimated in [339] using a maximum
likelihood algorithm, taking as reference scenarios a propagation through two different
semi-infinite mediums. With the aim of representing realistic scenarios while keeping the
required computational complexity tractable, in [340] the biochemical dispersion model
considered so far has been suitably approximated using a Monte Carlo numerical approach,
which decoupled the fluid simulation from the transportation phenomena using a Feyn-
man–Kac representation. The obtained model was general enough to emulate additional
random effects such as chemical reactions, temperature effects, and radioactive decaying.
A Bayesian framework has been considered to solve the associated inverse problem and
retrieve the position of the polluting source. Similarly, in [341] the same approximated
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physical model has been coupled with a sequential change detection approach to promptly
identify the time of release of biochemical pollutants. The authors of [342] addressed the
problem of sampling and reconstructing the time-varying atmospheric emissions produced
by industrial smokestacks. The physical phenomenon has been modeled using a set of
partial differential equations (PDE), and sufficient conditions to estimate the emission rates
were provided. In [343], the Fukushima disaster that occurred in 2011 was investigated
using the above framework, with the aim of inferring the amount of radioactive material re-
leased and its consequences. The proposed method leverages sparse regularization to solve
the problem and estimate the plausible amount of released Xenon, using an atmospheric
dispersion model to emulate the radioactive emission process.

Stochastic A Priori Information: Although the deterministic modeling approach may
be suitable for some specific and controllable environmental contexts, it cannot be easily
applied in the presence of more complex phenomena. For instance, the air pollution in a
crowded urban area is linked to several unpredictable factors such as the traffic density, the
weather conditions, the specific type and configuration of the buildings, just to name a few.
For these contexts, finding an appropriate physical model able to correctly capture all the
involved variables and their interdependencies is a very challenging task, if not impossible.
Stochastic processes represent an elegant way to overcome the lack of a physical model, as
they allow a more general representation of an environmental phenomena through the use
of regression or interpolation techniques, operating on all the measured data. A specific
class used in most environmental contexts is that of Gaussian Processes (GPs), which are
powerful tools for non-parametric regression able to provide an estimate of the field f (p, t)
together with a measure of the corresponding uncertainty [344].

To simplify the exposition, we omit the time variations of the physical phenomenon
and consider the sole dependency on the position p, thus obtaining a spatial field f (p). The
spatial field is sampled by a set of N sensors located over the target area at known positions
p1, . . . , pN , with each observation expressed as

yn = f (pn) + εn n = 1, . . . , N (10)

where εn represents the (additive) measurement noise component modeled as an i.i.d.
Gaussian random variable with zero mean and variance σ2

n . (It is worth noting that each
sensor n can perform multiple measurements of the spatial field, say Ln. Without loss of
generality, we consider the case of Ln = 1, ∀n.) The reconstruction process then consists
in using the set of measurements and associated positions Y = {(yn, pn)|n = 1, . . . , N} to
estimate the value of the unknown spatial field f (·) at a set of regression positions pR

1, . . . , pR
T .

In principle, a regression position could either coincide with a measurement position or
not. Using the common terminology of machine learning, in the former case we refer to
such points as training points, in which sensors aim at improving their local estimate of
f (pn). Conversely, in the latter case they are called testing points, and the corresponding
estimates of f (pR

i ) are the interpolation (or prediction) of the spatial field f (·) at new unseen
points of the space. If the spatial field admits a parameterization f (p) = f (p; θ1, . . . , θP)

in terms of a finite set of hyperparameters
{

θp
}P

p=1, the latter can be inferred from the
measurements set Y by using parametric regression techniques. As anticipated, in more
complex environmental monitoring tasks, no exact or accurate parametric models for f (p)
are available. A more convenient way to handle such contexts is to assume that the spatial
field f (p) is a sample from a GP

F(p) ∼ GP
(
µ(p), K(p, p′)

)
(11)

with mean function µ(p) and covariance function K(p, p′). Customary covariance func-
tions, also called kernel functions, include the Matern functions, the squared exponential
functions, and the neural network functions, among many others. In other words, a GP
imposes a multivariate Gaussian distribution over the space of functions that maps the
sampling locations to the corresponding noisy measurements. It is not difficult to show
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that, since the joint distribution of the spatial field values measured at the training and test
locations is Gaussian, so is the conditional distribution of f (pR

i ) at a generic test position
pR

i , given the measurements at the training positions y = [y1 · · · yN ]
T. Therefore, given y,

it is possible to infer the distribution of the spatial field at a given test location pR
i as

f (pR
i |y) ∼ N

(
µi(pR

i ; y), σ2
i (pR

i ; y)
)

(12)

where the conditional mean and variance are given by

µi(pR
i ; y) = E[F(pR

i )|y] = µ(pR
i ) + kT(K + σ2

n IN)
−1(y− µ(pR

i ))

σ2
i (pR

i ; y) = k(pR
i , pR

i )− kT(K + σ2
n IN)

−1k (13)

with E[·] denoting the expectation operator, IN the N × N identity matrix, k an N × 1
dimensional vector whose n-th entry is the cross-covariance k(pR

i , pn) between the test
location and the n-th training location, and K the N × N covariance matrix of the training
locations whose (n, j)-th element is given by k(pn, pj), with n, j = 1, . . . , N.

The probabilistic framework in (13) allows us to reconstruct an estimate of the overall
spatial field f (p) by optimally combining all the measurements gathered by sensors in the
monitoring system. Despite its elegant formulation, there are a number of aspects that need
to be considered and some issues that should be carefully handled. For instance, the inver-
sion of the N × N Gram matrix (K + σ2

n IN) appearing in (13) can become computationally
demanding as the number of sensors N increases. To overcome such a drawback, some
works have proposed to approximate the Gram matrix with lower dimensional matrices
acting as surrogates [345], or to exploit the possible regular displacement of sensors to
implement a fast matrix inversion based on FFT approaches [346]. Other approaches have
investigated the possibility of converting the covariance functions into infinite-dimensional
stochastic differential equations [347]. In doing so, an approximation of the covariance
function can be obtained in terms of an infinite-dimensional state-space model, where each
element of the state coincides with a different order derivative of the original GP. As the so-
lution of this approximate representation is a Markovian process, more efficient approaches
such as the Kalman filter or its variants, possibly combined with a smoother one such as
the Rauch–Tung–Striebel, can be used to compute the predictive distribution in (13) with a
reduced (linear) complexity [348]. To cope with the more challenging case of large-scale
monitoring based on crowdsensing, where the number of involved sensing nodes can be
significantly higher, a suitably designed combination of GP and state-space models has
been recently proposed in [349]. Interestingly, the proposed resolution method allows to
compute (13) with a complexity that does not increase with the number of sensors N.

Besides computational aspects, a plethora of work has been devoted to the use of GP
processes for environmental field estimation. For instance, the authors of [350] proposed a
general modeling approach based on the Gaussian Markov random field, a specific category
of GP, with the aim of inferring the behavior of a number of non-stationary environmental
phenomena. An algorithm called the spatial best linear unbiased estimator has been derived
in [351] to estimate standard spatial Gaussian fields, taking into account also the presence
of non-idealities such as observation and quantization errors due to communications over
the wireless channel. To infer information about environmental phenomena modeled by
time-varying spatial GPs, a low-complexity regression method is presented in [352], which
exploits only a limited set of measurements collected by a set of mobile sensor nodes (either
terrestrial or aerial) with limited processing and storage capabilities. A Bayesian estimation
framework has been applied in [353] to design algorithms able to compute the predictive
distributions in (13) with a constant computation time, irrespective of the total number of
measurements to be processed. In [354], a flexible generalization of a GP is proposed to
estimate a spatial field by means of an empirical Bayes approach. Specifically, the main idea
is to express the mean function µ(·) of the GP by means of general parametric equations.
Such a reparameterization can be used to encode any a priori knowledge of the physics
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generating the spatial field, as well as any data-driven information. The authors of [355]
framed the GP regression problem under an extended Bayesian optimization framework
and solved the additional problem of accurately choosing the best measurement locations
that maximize the regression accuracy while taking into account the distance traveled by
mobile sensor nodes.

The average number of samples required to correctly infer the behavior of an environ-
mental field can be further lowered if it admits a sparse representation on some basis [356].
In these contexts, compressed sensing techniques operating on infinite-dimensional and
time-varying vectors represent a useful tool to guarantee a reconstruction up to a limited
error in terms of MSE [357,358]. Although promising, such techniques are based on the
underlying assumption that the environmental phenomenon possesses the SI property, or
at least belongs to a space of generalized SI signals (combination of SI subspaces) [359].
Moreover, having a basis function representation for an environmental phenomenon means
that the latter can be constrained to lie in a space having a fixed topology, which may
not be often the case [360]. For the specific case of crowdsensing or UAV-based monitor-
ing, distributed compressive sensing techniques can be employed to further lower the
complexity of the reconstruction process by leveraging spatial and temporal correlations
among data [361,362] and also when processing vectors of heterogeneous environmental
measurements [220].

5.3. Environmental Monitoring Based on Hyperspectral Image and Signal Processing

Over the past decades, hyperspectral imaging has been affirmed as one of the leading
technologies for a variety of environmental monitoring applications in different marine,
land, and aerial contexts. Initially developed for remote sensing applications based on satel-
lite and airborne systems, hyperspectral imaging has nowadays reached an unprecedented
level of spatial, temporal, and spectral resolution, opening the door for new environmen-
tal monitoring applications requiring a very fine and detailed analysis of materials and
their physical properties. Thanks to the rapid evolution of integrated sensor technolo-
gies, lightweight hyperspectral cameras can be easily carried by UAV platforms. Some
new exciting applications of hyperspectral sensors recently appeared also in the field of
smartphone-based environmental monitoring. This emerging topic, known as smartphone
spectroscopy, has the ambition of making most of the powerful features of hyperspectral
imaging available also in our compact handheld devices [363,364]. Handling such an
increasing number of environmental applications calls for advanced signal processing
algorithms able to cope with the complex process of extracting relevant information from
hyperspectral data [365]. Very high dimensionality, spectral mixing effects (either linear
or nonlinear), and a rather complex measurement process are only few examples of the
several challenges behind the hyperspectral technology [366]. The theoretical tools used to
deal with such issues span different fields, from image and signal processing to statistical
inference and even the more recent machine learning and deep learning techniques.

5.3.1. Hyperspectral Image Acquisition and Representation

In a nutshell, hyperspectral sensors aim at measuring the electromagnetic reflection,
absorption and emission characteristics of a given material and to classify it based on its
chemical and physical composition. The basic principle consists in acquiring the radiation
generated by each object, represented by a set of pixels in a given scene, over a spectrum of
different frequencies (i.e., different wavelengths). Collecting tens or hundreds of spectral
channels allows to construct a spectral signature of the object of interest, which can be then
used to recognize the nature of its constituent materials. Commercial hyperspectral cameras
acquire data over a portion of the electromagnetic spectrum ranging from the visible region
(from 0.4 to 0.7 µm) to the short-wave (below 2.5 µm) and mid-wave infrared regions (below
5 µm), and even up to the long-wave infrared region (below 14 µm), with a sampling step
between 6 and 10 nm. Given its three-dimensional nature, a hyperspectral image is usually
referred to as hyperspectral data cube or hypercube and can be mathematically defined as a
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tensor X ∈ RH×W×d, with H and W denoting the spatial size of the data and d the number
of spectral channels (or bands). Notice that, due to the high spectral sampling frequency,
all the d channels are highly correlated and the useful spectral information typically resides
in a lower-dimensional manifold of the spectrum. The hypercube X is typically unfolded
in two alternative ways before processing:

• As a set of d× 1 vectors in the spectral dimension xj, j = 1, . . . , HW, with each xj
representative of the j-th pixel in the image.

• As a set of H ×W matrices in the spatial dimension Xi, i = 1, . . . , d, with each Xi a
grey scale image containing all the pixels at the i-th spectral band.

The first representation is useful when the different objects in the scene can be better
separated in the spectral domain, owing to the principle that similar materials likely share
similar spectral vectors xj. Conversely, the second representation is more adequate when
the objects’ similarities are more evident in the spatial dimension; hence, neighboring pixels
can be clustered based on their correlations and different materials can be easily recognized
through image segmentation techniques. We report a pictorial example of a hyperspectral
image and its possible representations in Figure 7. The literature on hyperspectral imaging
and signal processing is quite vast and covers a lot of different topics. In the following,
we review three main categories of processing techniques, namely classification, spectral
unmixing, and change detection, which are more frequently used in the environmental
monitoring literature. We refer the interested reader to [367–369] and to the references
therein for a more comprehensive overview of hyperspectral data analysis techniques.
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Figure 7. Two alternative unfoldings of the hypercube X along the spatial or spectral dimensions.

5.3.2. Hyperspectral Image Classification

Hyperspectral image classification is among the most active areas of research in the
field of environmental monitoring [370]. An uncountable number of monitoring tasks
including the identification of industrial discharges (solid and liquid residues, radioactive
waste, gas emissions), the littering on coastal and sea surfaces, the outbreaking of wildfires,
and many other land degradation phenomena can be accomplished by using hyperspectral
classification algorithms. Given an observed hypercube X , the main goal of a classification
algorithm is to associate each spectral vector xj with a specific class (or label) that identifies
its nature. Individual classes or labels should try to uniquely represent a given type of
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material or land cover (e.g., distinguishing trees from soil, streets and buildings) and are
usually defined by specifying some kind of similarity measure in the considered feature
space [371]. Therefore, classification techniques are based on the underlying assumption
that the spatial resolution of hyperspectral sensors is high enough to guarantee that each
pixel in the image is characterized by a single dominant spectral signature (called pure pixels).
When, conversely, images contain pixels whose spectral signatures are a mix of different
components, spectral unmixing approaches need to be adopted, as will be discussed in
the next section. Two subsequent steps are typically involved in the classification of a
hyperspectral image:

• First, a dimensionality reduction is performed on the hypercube X to remove the
redundant spectral information and keep only the most informative components, thus
avoiding the curse of dimensionality and, at the same time, preserving the limited
storage space available on UAV platforms [372].

• In a second step, a specific classifier is trained based on a chosen design strategy and
used to label each spectral vector.

The dimensionality reduction step includes a feature selection and a feature extrac-
tion phase [373]. Given a set of initial features F = {F1, . . . , Fd}, feature selection aims
at retaining only a small subset of them, denoted by S = {S1, . . . , SD}, according to a
suitable criterion that tries to preserve the classification performance, with D ≤ d and
S ⊆ F [374]. On the other hand, the feature extraction phase aims at finding a suitable linear
or nonlinear transformation f : Rd 7→ RD that maps each higher-dimensional d× 1 spectral
vector xj into a corresponding reduced D-dimensional vector zj = f (xj), j = 1, . . . , HW,
while trying to preserve the maximum amount of initial information in this new reduced
feature space [375]. Based on whether it is possible to label each individual class or not,
dimensionality reduction methods can be grouped into supervised, semi-supervised, and
unsupervised approaches. Examples of supervised methods are the linear discriminant
analysis (LDA) [376], the nonparametric weighted feature extraction (NWFE) [377], the
mutual information [378], and their variants. Semi-supervised methods, used when only a
very limited number of labels are available, include graph-based learning [379], cotrain-
ing [380], and transductive SVM [381], while common unsupervised methods are principal
component analysis (PCA) [382], independent component analysis (ICA) [383], minimum
noise fraction (MNF) [384], and their nonlinear versions.

The design of a specific classifier in the second step is conducted considering either
spectral-only information or by jointly exploiting spectral and spatial dependencies. To
simplify the design, approaches in the former group neglect the spatial correlations existing
among pixels and treat the hypercube X as a set of independent spectral vectors xj. As
the identification of potential environmental risks (e.g., illegal landfills, abusive buildings)
typically triggers a chain of legal and prosecutorial actions, an accurate classification of
objects appearing in the scene is of utmost importance. This makes supervised spectral
approaches largely preferable over both semi-supervised and unsupervised ones for en-
vironmental tasks. Unfortunately, in practical scenarios, the amount of training samples
is often insufficient to allow a satisfactory training of supervised classifiers. Thus, han-
dling high-dimensional data using only a limited amount of training samples represents
one of the main challenges in the classification of environmental hyperspectral images.
In addition to more traditional supervised approaches (e.g., SVM, random forest, back-
propagation neural networks) [385], deep learning methods are also emerging as valid
tools to learn high-level features that are inherently more robust against the non-idealities
of hyperspectral images [386,387].

Considering that objects appearing in an environmental scene are usually larger than
the dimension of a single pixel, neighboring pixels are inherently correlated in the spatial
dimension. Such correlations provide additional information on the shape of the objects
and can be thus fused with the spectral information to obtain improved classification per-
formance [371]. Two main strategies can be adopted to infer the spatial information in the
hypercube: a first family of approaches, called crisp neighborhood, extracts spatial infor-
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mation by considering only a restricted number of adjacent pixels and using a probabilistic
model (such as the Markov random fields) to describe correlations as a two-dimensional
stochastic process defined over a lattice of discrete points [388]. The second family of
approaches, known as adaptive neighborhood, tries to extend the number of involved
pixels by using image segmentation algorithms [389]. The spatial and spectral information
are then fused by using composite kernel functions such as the generalized composite
kernel (GCK) [390] or multiple-kernel learning [391].

Irrespective of whether spectral-only or combined spatial–spectral information is
used for classification purposes, from the surveyed literature we can conclude that a
general classifier that can be seamlessly used in all the diverse environmental contexts and
still provide the best performance in terms of accuracy does not exist. To be effective, a
hyperspectral image classifier should be designed by explicitly taking into account the
different training and testing data at hand, integrating whenever possible also some a priori
knowledge of the considered application domain.

5.3.3. Hyperspectral Unmixing

The classification methods reviewed so far assumed that each spectral vector xj is
characterized by a single dominant spectral signature. In realistic acquisition scenarios,
sensing nodes (e.g., UAV platforms) are subject to a number of mechanical effects (e.g., vi-
brations, wind, adverse atmospheric conditions, and other effects related to the dynamics)
that cause a destabilization of the hyperspectral sensor. As a consequence, the spectral
content of pixels in the recorded hypercube X could be a mixture of radiations generated
by many materials appearing at the same location covered by each pixel. Mixing effects
can be also experienced when the hyperspectral sensor is perfectly stabilized but its spatial
resolution is so high that intimate mixing phenomena spuriously appear. The latter case
explains the well-known trade-off between spatial and spectral resolution in hyperspectral
imaging. In all these cases, it is no longer possible to use the spectral signature of each pixel
as discriminant to infer information about the materials present in the scene. To overcome
such issues and restore the high classification performance obtained in the case of pure
pixels, hyperspectral unmixing algorithms, also called blind source separation methods,
need to be adopted. Basically, they try to exploit the rich spectral resolution intrinsinc in X
to unmix the spectral contents of each pixel.

Hyperspectral unmixing has been widely investigated in the literature, and a number
of methods have been proposed to mitigate or completely remove mixing effects under
different operating conditions [392,393]. In the more specific environmental monitoring
contexts, linear mixture models (LMMs) gained more attention due to their simplicity and
mathematical tractability. Such models assume that mixing effects occur at a macroscopic
scale and that each radiated signal is associated to a single material in the scene. The
radiations emitted by the materials are therefore almost separated but, due to the limited
spatial resolution of the hyperspectral sensor, appear as linearly superimposed in the
recorded hypercube X . This is tantamount to modeling each measured spectral vector xj
as the sum of P different spectral contributions as

xj =
P

∑
p=1

α
p
j mp

j (14)

with mp
j ∈ Rd×1 denoting the spectral signature of the p-th material, known as endmember,

while α
p
j quantifies the percentage of the p-th material in the j-th pixel, known as fractional

abundance. Being that α
p
j s are fractional values, they satisfy the abundance non-negativity

constraint α
p
j ≥ 0, and their individual values are constrained by ∑P

p=1 α
p
j = 1, ∀j (abun-

dance sum constraint). Based on (14), the hyperspectral unmixing problem can be then
recast as the problem of estimating the P endmembers mp

j and their associated fractional

abundances α
p
j , for each j = 1, . . . , HW. Denote with X = [x1 · · · xHW ] ∈ Rd×HW the
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matrix of hyperspectral data obtained by arranging all the spectral vectors in columns
and, similarly, with M = [m1 · · · mHW ] the matrix containing all the endmember vectors
mj = [m1

j · · · mP
j ]

T. Defining A = [α1 · · · αHW ] as the abundance matrix whose columns

are the fractional abundance vectors of each pixel αj = [α1
j · · · αP

j ]
T, the linear hyspectral

unmixing problem can be thus formulated as

min
A,M
‖X −MA‖F subject to: A ≥ 0, 1TP A = 1d (15)

where ‖ · ‖F is the Frobenius norm operator and, with a slight abuse of notation, the abun-
dance non-negativity constraint A ≥ 0 should be intended in an elementwise fashion.
Notice that (15) admits a double interpretation in terms of matrix factorization or, alter-
natively, as a linear blind source separation problem [394]. The main linear unmixing
strategies used to handle hyperspectral environmental data can be broadly grouped in
two categories based on whether endmembers are assumed to include pure pixels—for
which sparsity or geometry-based approaches can be considered [395]—or, conversely,
some of the endmembers are assumed to be missing in some pixels, using in those cases
volume-based approaches [396,397]. In the presence of highly mixed data, however, both
the previous approaches tend to fail, and the unmixing problem needs to be solved under a
statistical framework [398], possibly considering the additional use of spatial information to
complement the spectral one [399]. Other related research problems include the estimation
of the actual number of endmembers P [400] and the characterization of their space-time
variations [401], also including the extension to non-linear mixing models [368].

5.3.4. Hyperspectral Change Detection

Besides classifying the different materials present in a target area at a given time
instant, hyperspectral imaging can be used to support the continuous monitoring of a
geographical surface, with the aim of promptly detecting significant changes that can
occur over time [402]. In most environmental contexts, such changes could be indicative of
man-made actions (either intentional or accidental) or potential natural disasters that may
compromise environmental health [403]. To formally define the change detection problem,
let us assume the availability of two hyperspectral cubes X 1 and X 2 capturing the same
geographical area at two different time instants t1 and t2, respectively. By computing the
hyperdimensional difference pixel by pixel, we obtain a new image

X D = X 2 −X 1 (16)

encoding the spatial and spectral changes that occurred in that particular area. Assume that
H = {H0,H1} is the set of all possible classes in the difference image X D, with H0 being
the no-change class andH1 = {H1,1, H1,2, . . . , H1,K} being the set of K classes representing
the different types of changes that can occur. Then, the task of identifying a significant
change can be formulated as either a binary or a multiclass change detection problem. In the
former case, the process aims at separating the no-change hypothesis H0 from any possibly
changed hypothesis inH1, with no distinction within the latter set [404]. Conversely, in the
latter case, the goal is to identify pixels with substantial changes in X D and to recognize
the specific classes inH1 that they belong to [405]. The general process of detecting changes
in the difference image X D is typically split in two main steps.

Anomaly Detection: First, an anomaly detection process is conducted over the whole
image with the aim of identifying pixels whose spectral variations are significant in magni-
tude (or according to other metrics) with respect to the other adjacent pixels representing
the background [406,407]. Compared to more traditional optical images, where abrupt
changes tend to emerge frequently, in hyperspectral imaging changes are intrinsically more
implicit and complex, calling for advanced change-detection methods able to capture even
very subtle variations that do not easily stand out from the background [408]. In this first
processing step, targets of interest are not yet outlined and anomaly detection is conducted
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without any a priori spectral information. The Reed-Xiaoli (RX) detector represents one
of the most effective algorithms to identify anomalies in a huge variety of environmental
hyperspectral data. It was derived from the GLRT under the conservative assumptions
of targets with unknown spectral distribution, embedded in background clutter with un-
known spectral covariance. Denoting with xt a generic spectral vector extracted from the
difference image X D, to be tested against a possible anomaly, the RX algorithm consists in
the following test [409]

(xt − µ̂b)
TĈ−1

b (xt − µ̂b)
>
< η (17)

where µ̂b and Ĉ−1
b denote the estimated mean vector and covariance matrix of the back-

ground clutter, respectively, and η is a threshold to be set according to the desired probabil-
ity of false alarm. Both µb and Cb can be estimated globally on the whole hyperspectral
image, using a multivariate Gaussian distribution to model the background clutter [410],
resorting to linear subspaces [411], or through segmentation techniques inherited from
optical image processing [412,413]. Alternatively, local estimation approaches based on
sliding circular windows centered around a given pixel have been considered to obtain
more accurate estimates of the background clutter, especially when some portion of X D
can be excluded upfront [414]. In addition, several variations of the RX algorithm have
been devised in the literature to achieve improved detection performance with possibly
reduced false alarm rates [409,415].

Target Detection: In a second step, the identified anomalies are further verified
through target detection methods to establish whether their spectral signatures can be
associated to a target of interest (e.g., a pollutant material) or should be instead attributed to
spurious variations caused by the natural clutter. Target detection methods leverage some
a priori knowledge about the desired targets to infer their possible presence. Specifically, in
the environmental monitoring literature, target materials are usually characterized by either
a single spectral signature [416] or by specifying a signal subspace they belong to [417]. In
the former case, the GLRT detector is the so-called spectral matched filter (SMF), whose
decision statistic for a spectral vector xt under test is computed as [418]

SMF(xt) =
vTĈ−1xt

vTĈ−1v
(18)

where v is the known target spectral signature and Ĉ is the estimated clutter covariance
matrix. The SMF detector is derived by assuming that the background clutter follows
a zero-mean Gaussian distribution N (0, C); the target is also Gaussian-distributed and
shares the same statistics of the clutter but has a generally non-zero mean αv, with α the
abundance factor encoding how strong the target presence is inside the pixel vector xt. To
overcome possible numerical issues arising in the computation of the decision statistic (18),
the SMF detector can be modified by discarding eigenvectors whose associated eigenvalues
fall below a predefined noise threshold [419], or by adding a regularization factor to Ĉ
before its inversion [420].

When both target and natural clutter spectral signatures can be assumed to belong to
two separated linear subspaces, the GLRT detector is represented by the subspace matched
detector (MSD), having the following decision statistic

MSD(xt) =
xTt (Id − Pc)xt

xTt (Id − Pv)xt
(19)

where Pc and Pv represent the projection matrices onto the clutter-only and target plus
clutter subspaces, respectively. By elaborating on the same idea, alternative detectors such
as the adaptive subspace detector (ASD) [421] and the orthogonal subspace projection
(OSP) [422] have been proposed in the literature. These three detectors are still considered
the benchmarks for target detection in hyperspectral imaging.
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6. Integrated Large-Scale Air–Ground Environmental Monitoring

The review of the individual WSN, UAV, and crowdsensing technologies outlined that,
despite remarkable improvements in some specific application contexts compared to the
use of legacy systems, the monitoring capabilities for most approaches proposed in the
literature are still limited by either the insufficient information gathered by sensor nodes
(incomplete or inaccurate) or by some intrinsic limitations of the adopted technologies
(e.g., limited sensor autonomy, restricted operating areas). Nonetheless, the rapid impact
of environmental changes on both the economy and health of the modern society signals
the need for advanced monitoring systems able to operate on large geographical scales,
and to provide integrated (air, land, sea) real-time and long-term analyses from a big
amount of heterogeneous environmental data. A possible way to meet such requirements
is to consider the design of hybrid monitoring systems that try to combine the benefits of
more technologies.

6.1. Hybrid Environmental Monitoring Systems

A first step toward this idea is, for instance, the hybridization between the ground
sensors of a WSN and the aerial UAV nodes, a topic that has started to attract attention in
the environmental research community [52,423]. Complementing a fixed WSN with UAV
nodes brings three main advantages: (i) a more extended and finer monitoring of the target
area becomes possible thanks to the aerial inspection capabilities of UAVs, which enable
a more focused and controlled analysis of the environmental phenomena, reducing the
risk of losing potentially critical data; (ii) a better management of the energy consumption
can be achieved by designing suitable interplay sensing strategies between WSN and UAV
nodes which, by extending the autonomy of each individual sensor (either fixed or mobile),
can prolong the whole system lifetime and ensure a long-term monitoring of the area of
interest [424]; (iii) an increased flexibility of the monitoring system is obtained thanks to the
versatility of UAV nodes, which can be easily converted to mobile base stations and used
to extend the communication range between the WSN and the monitoring centers, or even
used to support the physical deployment of WSN nodes [425]. When applied to the fields
of air pollution or radioactivity monitoring, a hybrid WSN-UAV system can leverage its
three-dimensional inspection capability to provide a much more accurate prediction of the
propagation and evolution of pollutants over time [426,427], allowing a better assessment
of their potential impact over a large geographical scale [428]. Hybrid WSN-UAV systems
can also bridge the gaps existing in marine applications, where access to WSN nodes
disseminated over the sea surface is often very difficult, or almost impractical in cases
of underwater deployments [429]. In such contexts, the WSN can be employed for data
collection (e.g., temperature, humidity, turbidity), while UAVs mainly act as aerial sinks for
the periodic offloading of such data. An experimental test conducted in [430] demonstrated
that, remarkably, a collaborative WSN-UAV monitoring system can achieve an extended
operating range of about 5 km from the coast, while guaranteeing a bit rate of about 10
kbps. WSN and UAVs can actively cooperate to support authorities in the presence of
natural disasters, from the initial provisioning phase up to disaster recovery [431]. Since
disaster management applications usually operate in harsh environments, UAV nodes can
be employed for a preliminary scanning of the target area, with the aim of identifying the
best candidate zones to perform aerial and ground measurements [432]. Then, in a second
step, WSN nodes equipped with proper sensing units are deployed and used to carry out
more detailed measurements [433]. A key advantage of a hybrid WSN-UAV system is its
capability to dynamically readapt to the priorities of the disaster scenario at hand, either in
terms of safeguarding human lives or providing real-time analyses based on the intelligent
fusion of all the available environmental data [53].

Almost along the same line, some recent work has started to consider a combination of
WSN and crowdsensing as well as a combination of crowdsensing and UAV technologies.
The former systems aim at increasing the too-coarse sampling capability of WSNs by
integrating measurements opportunistically gathered by mobile crowdsensing nodes on
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a denser scale. From a spatio-temporal perspective, the two technologies reinforce each
other: mobile crowdsensing can be largely exploited during the daytime, when citizens
carry out their daily activities. In the meantime, WSN nodes can be set in sleep mode to
preserve their energy. Conversely, during the night time, when the number of crowdsensing
nodes is typically scarce, the hybrid system can schedule WSN nodes to perform data
collection. Hybrid WSN-crowdsensing monitoring systems have found some applications
in the field of air quality monitoring to face the significant spatial variability of particulate
matters [54,434]. A prototype system based on low-cost, off-the-shelf hardware mounted on
both fixed (WSN) and mobile (crowdsensing) nodes has been recently developed in [435].
Preliminary results from six months of data demonstrated that the system can reliably reveal
areas with exceeding levels of PM2.5 and PM10 and, interestingly, can guarantee a high
sampling rate of about one measurement per second. Similarly, hybrid crowdsensing–UAV
monitoring systems have been conceived with the idea of broadening the sensing horizon
of mobile crowdsensing nodes, especially when operating in areas that could be hardly
reached by terrestrial vehicles (e.g., flooded areas, forest areas) [436,437]. Additionally, in
this case, the few available prototypes of collaborative crowdsensing–UAV systems have
been mainly employed for air-quality monitoring [438], also considering the reuse of UAV
platforms dedicated to package delivery [439].

6.2. Combining WSN/UAV/Crowdsensing and Advanced Signal Processing

Despite that significant work has been devoted to the application of each specific tech-
nology to the diverse environmental contexts, as illustrated in Sections 2–4, the interlinking
between different types of technologies has only recently appeared in the literature and
its potential has not yet been fully explored. More specifically, most of the hybrid systems
discussed in Section 6.1 are often restricted to quite limited areas and are intended only
for a few specific types of analysis (e.g., only marine pollution or only air pollution). Fur-
thermore, the design approaches mainly focus on aspects related to the degree of reactivity
of the monitoring system, i.e., the ability of the proposed system to respond promptly to
the occurrence of critical events such as, for instance, large wildfires or spills of pollutants
into the sea. However, less attention has been devoted to the possibility of using, in a
complementary way, proactive approaches that allow for identifying potential high-risk
areas and to implement preventive actions in advance, aimed at reducing the probability
of events with a high environmental impact. Overall, none of the available systems is
able to ensure an integrated monitoring of the environment in all its aspects (air, land, and
water), while offering a cost-effective and scalable solution to support a large-scale coverage.
In this respect, we believe that the integration of the three different monitoring technolo-
gies (WSN/UAV/Crowdsensing), coupled with the use of advanced signal processing
techniques such as those presented in Section 5, will be at the basis of future monitoring
systems, igniting a new era of ubiquitous environmental monitoring.

In Figure 8, we depict the main application contexts of a unified framework for
integrated large-scale environmental monitoring, with the aim of illustrating tasks for
which a combined use of air–ground technologies is possible, and those for which WSN,
crowdsensing, and UAV are alternative or complementary. More specifically, scenario (A)
represents a typical urban environment characterized by the presence of several potential
sources of pollution: on the one hand, there are a number of electromagnetic sources such
as antennas installed on the roofs and mobile devices transmitting in the area; on the other
hand, a number of vehicles passing through the intersection may contribute to the potential
increase in air pollution levels (due to engine exhausts) and noise pollution levels due to
engine noise (e.g., heavy traffic, motorbikes, and large cars) or an improper use of horns. In
this application context, a set of mobile devices recruited as crowdsensing nodes provides
important real-time information related to some key environmental parameters. This
information can be processed through advanced signal processing algorithms (such as those
discussed in Section 5) to constantly monitor the spectrum of radio and acoustic frequencies,
quantifying the energy content of the detected signals and assessing the consequent impact
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on the environment. By combining this information with that deriving from the analysis of
vehicle emissions, it is also possible to infer useful information to support applications for
traffic control and road safety (e.g., to avoid frequent congestion on the main city backbones
and to reduce the number of accidents). Scenario (B) is representative of a case of soil
pollution caused by the illegal dumping of solid waste. In this case, one or more UAVs
can be used to acquire images/videos and data from hyperspectral sensors. Such data can
processed through hyperspectral signal processing techniques (see Section 5.3) to analyze
the physical characteristics of the different materials and classify them according to their
spectral signatures. Subsequently, the optical data can be used to validate and confirm
the actual presence of waste in the surveyed area. Scenario (C) illustrates a case in which
some industrial waste may have spilled into the soil. In order to cope with this scenario,
the air–ground framework combines the use of UAV nodes with the sensing capabilities of
a WSN. The latter, in fact, thanks to the availability of sensors dedicated to the analysis of
chemical and biological substances, is able to identify any contamination of the subsoil that
could not otherwise be revealed through the data acquired by UAVs. Similarly, scenario
(D) relates to the emission of industrial smokes and can be addressed through the joint use
of WSN and UAV nodes, and it is further enhanced by including the contribution from
citizens. Specifically, air pollution measurements gathered by WSN nodes can be exploited
to determine if the maximum tolerable thresholds in the area have been exceeded. When
this happens, WSN data will be integrated with the optical and hyperspectral data acquired
by the UAVs to locate the pollutant source, using information from crowdsensing nodes
(e.g., photos) to support the identification process. Scenario (E) illustrates a typical case
of forest fire, for which the sensing capabilities of a fleet of UAVs play a key role. On the
one hand, the processing of hyperspectral data allows the early detection of a fire outbreak.
In the event that a potential fire is identified, if the UAV nodes are also equipped with
LIDAR sensors, these can be used to verify the correctness of the triggered event, thus
reducing the number of false alarms and saving important emergency response resources.
In addition to fire detection (reactive approach), data from optical and hyperspectral
sensors can be combined with measurements from thermal sensors to identify high-risk
areas (proactive approach). For instance, areas with a high density of dry vegetation and
high temperatures may be subject to preventive actions aimed at avoiding the outbreak
of fires. Scenario (F) represents a typical marine environment. In this context, a WSN can
be deployed on the shore and/or on appropriate buoys located at strategic points of the
sea. By fusing information from pressure, thermal, and biological sensors, it is possible to
monitor important parameters (e.g., water turbidity level, presence of biological indicators)
in real time. Moreover, the possible presence of pollutant spills in the sea shown in scenario
(G) can be revealed by processing, in addition to the data from WSN nodes and acquired
by UAVs as well as the explicit feedback coming from citizens. Overall, it is evident that
the three air–ground monitoring technologies (WSN/UAV/crowdsensing) can be used
in a synergistic manner to compensate for the limitations of each individual technology,
motivating their joint use in future integrated and large-scale monitoring systems.

The idea of creating a collaborative system made of fixed and mobile terrestrial
nodes, as well as of aerial UAV platforms, is indeed not new. In recent years, we have
been witnessing an impressive growth in the number of smart devices and services that
need to be supported by existing communication networks. To fully manage the ever-
increasing data demands generated by the several heterogeneous applications emerging
under the IoT umbrella, architectures at the basis of next-generation 5G and beyond (6G)
communication networks will integrate satellite, aerial, and terrestrial communications
under the so-called space–air–ground network paradigm [440–442]. It is thus natural to
look at environmental monitoring as a big and complex service that can be supported by
such emerging architectures. For instance, in [443], it was shown that a combination of
smartphones, sensors, and UAVs can effectively overcome the limitations of an unstable
communication environment in the presence of a natural disaster. However, several other
aspects besides communication should be taken into account to treat the topic in its entirety.
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Indeed, the considerable complexity of ensuring integrated large-scale environmental
monitoring is also related to the great diversity among the air, land, and water contexts, to
the huge variety of sensing platforms carrying heterogeneous sensors, and more generally
to the specific characteristics of each individual monitoring task. In Figure 9, we identify the
main components of a high-level architecture that leverage the different sensing capabilities
available on the three levels made up of WSNs, crowdsensing, and UAVs, to enable large-
scale integrated monitoring (atmospheric, marine, acoustic, electromagnetic, and soil) of
the environment.

GNSS

RIS

Communication Network

UAV

Mobile Crowdsensing

Wireless Sensor Network (WSN)

(A)

(B)

(C)
(D)

(E)

(F)

(G)

Figure 8. Overview of potential uses of WSN, UAV, and crowdsensing inspection capabilities to
enable integrated and large-scale environmental monitoring.

The basic idea consists in interpreting the whole ecosystem, including heterogeneous
terrestrial (WSN/crowdsensing) and aerial (UAV) sensors, under a unified multi-agent
and multi-system framework. The first fundamental block is represented by the input
level, i.e., the set of all the heterogeneous environmental data collected by the various
sensor nodes. It is important to note that the information flow generated by the input level
is generally:

• Asynchronous since the actual availability of input data varies according to the sensing
performed by the three different architectural levels (WSN/crowdsensing/UAV) at
different time instants;

• Non-uniform as the measurements acquired by the various sensor nodes are linked to
the specific application scenarios in which they operate and, therefore, are associated
with areas not homogeneously distributed over the entire territory.

The second fundamental block of the proposed framework concerns the processing of
collected data and is articulated in four parts:

(i) Advanced Geolocation and Tracking: A major transversal issue concerns the correct
attribution of a geographic position information to environmental data gathered by
ground-based (crowdsensing) and aerial (UAV) mobile sensor nodes. Specifically,
information opportunistically obtained through crowdsensing is typically available
on the basis of users’ mobility and requires innovative algorithms to be spatially
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contextualized (geo-referenced), especially when nodes operate in contexts where
common satellite navigation systems (GPS) are inaccurate or completely unavailable
(e.g., in dense urban environments). Similarly, data from UAVs must also be accurately
localized and tracked over time. In particular, advanced algorithms are required to
extend the capabilities of the on-board GNSS receiver so as to handle the high ma-
noeuvring speeds of such platforms and to guarantee their accurate localization even
when operating in hostile or hardly accessible environments (e.g., forests, caves). The
output of this module consists of position estimates at the time instants corresponding
to mobile sensors measurements;

(ii) Intelligent Sensing: The availability of statistically significant indicators is of utmost
importance for a correct analysis and mapping of the different pollution phenomena.
To this end, a key role is played by signal processing techniques involving the statisti-
cal modeling of measurement and sampling processes, whose main goal is to infer the
main parameters of a given pollution phenomenon, modeled through either a deter-
ministic (physical) or a stochastic spatio-temporal model, starting from a partial set
of observed samples. Using the position estimates produced by the data geolocation
module, the collected measurements can be spatially correlated and appropriately
combined through data-fusion approaches in order to enable an integrated monitoring
of the parameters of interest;

(iii) Acoustic and Electromagnetic Environmental Monitoring: Another important as-
pect concerns the processing of acoustic and electromagnetic measurements coming
from single sensors or sensor arrays (multiple antennas/microphones), with the aim of
both identifying possible sources of pollution and monitoring a set of environmental
parameters of interest. The processing algorithms to be considered in this field are
mainly based on theoretical tools such as detection and spectrum sensing. Effective
solutions should be able to provide a continuous monitoring of the frequency spec-
trum (radio and acoustic) in order to identify and classify the various electromagnetic
sources, quantifying the energy content of the signals detected and assessing their
consequent impact on the environment;

(iv) Soil, Atmospheric, and Marine Environmental Monitoring: To complement the pre-
vious module, statistical methods to detect and estimate the dispersion of a specific
(air, land, or sea) pollutant by adopting analytical diffusion models should also be
considered. Such approaches can be useful to determine the spatio-temporal concen-
tration distribution of a specific pollutant and to predict its future evolution. Multi-
spectral/hyperspectral imaging represents another valuable source of information.
Through the processing of such data, it is possible to analyze the physical characteris-
tics of the different materials present in a target area and to recognize them on the basis
of their spectral signatures, using both classification or spectral unmixing tools. Effective
solutions should be able to identify the possible presence of pollutants dispersed on
the land (e.g., spills in the sea, illegal dumps of wastes, . . . ) or to promptly reveal the
onset of critical events such as wildfires and floods.

Another important aspect is the choice of the most informative sites where sensor
nodes should perform the sensing campaign. When sensor positions can be flexibly adapted
to the specific monitoring task at hand (e.g., deployment of a WSN in a fully controllable
environment), signal processing techniques such as those discussed in Section 5.1 should
be additionally considered to make better use of sensing resources and further improve
the estimation and analyses of environmental phenomena. To support the emerging
needs in terms of seamless environmental monitoring, the last block of the framework
should enable:

• The possibility of outlining proactive interventions aimed at reducing or completely
avoiding the occurrence of environmental disasters. When this is not possible, a
prompt detection of any natural hazard in its early stage must be anyway guaranteed,
providing useful information that can be used by the competent authorities to limit
the potential damages;
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• A real-time monitoring of a selected set of indicators that reflects the state of environ-
mental health. Necessary elements include the levels of acoustic noise, the levels of air
pollutants (PM2.5 and PM10), the levels of radiation, and the levels of water turbidity;

• Mid and long-term analyses based on the big environmental data collected and stored
over time. Such historical information can be used to continuously update the predic-
tion models—used, for instance, by GISs—and to maintain accurate integrated maps
of the main environmental phenomena over a large geographical scale.
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Figure 9. Main components of the proposed three-level monitoring architecture combining
WSN/UAV/crowdsensing technologies and advanced signal processing.

6.3. Future Perspectives

In summary, the high-level idea presented so far is to accomplish environmental tasks
by adaptively exploiting all the available information in each operational context, using
advanced signal processing as a key ingredient to obtain low cost and scalability, both
prerequisites to enable integrated and large-scale monitoring. On the one hand, this opens
up unprecedented opportunities to design novel environmental monitoring systems able to
extend the capabilities of the existing systems. On the other hand, it faces new challenges
related to the interaction of different systems and technologies, which results in an overlap
of several problems such as estimation and information fusion, localization and tracking,
statistical analysis of the heterogeneous environmental data, and the design of proper
sensing strategies. Therefore, there still exists a noticeable gap to be filled in order to ensure
a successful development of future environmental monitoring systems based on air–ground
(WSN/UAV/crowdsensing) sensors. In our view, the intrinsic interdisciplinarity of the
topic requires that advances in different research areas are jointly achieved in the next years.
More specifically, we identified the following three main areas, as shown in Figure 10:

• Machine/deep learning, big data, and predictive analytics: According to a recent report
by Cisco, the sole environmental data sensed by WSNs and crowdsensing nodes in
urban environments are expected to increase up to 5 ZB per year by 2021 [444]. Such
heterogeneous data are characterized by a large variability and large volumes and
exhibit significantly different accuracy owing to the different types of sensors. In this
respect, more advanced big data analytics need to be devised to extract meaningful
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information from a plethora of non-uniform raw environmental data, leveraging
the joint processing power of both fixed and mobile nodes [445] and treating the
whole ecosystem made of air and ground sensors as a smart and interconnected
large-scale community [446], enabling the so-called smart environmental monitoring [37].
Machine/deep learning techniques represent another fundamental tool to manage
large volumes of heterogeneous data for which analytical models are not often avail-
able [447]. Besides being used to enhance the performance of specific tasks such as,
for instance, classification in hyperspectral imaging, such techniques can be extended
also to support the design of optimal sensing strategies, with the aim of striking a
sustainable balance between sensing quality and cost involved in the sensing cam-
paign [448]. With the increasing availability of large environmental datasets, deep
learning algorithms able to infer representations of data at different levels of abstrac-
tion will be also necessary [449]. As a fundamental enabler for most monitoring tasks,
predictive analytics are required to combine big data and machine learning/deep
learning and predict future evolution and impacts of environmental phenomena using
both data-driven and model-based approaches [450].

• Fog computing and mobile edge computing: The potentially very high number of devices
available when joining air and ground sensing capabilities over large geographical
areas can seriously challenge most of the existing computing paradigms (e.g., cloud).
A paradigm shift moving the intelligence closer to the sensing devices can represent a
win–win strategy to guarantee a seamless environmental monitoring service while also
fulfilling important requirements such as low-latency, availability of high dedicated
bandwidths for data transfer, and context awareness for allocating sensing tasks and
full support of node mobility [451]. Fog computing can suit such needs by making
some of its multiple architectural layers available in the proximity of the sensing
devices. Each layer is conceived with a significant processing, communication, and
storage capability and is meant to support sensing nodes in performing preliminary
local tasks [452]. Elaborating on the same idea, mobile edge computing aims at injecting
application-oriented capabilities directly in the core of network operators, possibly
providing most of the network and processing services at a one-hop distance from the
sensing devices [453]. By working on top of secured peer-to-peer networks, sensing
nodes can safely share the collected environmental data, whereas monitoring centers
can have full control of the flow of sensed data [454].

• 5G and beyond 5G networks: The network infrastructure must be able to support differ-
ent communication requirements according to the specific monitoring tasks and the
involved sensing devices. For instance, UAV nodes require high availability of wireless
links in order to be remotely piloted/controlled. Moreover, the periodic offloading of
data from UAVs could involve several tens of GB, especially in the presence of data
acquired by optical or hyperspectral sensors. On the other hand, crowdsensing nodes
typically operate in urban environments, where signal obstruction phenomena (e.g., at-
tenuation effects, multipath) are frequent owing to the presence of obstacles such as
buildings, tunnels, and vehicles [455,456]. Supporting high data rates, ultra-reliable
low-latency communications, and massive connectivity are among the main objectives
of the emerging 5G cellular networks [457]. By exploiting the presence of multiple
directional antennas at both the transmit and receive sides under the multiple-input
multiple-output (MIMO) paradigm, 5G systems will guarantee more efficient wire-
less communications thanks to the beamforming technology, while simultaneously
supporting critical services such as localization and context awareness [458,459]. In
addition, communicating at mmWave frequencies allows for benefiting from higher
bandwidths and, in turn, from higher data rates. Further improvements can be ob-
tained by considering the use of the emerging reconfigurable intelligent surfaces (RIS).
Such a technology, which will be at the basis of future 6G networks, allows wireless
communications to evolve toward a new reality where the propagation environment
can be re-engineered, i.e., dynamically programmed and reconfigured to adapt to the
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surrounding environment [460]. These artificial surfaces, made of electromagnetic
material, can modify the propagation of radio waves (by acting the way that they
interact with surrounding objects—see Figure 8, scenario A), thus attenuating the
negative effects of propagation (path loss, multipath fading) and allowing for the
establishment of a robust communication link even when the direct path between
transmitter and receiver is severely obstructed. Notably, RISs are conceived as fully
passive devices and as such represent a big promising step toward achieving pervasive
but sustainable, reliable, and eco-friendly green communications [461,462].

Integrated Large-Scale
Environmental

Monitoring

Fog & Edge
Computing

Machine/Deep
Learning, Big

Data & Predictive
Analytics

5G & Beyond 5G
Networks

Figure 10. Research areas playing a key role in future integrated large-scale environmental monitor-
ing systems.

7. Conclusions

The unprecedented environmental challenges faced by modern society call for the
need of advanced solutions able to guarantee a pervasive and continuous monitoring of
the environment in all its aspects (air, land, and water). With the increasing availability of
WSN, UAV, and crowdsensing technologies, nowadays endorsed with significant sensing
and processing capabilities, a new frontier of environmental monitoring empowered by
a large number of low-cost devices and offering a denser and more accurate coverage of
the territory has emerged. In this paper, we provided a systematic review of the main
solutions proposed in the field of WSN, UAV, and crowdsensing monitoring, harmonizing
the huge amount of work scattered across different research communities according to each
specific application context (air, land, or sea). Based on such a classification, we highlighted
the main benefits and open challenges of each individual technology. As a second main
contribution, we analyzed the signal processing literature and conducted a detailed review
of the most relevant methodologies applied in the field of environmental monitoring.
Remarkably, it has been found that advanced signal processing plays a key role in a number
of environmental tasks, from the choice of the optimal sites for sensor placement to the
accurate reconstruction of physical phenomena and effective identification of polluted areas
and natural hazards. We then identified the main components of a three-layer architecture
that, by joining the ground and aerial sensing capabilities of WSN/crowdsensing and UAVs,
can enable integrated and large-scale monitoring of the environment, leveraging advanced
signal processing to promote cost-effectiveness and scalability. Finally, a perspective of
future research directions has been provided, outlining that a synergy between different
research areas is necessary to handle the intrinsic multi-disciplinarity of the topic.
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