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Abstract: With the increasing efforts to utilize information and communication technologies (ICT)
in disaster management, the massive amount of heterogeneous data that is generated through
ubiquitous sensors paves the way for fast and informed decisions in the case of disasters. Utilization
of the big “sensed” data leads to an effective and efficient management of disaster situations so as
to prevent human and economic losses. The advancement of built-in sensing technologies in smart
mobile devices enables crowdsourcing of sensed data, which is known as mobile crowdsensing (MCS).
This systematic literature review investigates the use of mobile crowdsensing in disaster management
on the basis of the built-in sensor types in smart mobile devices, disaster management categories,
and the disaster management cycle phases (i.e., mitigation, preparedness, response, and recovery
activities). Additionally, this work seeks to unveil the frameworks or models that can potentially
guide disaster management authorities towards integrating crowd-sensed data with their existing
decision-support systems. The vast majority of the existing studies are conceptual as they highlight a
challenge in experimental testing of the disaster management solutions in real-life settings, and there
is little emphasis on the use cases of crowdsensing through smartphone sensors in disaster incidents.
In light of a thorough review, we provide and discuss future directions and open issues for mobile
crowdsensing-aided disaster management.

Keywords: mobile crowdsensing; mobile crowdsourcing; smartphone sensors; disaster management;
emergency management; systematic literature review

1. Introduction

Disasters are unforeseen events that happen naturally or that are human-made, causing
significant damage, destruction, and human suffering. Disasters cause tremendous losses,
both economic and human, all over the world and disaster response systems have grown
in significance particularly after September 11th (2001), the London bombings (2005), and
Japan’s tsunami (2011) [1]. To name one out of many examples, Canada has a history of
disasters with recently increased occurrence of wildfires and floods triggered by climate
change [2]. United Nations countries have adopted the UN Sendai Framework for Disaster
Risk Reduction (2015–2030) to enable member countries to set nation-wide visions on
disaster management, which is an integrated set of activities to establish the capabilities to
prepare for, respond to, recover from, or mitigate against a disaster [3,4].

It is often challenging to effectively monitor and respond to disasters. It is of paramount
importance to rescue authorities to receive and process real-time data quickly in respond-
ing to a disaster to prevent potential human and economic losses [5]. Crowdsensing has
recently emerged as a new problem-solving method for disasters, opening up a new space
to generate disaster responses by improving situational awareness through collecting real-
time sensor data and feeding into the disaster management cycle [6]. Figure 1 illustrates
potential integration and use of crowdsensing in disaster management. Crowdsensing
is a mass data sensing activity leveraging volunteer crowds to collect insights on the
environment or on a specific phenomenon of interest through various types of sensors
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such as smartphone sensors or IoT devices that are equipped with suitable sensing in-
frastructure [7]. The advancement in sensor technologies and ever-increasing number of
sensors built-in smartphones such as GPS, camera, microphone, accelerometer, gyroscope,
barometer, pedometer, light, or proximity facilitates a low-cost sensing system [8].

Figure 1. Mobile Crowdsensing-Aided Disaster Management.

The tipping point of using crowdsourcing in disaster management was the Haiti
Earthquake in 2010 where 640 volunteers contributed to building road maps of Haiti
to distribute disaster aid in two weeks [9]. Crowdsourcing and Crowdsensing are two
different concepts that are sometimes used interchangeably. Crowdsourcing, a model to
leverage crowd intelligence through online human input to serve specific organizational
goals [10], mostly relies on gathering unstructured crowd intelligence through social media
and online social networks. However, crowdsensing refers to a more structured type of data
generation by crowds through physical sensors [11]. Mobile crowdsensing that facilitates
data generation by crowds through smartphone sensors is the focal.

Crowdsensing, with its capabilities to provide real-time, diverse, and low-cost data,
stands out as a recent and promising technology that can offer solutions in disaster man-
agement [12]. Few use cases of crowdsensing in disaster management could be stated
as detection of hazards, locating community resources or identification of victim evacu-
ation paths. The disaster management solutions that will be reviewed in this work will
be mobile-based only so web-based solutions that are highly cited in the literature such
as Ushahidi [13] or Sahana [14] will be left to web-based service reviews. Additionally,
crowdsourcing is not included if it is solely scoped to social media since there are open
issues related to fake news and the reliability of such collected data [15,16]. This review
aims to identify applications, systems, frameworks, or models that utilize smartphone
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sensors for data collection and communication, and that propose a contribution to the
disaster management process leveraging crowdsensing.

There is a growing number of studies on social media or social network-based crowd-
sourcing in the disaster context [17–19], however, smartphone sensor-based mobile crowd-
sensing in disaster management is an understudied research area. This study contributes to
the literature in explaining the current academic research and highlighting the gaps that can
be investigated in future research. This paper targets both disaster management authorities
(i.e., governmental administrative units, emergency response agencies) who seek guidance
on the use of mobile crowdsensed data in disaster management as well as researchers who
aim to contribute to mobile crowdsensing-aided disaster management solutions.

The rest of this article is structured as illustrated in Figure 2. Section 2 outlines
the background focusing on the previous literature reviews conducted on the use of
crowdsourcing or crowdsensing in disaster management. Section 3 outlines the detailed
review methodology that is followed while conducting this systematic literature review.
Section 4 presents the findings of this systematic review highlighting the answers to the
research questions. Section 5 reveals the open issues and challenges, Section 6 presents the
limitations and validity threats of this work and, finally, Section 7 concludes the paper with
the summary findings and lessons learned.

Figure 2. Structure of the review.

2. Background

Starting from 2010, there is an increase in the number of studies on crowdsourcing in
disaster management. This trend is in parallel with several disasters since 2010 such as the
Haiti earthquake in 2010, US Superstorm Sandy, 2012, Colorado Wildfire, 2013, or Hawaii
Hurricanes, 2014, which have contributed to channelling the research interest in finding
solutions to reduce human and economic loss from such disasters. Although the literature
is quite rich in crowdsourcing/crowdsensing technologies, the disaster literature utilizing
crowdsourcing/crowdsensing technologies is still evolving. Few literature review studies
have been noted on the use of crowdsourcing/crowdsensing in disaster management, and
these reviews have been analyzed from several aspects to produce a gap analysis (Table 1)
which sets the scope for this paper. A systematic literature review from 2019 [9] discusses
the impact of volunteer crowdsourcing on disaster risk reduction and provides an applica-
bility analysis of volunteer crowdsourcing studies into the disaster management cycle from
the lens of geo-technology, mobile communication and digital volunteerism. This system-
atic review discusses the mobile communication aspect of crowdsourcing but focuses only
on geo-sensors. A survey study from 2016 [20] discusses crowdsourced/volunteered geo-
graphic information but ignores the rest of the crowdsourcing tools/methods. A literature
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review from 2014 [21] provides a taxonomy of online tools and platforms implemented
in recent years for emergency management, but focuses solely on social media and social
networks. A comprehensive literature review from 2011 [22] presents a state-of-the-art re-
view of citizen sensing in environmental and public health surveillance and crisis/disaster
informatics. However, this study does not provide an analysis of crowdsensing based on
smartphone sensors. Overall, existing reviews do not place emphasis on the use cases of
different sensor types, build a mapping between disaster problems and sensors, or analyze
the ways to integrate crowdsensing into decision support systems.

This review differentiates itself from the previous literature reviews that are summa-
rized above in the following aspects: (1) It gives an understanding of how smartphone
sensors can be used in different disaster scenarios tackling various disaster management
categories or problems. (2) It focuses on relatively reliable crowd-sensed data through
smartphone sensors unlike crowdsourcing through social media such as Twitinfo or Twit-
cident [23] or unlike web solutions that are mostly proposed in the literature such as
Ushahidi [13]. (3) It builds a link between mobile crowdsensing and the disaster manage-
ment cycle highlighting the phases addressed with the proposed solutions. (4) Finally, this
work seeks to identify any framework or approach that is proposed by the reviewed studies
to potentially guide disaster management authorities on how to integrate crowdsensed
data with their decision-support systems.

Table 1. Gap Analysis of Previous Literature Reviews.

Publication Year

Crowdsensing
with

Smartphone
Sensors

Disaster
Management

Cycle

Disaster
Management

Categories

Review of
Social Media

Aid

Review of
Decision
Support
Systems

Kamel Boulos et al. [22] 2011 X X X X X

Chatzimilioudis et al. [24] 2012 X X X X X

Poblet et al. [21] 2014 X X X X X

Albuquerque et al. [20] 2016 Geo-sensors
only X X X X

Kankanamge et al. [9] 2019 Geo-sensors
only X X X X

This Article 2022 X X X X X

3. Review Methodology

A systematic literature review provides a critical assessment of all research studies that
address a particular research question on a research topic and unlike a standard literature
review, all procedures are defined in advance to ensure transparency and replicability.
This systematic literature review has been conducted in accordance with the guidelines
outlined by Kitchenham et al. [25]. The research questions, the search strategy, the inclu-
sion/exclusion criteria and the quality assessment for the selected studies are described in
detail in this section. The composition of the selected studies is summarized at the end of
the section.

3.1. Research Questions

1. How does mobile crowdsensing support disaster management through smartphone
sensors?

(a) Which smartphone sensors are used to address what types of disaster manage-
ment problems?

(b) Where do mobile crowdsensing efforts concentrate on the disaster management
cycle (mitigation, preparedness, response, and recovery)?
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2. What kind of guidance is proposed to the disaster management authorities by the
mobile crowdsensing-aided disaster management solutions to use crowdsensed data
in their decision-support systems?

3.2. Search Strategy

This review was primarily performed through electronic databases using keywords
search. Reputable databases that provide wide coverage of engineering and science-related
topics were used: IEEE Xplore, the Web of Science, Scopus, and ACM Digital Library. It is
noted that Web of Science provided a larger number of studies, however, studies retrieved
in ACM Digital library has higher precision.

Alternative search techniques such as subject pearl growing and snowballing are also
employed to enhance the completeness and accuracy of the search. Subject pearl growing
was used to improve the search query with keywords to cover the overlapping terminolo-
gies in the research topic, i.e., disaster/crisis/emergency or crowdsourcing/crowdsensing.
Backward-snowballing technique is also effectively used to identify and screen the relevant
studies one level deep. The studies included via backward snowballing are [14,26,27].

The search query is formulated as follows:
(crowdsens* OR crowd-sens* OR “mobile crowdsourc*” OR “mobile crowd-sourc*”)

AND (disaster OR “natural hazard*” OR earthquake OR wildfire OR flood OR landslide
OR hurricane OR storm OR emergency OR crisis)

The search query is run through abstract, keywords, and title search on Scopus and
ACM DL, through the topic search on Web of Science, and metadata search on IEEE
Xplore. The queries were run on the 11 November 2022. The search query consists
of two main concepts—one for crowdsensing, one for disaster. Since the literature on
mobile crowdsensing is still evolving, some terms are used interchangeably. ‘Mobile
crowdsourcing’, ‘mobile crowdsensing’, or ‘crowdsensing’ all refer to the same concept of
sensing through smartphones, which is the main research area of this review. Hence, mobile
crowdsourcing is added to the query. ’Crowdsensing’ instead of ’Mobile crowdsensing’ is
used in the query to keep the coverage of the search results broader. The terms disaster,
crisis, and emergency are used interchangeably and with a significant overlap in the
mainstream literature and in combinations such as crisis and emergency management or
disaster crisis management [28]. Since there is a high demand for data and communication
in most crisis, emergency, and disaster situations, all three terms were included in the
search query to obtain more comprehensive results. Additionally, some common disaster
types such as “earthquake”, “wildfire”, “hurricane”, “flood” were included in the search
query in order to not miss any paper specifying the disaster type instead of using generic
“disaster” or “emergency” terms. For the second research question, no separate search
query was generated to identify the studies proposing guidance for disaster management
authorities. Only the studies selected through the main search query were assessed to
answer this question.

The Covidence Tool (https://www.covidence.org/) is employed during the screening
and full-text review phase. The tool mainly contributed to removing duplicate studies
and selection of studies in line with inclusion and exclusion criteria. The search initially
produced 269 studies (after duplicates were removed), which were subsequently reduced
to 56 studies eligible for full-text review. After applying quality and exclusion criteria
which will be discussed in the following subsection, the final number of studies selected for
this review was reduced to 25. The paper selection process is summarized in the PRISMA
(http://www.prisma-statement.org/) diagram as shown in Figure 3.

https://www.covidence.org/
http://www.prisma-statement.org/
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Figure 3. PRISMA diagram illustrating the paper selection process.

3.3. Inclusion/Exclusion Criteria

To limit the scope of the review and stay focused on the targeted research ques-
tions, several exclusion criteria were introduced in the search process to eliminate papers
focusing on:

• Recruitment of agents/incentives only;
• Non-mobile crowdsensing tools;
• Traffic accidents only;
• Trustworthiness only;
• Cloud/edge/fog-focused works only;
• Sensing network infrastructure only;
• Social media crowdsourcing only;
• No or limited mention of sensors.

3.4. Quality Assessment

The quality criteria listed in the bullet points below were used to ensure that good-
quality papers are included in the review.

• Is the research question or objective clearly stated?
• Is there a documented research methodology?
• Are the research findings supported?
• Is the contribution of the work clearly explained?

The criteria are scored as Yes (exists), No (does not exist), or Partly (partly exists). If a
paper is scored with three or more ‘No’s or four ‘Partly’s, then the paper is excluded from
the review due to inadequate quality. Two studies were excluded from the review due to
inadequate quality.



Sensors 2023, 23, 1699 7 of 24

3.5. Composition of Studies

The selected studies for this review were published between 2010 and 2022 with 80%
published after 2015 (Figure 4). The reviewed studies consist of 11 conference proceedings,
10 journal articles, and 4 book chapters. From the sample, 14 studies propose conceptual
solutions to disaster management, while 9 studies present empirical research results and
two studies use both conceptual and empirical research designs. The evaluation methods
used to assess the conceptual studies are explained in the Section 4.

Figure 4. Publication Year of the Reviewed Studies.

4. Results

This work investigated three topics in the reviewed studies, each aiming to answer a
research question (RQ) or a subquestion as stated below next to each subsection:

• 4.1 Use of smartphone sensors in addressing disaster management categories—RQ1.a;
• 4.2 Disaster management cycle phases targeted—RQ1.b;
• 4.3 Guidance for disaster management authorities—RQ2.

The following subsections are organized to elaborate on these topics and answer the
research questions, respectively. However, it is worth highlighting some general findings
of this review work before discussing the research questions.

There were no exclusion criteria set on the type of studies or the type of mobile
crowdsensing-aided disaster management solutions to be included in this systematic
review. The solutions proposed could be a mobile application, a system architecture or
a framework. Any type of solution that employs mobile crowdsensing or makes use of
smartphone sensors in the context of a disaster seeking crowd involvement is included in
the scope of this work.

The majority of the studies (12 papers) propose a System Architecture: Frommberger
and Schmid [29] present a system architecture for an integrated disaster alerting and
reporting system composed of an Android app, web interface, and disaster manage-
ment server named Mobile4D. Visuri et al. [30] present a two-tier system for building
collapse detection in earthquakes that uses residents’ smartphones as distributed sen-
sors. Anagnostopoulos et al. [31] propose a Four-Layer system integrating crowdsourcing,
crowdsensing, and an LSTM (long short-term memory) inference model for municipality
resource allocation. Bhattacharjee et al. [32] present a post-disaster map builder system
including trace management and map inference modules utilizing GPS sensors in smart-
phones. Asiminidis et al. [33] perform an empirical study presenting a Bluetooth-based
cheap and autonomous system for indoor localization determination that is tested for
a fire emergency scenario in a motorway tunnel. Piscitello et al. [34] propose a system
architecture for the detection and management of emergencies in smart buildings which is
called Danger-System, composed of a DangerCore server structure and mobile application
with two interfaces for building managers and tenants. Sadhu et al. [35] discuss the archi-
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tecture for a real-time 3D mapping system of the disaster scene where data collection is
made cooperative through crowdsensed data from bystander agents. Sarbajna et al. [36]
introduce a decentralized mapping service relying on a blockchain backend to generate a
complete, current, and accurate graph of accessible paths in a disaster-affected region to
ensure any responder can contribute to the navigational map and everyone works on the
last version of the map. Vahdat-Nejad et al. [37] present an information gathering system
for earthquake disasters which is composed of sensing, fog, cloud, and application layers
and equipped with data collection, processing, and storage capabilities. Villela et al. [13]
propose a conceptual design of the RESCUER system, a smart and inter-operable decision
support system that uses crowdsourced information in emergency and crisis management.
Salfinger et al. [38] present a situation-adaptive system design capable of exploiting both
conventionally sensed data and unstructured social media content. Gao et al. [26] discuss a
conceptual system architecture of groupsourcing to facilitate efficient collaborations among
various organizations responding to a disaster incident.

Four studies propose methods: Kitazato et al. [39] propose a method to detect real-
time pedestrian flows which is believed to be crucial for disaster evacuation guidance.
Li et al. [40] suggest a method to simulate the post-earthquake evacuation and mobile
crowdsensing-based monitoring of citizens under instructions from a central authority.
Zabota and Kobal [41] discuss a new methodology for collecting data on past rockfall
events through mobile application to enhance the quality of rockfall risk assessment.
Burkard et al. [42] present image-based methods for measuring the water level at small
drainage areas with a mobile phone and inbuilt sensors.

Three of the reviewed studies propose a Framework solution: Ae Chun et al. [43]
introduce a Public Engagement in Emergency Response (PEER) framework which provides
an online and mobile crowdsourcing platform for incident reporting and citizens’ resource
volunteering together with an intelligent recommender system to assign citizen resources
with emergency tasks. A. Fahim et al. [44] discuss a data-efficient framework where only
1% of the crowd-sensed data are consumed for highly accurate detection of global events
through parallelization of visual content. Kielienyu et al. [45] proposes a framework for
community health monitoring to generate MCS-driven community risk mapping through
collecting GPS signals from citizens’ smartphones.

Two studies propose mobile applications: Nguyen et al. [27] introduce a novel mobile
application design for integrating crowdsourced data collection and validation activities in
disaster risk reduction processes. Fajardo and Oppus [14] introduce an Android-based dis-
aster management system, MyDisasterDroid (MDD), which determines the optimum route
between volunteers and victims to serve the greatest number of people in the maximum
coverage of the area.

Di Felice and Iessi [46] propose a software service to reduce the processing times of
Tweets during emergencies, Ludwig et al. [23] introduce a web application using mobile
crowdsensing that combines physical and digital activities to respond to rescue authorities’
information requests, Choi et al. [47] presents a cloud-based data process that employs
a mobile crowdsensing application to detect images as per damage type, Tripathi and
Singh [48] present a data fusion model of human virtual sensors and actual traditional
sensors for disaster response.

Figure 5 summarizes the types of solutions proposed by the reviewed studies. The
classification of the solutions are done in accordance with the authors’ definition of their
work. The category others consolidates solutions such as process and model since there is
one paper classified in each category.



Sensors 2023, 23, 1699 9 of 24

Figure 5. Types of MCS-aided disaster management solutions. Arch: System Architecture; M.Ap:
Mobile Application; SaaS: Software as a Service; Web: Web Application.

The types of the disasters (i.e., flood, earthquake, fire, hurricane) were also analyzed
during the review, however, most of the studies propose generic conceptual solutions not
targeted to a certain disaster type, hence, no meaningful result could be derived neither
on disaster type, nor its relation to the other investigated concepts. Still, the disaster types
targeted by the empirical solutions are given in Figure 6.

Figure 6. Disaster Types Targeted in the Reviewed Studies.

An important characteristic of mobile crowdsensing is whether the crowd sensing
is participatory or opportunistic. In simple terms, participatory crowdsensing refers to
the user’s active participation in sensed data generation, whereas in opportunistic crowd-
sensing, sensed data readings from the environment or computations through devices
are performed automatically in the background [24]. The solutions are also assessed in
terms of participatory or opportunistic sensing. The majority of the studies selected for
this systematic literature review (16 out of 25) assume a participatory mobile crowdsensing
structure where users’ active contribution was necessary. Seven studies took an opportunis-
tic sensing approach in their proposed solutions, while two studies used both approaches.
Although there is no evident reason stated to explain this situation, one can assume that
the challenges in obtaining user consent for opportunistic sensing could have contributed
to the smaller number of studies using opportunistic sensing.

A comprehensive list of the reviewed studies with sensors used, disaster categories
addressed, disaster cycle phases targeted, or the types of solution proposed is given in
Table 2.
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Table 2. List of the Reviewed Studies.

Phases in Disaster Management Cycle

Publication Proposed Solution Disaster Management Categories Addressed Sensors Used Mitigation Preparedness Response Recovery

Bhattacharjee et al. [32]

System architecture

Evacuation/Mapping

GPS X

Asiminidis et al. [33] Bluetooth X

Sarbajna et al. [36] GPS X X

Frommberger and Schmid [29]

Information exchange

GPS, camera, crowd as reporters X X X

Vahdat-Nejad et al. [37] GPS, camera, crowd as reporters X

Villela et al. [13] GPS, camera, crowd as reporters X X

Piscitello et al. [34]

Situational awareness

Microphone, pedometer X X X

Sadhu et al. [35] Camera, microphone, gyroscope
accelerometer, GPS X

Salfinger et al. [38] Crowd as reporters X X

Anagnostopoulos et al. [31] Resource sharing/allocation Crowd as reporters X X

Visuri et al. [30] Hazard/Risk detection Accelerometer X

Gao et al. [26] Organization of rescue teams Crowd as reporters X

Ae Chun et al. [43] Resource sharing/allocation GPS, camera, crowd as reporters X

Fahim et al. [44] Framework Efficient data transfer Crowd as reporters X

Kielienyu et al. [45] Hazard/Risk detection GPS X

Kitazato et al. [39]

Method

Evacuation/Mapping Bluetooth X

Zabota and Kobal [41] Hazard/Risk Detection GPS, camera, crowd as reporters X

Li et al. [40] Hazard/Risk Detection Accelerometer, camera X X

Burkard et al. [42] Hazard/Risk Detection Accelerometer, gyroscope, camera X

Nguyen et al. [27]
Mobile application

Data Fusion Crowd as reporters X X X

Fajardo and Oppus [14] Evacuation/Mapping GPS, crowd as reporters X

Di Felice and Iessi [46] Software service Efficient data transfer GPS, crowd as reporters X X

Ludwig et al. [23] Web application Organization of rescue teams Crowd as reporters X

Choi et al. [47] Process Hazard/Risk detection Camera, GPS X X

Tripathi and Singh [48] Model Data Fusion Crowd as reporters X

Total 2 6 21 8
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4.1. Use of Smartphone Sensors in Addressing Disaster Management Categories

This section aims to answer the research question 1-a. With the advancement in sensor
technologies, there is an ever-increasing number of sensors built into smartphones such
as GPS, camera, microphone, accelerometer, gyroscope, barometer, pedometer, light and
proximity sensors [49]. These sensors collect information on visualization (i.e., camera),
localization (i.e., GPS, bluetooth), directionality (i.e., gyroscope), or mobility of objects
(i.e., pedometer, accelerometer), which provide valuable information at a low cost in
disaster management.

During the review process, it was observed that the crowd as reporters phenomenon,
where users report on a situation using the sensing capabilities of smartphones and the
report gets verified by an official, appears as a frequently used sensing solution. This idea
adopts the concept of smart citizens for smart cities crowdsensing [50]. Smart citizens, or
crowd as reporters as stated in this paper, are believed to be major drivers of smart cities and
they have been increasingly active in sensed data generation through smart city applica-
tions [50]. Ludwig et al. [23] define the crowd as reporters as users with a concise and con-
scious use of existing knowledge to achieve a specific task or goal. Kamel Boulos et al. [22]
also refer to “human sensors” or “human-in-the-loop sensing” concepts to define the in-
creasingly active role of humans in the sensing environment. Although this study initially
intended to focus on smartphone-based sensors, after reviewing several papers that have
been retrieved through the specific search query, it is concluded that human intervention
still appears to be vital in disaster and emergency scenarios. Moreover, crowd as reporters
stands as a representation of the participatory sensing of mobile crowdsensing. Hence,
the crowd as reporters notion is recognized as a type of sensor in this review. The crowd as
reporters sensor is used in 14 of the studies which is a considerably high number. The use
frequency of the sensors in the reviewed studies is demonstrated in Figure 7.

Figure 7. Types of Sensors Used in the Reviewed Studies.

Throughout the course of this review, disaster management problems that the re-
viewed studies have commonly addressed are noted and classified under eight categories
such as evacuation/mapping, hazard/risk detection, organization of rescue teams, data
fusion, information exchange, situational awareness, efficient data transfer, and resource
sharing/allocation. The context and use of sensors in addressing each disaster management
category are discussed for each paper in the remainder of this section. Figure 8 illustrates
the number of reviewed papers addressing each disaster management category. The map-
ping of the sensor types against the disaster management categories that are addressed
by each sensor type is provided in Figure 9. The results are also reported in a table for-
mat where citations are included per each sensor type and disaster management category
addressed Table 3.
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Figure 8. Disaster Management Categories Addressed by the Reviewed Studies.

Figure 9. Sensors used in addressing disaster management categories.

Table 3. Citations for sensors used in addressing disaster management categories.

Data Fusion Efficient Data
Transfer Evacuation/Mapping Hazard/Risk Detection Information

Exchange
Organization of

Rescue Teams
Resource Sharing/

Allocation
Situational
Awareness

GPS X [46] [14,32,36] [41,45,47] [13,29,37] X [43] [35]

Camera X X X [40–42,47] [13,29,37] X [43] [35]

Crowd as reporter [27,48] [44,46] [14] [41] [13,29,37] [23,26] [31,43] [38]

Accelerometer X X X [30,40,42] X X X [35]

Microphone X X X X X X X [34,35]

Bluetooth X X [33,39] X X X X X

Gyroscope X X X [42] X X X [35]

Pedometer X X X X X X X [34]
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Hazard/Risk detection: Detecting the hazard or risk in the disaster-affected area is
the tipping point of rescue and relief operations [51]. Six studies address this problem.
Visuri et al. [30] propose a building collapse detection system that uses end-user smart-
phones as distributed sensors accompanied by a rule-based fall detection algorithm. It is
an empirical study with an evaluation of a fall detection algorithm through lab simulations
and a limited field test. The main sensor used in this solution is the accelerometer and
efforts are made to detect false-positive cases. Accelerometer values from devices falling on
a soft or stiff surface are measured with a higher true positive rate for drops on stiff surface
(98.7% vs. 95.6% for soft surfaces). An interesting finding is that jumping with phones in
hand or in pocket trigger less than 1% false positive earthquake event, while running with
the phone does not trigger any false positive event. A key limitation of this study is the
assumption that multiple mobile phone falls indicate a building collapse. More information
on the environment should be collected through smartphone sensors to ensure that there is
a building collapse. Choi et al. [47] discuss identifying major damage locations and types
of the incident at the damaged site through crowdsensed image data using clustering algo-
rithms. The study presents a cloud-based data collection, processing, and analysis process
that employs a mobile crowdsensing application. This empirical study uses Icheon-si and
Anseong-si rainfall 2020 data to test effective detection of incident type when image data
are collected from a smartphone during an emergency. Camera and GPS sensors are used
but more sensors could help to detect dynamic situations. Motivating users to share infor-
mation is a challenge of this solution, however, receiving analyzed content or participating
in response activities are discussed as motivating factors for users. Kielienyu et al. [45]
generate MCS-driven community risk mapping to predict and prepare for future COVID-19
cases. This empirical study collects GPS signals from citizens’ smartphones and obtain their
mobility patterns to estimate future movements of the detected communities and calculate
a risk factor for communities ahead of time. Projected heatmaps for COVID-19 risks of
the communities are good contributions to support Public Health departments’ resource
allocation. However, privacy concerns and lack of incentive mechanism are shortfalls of
this work. A similar study was conducted by Simsek et al. [52], providing an MCS-enabled
framework for risk mapping of communities based on GPS data of smartphones and
empowering autonomous vehicles to respond to the public safety needs.

Zabota and Kobal [41] discuss a new methodology to enable quick and simple on-
field data collection for past rockfall events through mobile crowdsourcing. A mobile
application (Collector for ArcGIS, which is part of the Esri ArcGIS platform) is designed
for data collection and WEBGIS platform is used for visual Web maps. A GPS sensor is
used to obtain location of past rockfalls and deposits, a camera sensor is used to obtain
additional attributes such as size, dimensions, etc. The data are reported into the app by the
crowd, so crowd as reporter can be noted as another sensor used in this work. Li et al. [40]
discusses structural health monitoring, i.e., regional building damage assessment, through
mobile crowdsensing. An earthquake strike in a city is simulated in ’Unity’ simulation
environment where ‘Ground Eye’ acts as the city brain to coordinate emergency response
and assign tasks to citizens to collect data on damage assessment. Acceleration is measured
by the accelerometer sensor, strain, and inter-story drift are captured by camera sensor.
Smartphones have to be installed on the damaged structure by the citizens to capture
the time history data for all three parameters. Information exchange between citizens is
overlooked in this study. Burkard et al. [42] present image-based measurement methods to
feed into a conceptual flood prediction system that can be used in rivers. The methods are
based on three variants of inclination, reference points, and correspondence points, which
are measured using the camera and orientation sensors (accelerometer and gyroscope) of
a smartphone. The methods were evaluated in a demo application for Android phones,
however, the conditions were assumed to be ideal. Variant targeting correspondence points
provides the most accurate prediction given that the camera image taken captures four
of the previously defined reference points. The implementation of these measurement
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methods in a real-life setting with real users remains a big challenge since the evaluation
has only been performed under ideal conditions.

Evacuation/Mapping: Evacuating the endangered area and guiding the victims to
a safer place is one of the most important problems that need to be addressed during a
disaster. In the aftermath of a disaster where the road networks are damaged and navigation
through existing route networks is not possible, unconventional mapping techniques are
required to mobilize the resources in the affected areas. The evacuation/mapping problem
is one of the two most studied problems in the reviewed studies. Five studies discuss
the evacuation/mapping problem. Three out of five studies use GPS sensor data and
two studies use Bluetooth signals. Bhattacharjee et al. [32] propose a post-disaster map
builder system on Android smartphones which includes trace management and map
inference modules, where traces of users are collected through GPS sensors and fed into
map inference module. Pedesterian maps are built by the map inference model through
the collected trajectory traces. It is a conceptual study for which evaluation is performed
through simulation and Testbed on ONE simulator and the Mapping Toolbox of MATLAB
2017a. The key assumption of the study is that the map builder system has to be pre-
installed on all node devices. This paper pre-processes raw trajectory traces for noise
reduction, performs significant point identification, and uses clustering technique and
Topology inference. This study achieves successful sending of 95% of trajectory traces to
their destinations in two hours of generation, which is a quite promising contribution to
the mapping problem.

Asiminidis et al. [33] propose a low-cost autonomous Bluetooth Low Energy (BLE)
sniffing technique to guide and show the emergency exit upon receiving the RSSI (received
signal strength indication) values from users’ smartphones and thus guiding the users
instantly during an emergency in a tunnel. It is an empirical study presenting a Bluetooth-
based cheap and autonomous system for indoor localization determination that is tested
for a fire emergency scenario in a motorway tunnel. The solution uses the Bluetooth sensor
to show the emergency exit to the users using their smartphones’ RSSI values and hence
poses concerns regarding user privacy. Kitazato et al. [39] discuss a system to detect real-
time pedestrian flows including pedestrian congestion, direction, and velocity through
mobile sensing with Bluetooth signals for evacuation route guidance during disasters. The
study analyzes separately the congestion degree by detecting the surrounding Bluetooth
devices and the direction and velocity of the pedestrians through the RSSI of a Bluetooth
LE beacon carried by the pedestrian. Limited Bluetooth scope and battery limitation of
smartphones can be a downside of this solution. Sarbajna et al. [36] present a decentralized
mapping service relying on a blockchain backend, placed in a smartphone and available
to everyone to generate a complete, current, and accurate graph of accessible paths in a
disaster-affected region to ensure any responder can contribute to the navigational map
and everyone works on the last version of the map. GPS sensor is used in this solution. The
blockchain component of the solution helps with the accessibility of the system without a
central authority need. It is a conceptual study with no evaluation, hence deployment in a
real-world setting is needed to ensure the validity of this work. Fajardo and Oppus [14]
introduce an Android-based disaster management system (MyDisasterDroid) to facilitate
the logistics for the rescue and relief operations determining the optimum route between
volunteers and victims to serve the greatest number of people in the maximum coverage of
the area. The solution uses a genetic algorithm to determine the optimum route and receives
data from GPS sensors. It is based on Google’s Android system and assumes Google Maps
navigation is not distorted, but it is very likely so in a flood or earthquake disaster.

Information exchange: It is possible to obtain comprehensive situational information
in the shortest time through mobile crowdsensing—three studies contribute to information
gathering systems. Frommberger and Schmid [29] propose an integrated disaster alerting
and reporting system architecture called Mobile4D for an integrated disaster alerting and
reporting system composed of an Android app, web interface, and disaster management
server. It is a conceptual study but the evaluation is performed through usability testing.
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This study tackles two important challenges: lack of institutionalization and lack of two-
way communication. A top-down, bottom-up communication channel between authorities
and disaster victims with an escalation procedure is designed. The system mainly uses the
crowd as reporters sensor where users report on the situation through the system where the
report gets verified by an official; it also exploits other sensory information such as GPS
for location detection and a camera for sharing visual information. The solution is func-
tional under weak network conditions and is a text-free interface to avoid misinformation,
however, improvements on information visualization were noted during the evaluation
phase. It was tested with a small group of people and is only limited to Android Appli-
cations. Vahdat-Nejad et al. [37] present an information gathering system architecture for
earthquake disasters which is composed of sensing, fog, cloud, and application layers and
equipped with data collection, processing, and storage capabilities. The system is designed
as per the requirements analysis performed through interviews with Iran’s Red Crescent
Society who have lived through the 2017 Kermanshah earthquake with 7.3 magnitude. GPS
and camera sensors are used in the system design, however, the crowd as reporters sensor is
also embedded through user interface to compensate the shortfall of other sensors. Each
information element is tagged with GPS coordinates to produce geotagged information
maps, a camera is used to gather diverse environmental information that can either be
processed by machines or reviewed by humans. Processing times for the shares images and
texts are left as an area for future research. Villela et al. [13] propose a conceptual design
of the RESCUER system, a smart and inter-operable decision-support system that uses
crowdsourced information in emergency and crisis management under the supervision
of the command control body. A mobile app with a user interaction mechanism, data
analysis capabilities, and views on relevant aggregated data is a part of the system. Two
types of information exchange are proposed—participatory through crowd reporting and
opportunistic through smartphone sensor data sharing consented to by the citizens. GPS,
camera, and crowd as reporters sensors are used and detailed data processing steps for each
type of sensed data (text, image, video) are explained by the authors.

Situational awareness: Situation awareness is about providing the real-time situation
of the disaster area to the stakeholders, i.e., citizens, volunteers, and disaster manage-
ment authorities [53]. Three studies address this problem. Piscitello et al. [34] propose
a system architecture to address an urban building crisis with a proposed system called
Danger-System that creates a two-way communication between residents and building
administrators leveraging both building infrastructure and mobile devices to create instant
situational awareness. It is a conceptual study with scenario-based evaluation and the
researchers created their simulator (DangerSystem simulator) in Python 2.7. It facilitates
information gathering from residents through the microphone and pedometer sensors of
their smartphones to detect any dangers in a building proactively, however, privacy and
limited validation of data are key concerns of this solution. Sadhu et al. [35] propose a
smartphone-enabled system named Argus that generates a real-time 3D map of the disaster
area including crowdsensed inputs from bystanders. Users are allowed to share data from
camera, microphone, GPS, accelerometer, and gyroscope sensors of their smartphones
to help with 3D reconstruction. It is a conceptual study simulating a fire scenario and
evaluated through prototyping. This paper exploits the MARL framework (Multi-Agent re-
inforcement learning) for data collection that is implemented with a distributed Q-learning
approach to direct the agents to capture data on the areas of interest. However, this frame-
work is not evaluated in this paper. Salfinger et al. [38] discuss a situation-adaptive SAW
(situation awareness) system capable of exploiting conventionally sensed data and unstruc-
tured social media data and continuously optimizing itself through situational feedback
loops. It exploits the CrowdSA framework and uses Hawaii Hurricanes 2014 dataset and
General Disasters (Twitter) 2014 dataset. The crowd as reporters sensor is mainly used in
this solution. The proposed crowd-sensing enhanced SAW system architecture keeps track
of the monitored real-world situation’s evolution and reuses the detected (and projected)
situational context to optimize its crowd-sensing configuration and processing. Situational
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feedback loops are introduced in between processing levels to improve situational aware-
ness. The system is tested on limited datasets so large-scale studies on various types of
crises would be necessary. It is noted that to gain situational awareness of the disaster area,
social media data and human input are still heavily consulted.

Efficient data transfer: During a disaster or a crisis, an extensive amount of informa-
tion is shared either on social media or on conventional emergency platforms. However, it
is highly critical to transfer data effectively and efficiently during a disaster, considering the
limited bandwidth and intermittent connectivity [54]. Honarparvar et al. [55] address the
energy consumption problem in wireless sensor networks where sensor nodes are located
far from the base stations. The authors propose an integrated location based social network
that can reduce energy consumption up to 42% through reduced routes to BSs. In our re-
view, there are two studies that discuss efficient data transfer issue. Fahim et al. [44] present
a novel data-efficient framework to transfer very limited data to the central server and yet
still detect global events or disasters with high accuracy. Only 1% of the crowd-sensed data
are consumed for highly accurate detection of global events. Through parallelization of
visual content, the average delay of content retrieval is reduced by 67%. This solution can
help use the limited bandwidth and connectivity more efficiently and effectively during
a disaster. Felice and Iessi [46] introduce a software service to reduce processing times of
Tweets during emergencies to speed up the analysis of post-earthquake on-site messages.
Efficient data transfer in limited bandwidth and limited battery life is a key problem in mo-
bile crowdsensing during disasters and it is a topic to be further explored to help increase
the utilization of smartphones in emergencies. This empirical case study uses GPS and the
crowd as reporters sensors through the TwittEarth mobile app. Territorial data of Abruzzo
region (center of Italy), an area repeatedly affected by destructive earthquakes, as provided
by the Italian Institute of Statistics, and OpenStreetMap Data are used for this study. The
study presents promising results in terms of fast data processing to identify exact damaged
locations, however, the test sample was not very inclusive since a low number of Twitter
users turn on location sensors to preserve privacy.

Resource sharing/allocation: Sharing and allocating scarce resources during a disaster
is a major problem and is one of the key reasons for communicating in disasters [56]. Two
studies discuss this problem. Ae Chun et al. [43] introduce the PEER Framework with a
vision of a centralized database to facilitate resource sharing capabilities and an intelligent
recommender system to match citizen resources with emergency tasks. No specific sensor
type was mentioned except for the crowd as reporters. The conceptual framework aims to
support a comprehensive and unified disaster management system integrating social media
channels and smartphones. It is evaluated through a Flood Warning Community System
prototype, however, the prototype is not tested. Anagnostopoulos et al. [31] try to solve the
resource allocation problem of municipalities and propose a resource allocation system that
can potentially be used for efficient disaster planning. The study uses a Greece Papagos–
Cholargos municipality dataset (a smart city located in Athens, Greece) and utilizes Citify
Crowdsourcing System Architecture as a data processing platform. The proposed system is
composed of four layers. The first layer is the environmental crowdsourcing—the physical
layer of the municipality where citizens are located and perform crowdsourcing activities.
The second layer is the smartphone crowdsensing where citizens act as human sensors and
annotate the environmental situation with the use of sensors. The third layer is the inference
engine model which makes resource allocation (assigns problems to specific departments)
possible and with the help of the LSTM classifier, the system can propose solutions for
future cases. In the last layer, municipality headquarters’ staff work on the solution to the
disaster recovery problem. The proposed system heavily relies on crowd reporters as a
sensor. Spatial positional data, camera or audio data obtained through smartphone sensors
are not further used by the system but instead they are used for annotation. Although this
study describes a comprehensive system architecture, the evaluation is largely performed
on the inference model and prediction accuracy. It could be an interesting topic to analyze
autonomous resource allocation among distributed parties.
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Organization of Rescue teams: Coordinating private rescue and relief activities dur-
ing disasters became very common with the rise of social media [57]. Two studies try
to propose a more structured method for organizing rescue teams. Ludwig et al. [23]
introduce a web application called CrowdMonitor using mobile crowdsensing principles
to align official emergency services with physical and online volunteer activities. The main
objective of the study is to examine the potential of social media-generated information
for situation assessment and at the same time, the potential for involving volunteers into
the current work of emergency services avoiding duplications or conflicts in responding
to authorities’ information requests. The crowd as reporter is the main sensor used in
this study to report the requested information either on Open Street Map or in the mobile
application. Gao et al. [26] discuss an approach to facilitate efficient collaborations among
various organizations responding to a disaster incident. This solution highlights a gap
in other crowdsensing applications which is the lack of a central authority and a unified
mechanism. Hence, the study suggests a central authority that will ensure data integrity
and quality, and a subscription mechanism for other response groups which is named
as “groupsourcing”.

Organizing rescue teams need a more structured approach than casual efforts on social
media in order to prevent duplicate efforts, speed up responses and ensure reliability of
shared data. The reviewed studies have taken a conceptual and qualitative point of view,
without utilization of sensor data other than the crowd as reporters.

Data Fusion: Data fusion refers to the integration of heterogeneously sensed data from
actual traditional sensors with the crowdsourced data to provide a more comprehensive
understanding and an improved information structure [58]. Two studies reviewed in this
work discuss elements of data fusion in responding to disasters. Tripathi and Singh [48]
introduce C-Sense as a new paradigm of heterogeneous crowd sourcing and investigate the
impact of training on volunteer participants’ contribution to disaster operations. The study
presents a data fusion model of human virtual sensors and actual traditional sensors for
disaster response. The crowd as reporter sensor is heavily used in this solution. Random
and trained participants are evaluated for their contribution in the participatory sensing.
This model envisions real-time data collection from various communication sources but the
complexity of sensors appears as a challenge. Nguyen et al. [27] introduce a novel mobile
application design for integrating crowdsourced data collection and validation activities in
disaster risk reduction processes. Heterogeneous data from ‘crowd as reports’ sensors as
disaster reports or communication through notifications and related social media posts are
integrated in the design. The key contribution is adding a validation mechanism for others’
reports by up-voting or down-voting to mitigate unreliable data from social media. The
reviewed studies emphasize the significance of data quality and reliability in data fusion
which is also one of the key problems of crowdsourcing. The value of data is a quite critical
concept in prioritizing the data and hence enhancing the quality of fused data.

4.2. Disaster Management Phases Targeted

This section aims to answer research question 1-b. Disaster management is an inte-
grative process consisting of mitigation and preparedness (before a disaster), response
(during a disaster), and recovery (after a disaster) phases [59]. The mitigation phase refers
to activities to prevent or reduce the potential damage through developing regulations, con-
ducting a risk analysis, buying insurance, or organizing informative training on mitigation
strategies. The preparedness phase refers to activities that are organized when a disaster
is likely expected [60]. Activities that contribute to saving lives, preparing for response
and rescue operations, stocking for required supplies (i.e., food, water) or planning for
evacuations can be listed as preparedness activities. The response phase stands for taking
action like evacuating, rescuing, providing shelter and humanitarian assistance [61]. Finally,
recovery phase refers to repair and reconstruction efforts to go back to normal [62].

The reviewed studies are analyzed for their contribution to the disaster management
cycle. There may be studies addressing more than one phase such as response and recovery
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or preparedness and response. One study may have been counted more than once, hence,
the total of studies stated in this section are more than the count of the reviewed papers. The
vast majority of the reviewed work is targeting response activities (21 studies). Recovery
is the second most studied phase in the disaster management cycle (8 studies), followed
by preparedness phase (6 studies). Only two studies have concentrated on mitigation
efforts. Due to the nature of mobile crowdsensing, it is normal to utilize this technology
when the need for real-time data is high, hence, response and recovery efforts are mostly
addressed by the reviewed studies. Moreover, additional effort is required for data sense-
making or for applying predictive models, i.e., machine learning algorithms on the sensed
data to predict and mitigate the risks. Hence, there is not much research that features an
interdisciplinary effort to mitigate the risk of economic or human loss in a disaster.

Figure 10 shows the split of the studies as per the disaster management phases they
target. More detailed presentation of the mapping of each study to the related phase is
shown in Table 2.

Figure 10. Split of studies per targeted disaster cycle phase.

4.3. Guidance for Disaster Management Authorities

This section aims to answer the second research question (RQ2), which seeks to identify
any guidance in the form of a framework, approach, or business model that is proposed in
the reviewed studies to guide the disaster management authorities or organizations through
the use of crowd sensed data in their decision-support systems. Out of 25 reviewed studies,
only 4 studies are deemed to propose a process-based guidance for disaster management
authorities to handle crowdsensed data in their operations.

There are existing studies proposing business models or frameworks on decision sup-
port for mobile crowdsensing for participant recruitment [63], incentive mechanisms [64],
task allocation [65,66], optimum sensing coverage [67], or task execution under budget con-
straints [68]. However, what is sought in this study is more of a holistic and process-based
guidance for disaster management authorities helping them either to select the MCS-based
disaster management solution that can address their needs, or to integrate the proposed
solution into their existing decision-support systems.

Four criteria have been defined to determine whether a study also proposes guidance
on how to integrate the solution in decision making while explaining the technicality of
the solution:

• Existence of a data flow process: Are the data generation, data collection, data processing,
or data storage processes explained? Are there references on the server technology,
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communication infrastructure, data collection or generation platform, bandwidth
requirements or data quality measures to let the authorities make realistic choices?

• Definition of an information exchange mechanism: How does the information dissemina-
tion take place? Is there a two-way communication mechanism built in the solution
between volunteers and disaster authorities or are there subordinate units?

• Incorporation of human factors: Is human behaviour modelling or user feedback taken
into consideration in the design or improvement of the solution?

• Evaluation of the proposed solution: Is there any type of evaluation performed for the
solution such as prototyping, simulation, or field testing?

The selected studies are reviewed for those criteria and only the ones that meet all
four criteria are deemed fit to propose guidance to disaster authorities. Four studies are
concluded to encompass the existence of a data process flow, an information exchange
mechanism, the incorporation of human factors to design or fine-tune the solution, as well
as the evaluation of the solution. The assessment results of the identified studies based on
these criteria are summarized in Table 4.

Table 4. Studies proposing process-based guidance.

Reference Contribution of the Paper Data Flow Process Information
Exchange

Human Factors
Integration Evaluation

Frommberger and Schmid [29] System Architecture: Mobile4D Crowdsourced Disaster System Yes Yes Yes Yes

Ae Chun et al. [43] Framework: PEER Citizen-to-Citizen Resource Sharing in Emergency Yes Yes Yes Yes

Bhattacharjee et al. [32] System Architecture: Post-disaster digital pedestrian map builder Yes Yes Yes Yes

Vahdat-Nejad et al. [37] System Architecture: Information Gathering of Earthquake Disasters Yes Yes Yes Yes

The majority of the reviewed studies focus on the data collection, generation, or
processing steps of a specific solution. However, a holistic view of the full process from data
generation to decision making is critical to speed up the adoption of mobile crowdsensing
in disaster management.

It should be noted that no separate search query has been generated to identify studies
proposing guidance for disaster management authorities. Most probably, there are other
studies driven to provide guidance on the integration of crowdsensed data in current
disaster management decision support systems. However, for this review work, only the
studies selected through the main search query have been assessed for the existence of
process-based guidance on the integration of crowdsensed data.

5. Open Issues and Challenges
5.1. Application

The testing of disaster management solutions in real-life settings is a key challenge for
researchers due to cost concerns and the lack of disaster simulation environments. Hence,
the majority of the reviewed studies are conducted at a conceptual level.

With regards to the analysis of the studies for their contribution to the disaster man-
agement cycle, it stands out that the mitigation phase of the disaster management cycle is
the least studied. This can be due to the nature of mobile crowdsensing which provides
real-time data and hence is preferred mostly in the planning of response and recovery ac-
tions. However, still some mitigating actions such as detecting high-risk areas, developing
policies and regulations, studying human factors with a user-centric approach, and training
for the citizens and/or volunteers can be designed with the help of mobile crowdsensing.
This can be an area of interest for future research.

This review reveals that there is not much guidance in the literature for disaster man-
agement authorities to integrate crowdsensed data into their decision-support systems,
except for some conceptual frameworks proposed. Considering the recency of this tech-
nology and the potential contribution it can make to saving human lives and limiting
economic losses in a disaster incident, more research, preferably interdisciplinary research,
is required to make this technology more approachable as well as more applicable to ex-
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isting decision-support systems. Developments are being made in silos, but when they
are combined in an interdisciplinary effort, each dimension may need to concede a less
optimal solution.

Technology innovation is not at the same pace as regulation, posing a challenge to the
application of technology-based solutions. Finally, varying conditions across jurisdictions
to use data is another challenge in data-oriented technologies. A regulatory framework is
also crucial in the adoption of crowdsensing technologies [69], but there is no mention of
the legal aspect or privacy concerns on data usage in the reviewed studies.

5.2. Architecture

A key and common challenge of the solutions is that they are dependent on the con-
nectivity of the network which is likely to be damaged in a disaster incident. Efficient data
transfer with limited bandwidth and limited battery life are also other critical weaknesses
in mobile crowdsensing. Massive IoT implementation under 5G architecture can facili-
tate MCS-based solutions [70], but this requires ultra-reliable low-latency communication
(URLLC) and assessment of data veracity in real time over URLLC links [71]. The overview
of the existing crowdsensing solutions in disaster situations has also presented some ideas
on the open issues in mobile crowdsensing architecture in general. The solutions reviewed
for this work mostly focus on the data collection process and underestimate the data pro-
cessing, storage, and dissemination processes. Additionally, data validation activities are
not discussed in sufficient detail for crowdsensed data. Data validation is concerned with
truth discovery in MCS [72], and most of the reviewed systems adopt a collect-and-report
model, whereby collected data are directly pushed onto the networking infrastructure
without assessing the quality or value of the data. As mobile crowdsensing becomes more
widespread, it is likely that more research effort will be channelled to assessing the quality
as well as value of the collected data.

5.3. Sensors

Although there is a growing number of studies on the use of crowdsourced data in
disaster management, the literature on smartphone sensor-based crowdsensing in disaster
management is still in its infancy. GPS and camera sensors stand out as the most utilized
sensors among all the available sensors in smartphones. However, more information on
the environment should be collected through various smartphone sensors simultaneously
to be prepared for, to respond to, or to recover from a natural disaster or hazard. The
scarcity of physical sensors is a barrier for tapping the full potential of mobile crowdsensing.
Hence, heterogeneous crowdsensing, meaning the harmonious integration of virtual human
sensors with the conventional sensors, is a rising research area that aims to meet the
instantaneous data need for improved decision making in disaster management.

6. Limitations and Threats

The types of threats and limitations that are discussed in this section were inspired by
Perry et al. [73]. Threats: Overlapping concepts in the research topic (crowdsourcing vs.
crowdsensing or emergency/disaster/crisis) may adversely impact the construct validity
of this review. Additionally, there might be some relevant studies that are were not found or
included in the review. To mitigate this risk, the full-text review of the studies is supported
by alternative search techniques and the thesis supervisor of the author as well as the
course instructor were consulted. External validity, in other terms, generalizability, is a key
concern for this review because most of the studies are conceptual. This risk could not be
fully mitigated, however, the evaluation technique used in each reviewed solution is stated
to inform the readers about this risk.

Limitations: Having one researcher dedicated to this review might impose some risk
on the internal validity of this review. Including only peer-reviewed studies in this review
supports the construct validity, however, including only academic perspective might not
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reflect current industry practices. Additionally, to minimize researcher bias, other authors
and peers were consulted for feedback.

Despite these limitations and threats, the research results shed light on the current
research on the use of mobile crowdsensing in disaster management.

7. Summary and Lessons Learned

This paper has presented a systematic review of the use of mobile crowdsensing
technology in disaster management. Twenty-five peer-reviewed studies, mainly selected
through automated database search, were reviewed and discussed. Emerging crowdsensing
technology can provide real-time and reliable information to support the decision making of
disaster management authorities. Despite the growing number of studies on social media-
based crowdsourcing in disaster management, smartphone sensor-based crowdsensing in
disaster incidents appears as an understudied research area. Only a few of the smartphone
sensors are continuously being utilized (i.e., GPS, camera) and human input is still heavily
required in the data collection process (i.e., crowd as reporters). This paper contributes to
the disaster literature by mapping the smartphone sensors to the key disaster management
categories that are produced for this work, according to the potential use cases of sensors
in disaster incidents.

Another contribution of this review paper is to highlight which phases of the disaster
management cycle the mobile crowdsensing efforts are currently targeting and where else
they can focus. It seems that the mitigation phase is the most understudied area, mostly due
to the need to integrate other technologies such as predictive machine learning algorithms
into the solution to propose mitigating actions. The response phase is the most commonly
studied area since the demand for real-time data is the highest. One of the key takeaways
of this systematic literature review is that the testing of conceptual disaster management
solutions in real-life settings is a key challenge for researchers.

Finally, four criteria have been defined to conclude if a study provides a potential
guidance to authorities in implementing crowdsensing technology in their decision support
systems: existence of a data flow process, definition of an information exchange mechanism,
incorporation of human factors, and evaluation of the proposed solution. Four of the
reviewed studies met the expected criteria and are listed in Section 4.3 for future reference
of interested disaster authorities or scholars.
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