Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = crossed molecular beams

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5126 KiB  
Article
Rheological Properties and Influence Mechanisms of Twin-Screw Activated Rubber Powder Composite SBS-Modified Asphalt
by Yicai Zhao, Rui Dong, Jingzhuo Zhao, Yongning Wang, Fucheng Guo, Xiaolong Wei, Bo Li and Yong Huang
Materials 2025, 18(10), 2359; https://doi.org/10.3390/ma18102359 - 19 May 2025
Cited by 1 | Viewed by 420
Abstract
To investigate the rheological properties and influence mechanisms of twin-screw activated rubber composite-modified asphalt, we used SBS-modified asphalt (SBS) as the reference. Raw rubber powder composite-modified asphalt (RA/SBS) and activated rubber composite-modified asphalt (ARA/SBS) were prepared. A dynamic shear rheometer (DSR) and bending [...] Read more.
To investigate the rheological properties and influence mechanisms of twin-screw activated rubber composite-modified asphalt, we used SBS-modified asphalt (SBS) as the reference. Raw rubber powder composite-modified asphalt (RA/SBS) and activated rubber composite-modified asphalt (ARA/SBS) were prepared. A dynamic shear rheometer (DSR) and bending beam rheometer (BBR) were employed to comparatively analyze the rheological characteristics of the three modified asphalts, while Fourier transform infrared spectroscopy (FTIR) and fluorescence microscopy were used to reveal the micro-mechanisms in ARA/SBS. The results showed that ARA/SBS exhibited better storage stability and low-temperature flexibility compared to SBS and RA/SBS, and ARA/SBS demonstrated lower viscosity than RA/SBS. Among the three, ARA/SBS showed significantly improved high-temperature performance. The comparison of creep stiffness S and creep rate m indicated optimal performance in ARA/SBS, confirming that twin-screw activated rubber powder could significantly enhance the low-temperature properties of modified asphalt. Microscopically, chemical reactions occurred between oxygen-containing functional groups in activated rubber and polar groups in asphalt, while a cross-linked network structure formed between activated rubber molecules and asphalt molecular chains, improving compatibility and enhancing the rheological properties of composite modified asphalt. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

9 pages, 799 KiB  
Article
Single and Double Electron Capture by 1–16 keV Sn4+ Ions Colliding on H2
by Emiel de Wit, Lennart Tinge, Klaas Bijlsma and Ronnie Hoekstra
Atoms 2025, 13(2), 12; https://doi.org/10.3390/atoms13020012 - 24 Jan 2025
Viewed by 758
Abstract
Single and double electron capture cross-sections for collisions of 118Sn4+ with molecular hydrogen have been measured in an energy range of 1 keV to 16 keV using a crossed-beam setup. The cross-sections are determined from measurements of charge-state-resolved ion currents obtained [...] Read more.
Single and double electron capture cross-sections for collisions of 118Sn4+ with molecular hydrogen have been measured in an energy range of 1 keV to 16 keV using a crossed-beam setup. The cross-sections are determined from measurements of charge-state-resolved ion currents obtained through a retarding field analyser. Remarkably, the single electron capture cross-sections for Sn4+ are more than a factor 3 smaller than the previously determined single electron capture cross-sections for Sn3+–H2 collisions and the double electron capture cross-sections are only about 20% smaller than the single electron capture cross-sections. These results are understood on the basis of potential energy curve crossings. The first active curve crossings for the Sn4+–H2 system happen at a relatively small internuclear distance of about 5.5 a.u., which should be compared to 8 a.u. for Sn3+ ions. Multi-channel Landau–Zener calculations have been performed for single electron capture and confirm these low cross-sections. The curve crossing for double electron capture by Sn4+ lies very close to the one for single electron capture, which may explain the single and double electron capture cross-sections being of similar magnitude. Full article
(This article belongs to the Special Issue 21st International Conference on the Physics of Highly Charged Ions)
Show Figures

Figure 1

16 pages, 5275 KiB  
Article
Optimization of In-Situ Growth of Superconducting Al/InAs Hybrid Systems on GaAs for the Development of Quantum Electronic Circuits
by Magdhi Kirti, Máté Sütő, Endre Tóvári, Péter Makk, Tamás Prok, Szabolcs Csonka, Pritam Banerjee, Piu Rajak, Regina Ciancio, Jasper R. Plaisier, Pietro Parisse and Giorgio Biasiol
Materials 2025, 18(2), 385; https://doi.org/10.3390/ma18020385 - 16 Jan 2025
Viewed by 1904
Abstract
Hybrid systems consisting of highly transparent channels of low-dimensional semiconductors between superconducting elements allow the formation of quantum electronic circuits. Therefore, they are among the novel material platforms that could pave the way for scalable quantum computation. To this aim, InAs two-dimensional electron [...] Read more.
Hybrid systems consisting of highly transparent channels of low-dimensional semiconductors between superconducting elements allow the formation of quantum electronic circuits. Therefore, they are among the novel material platforms that could pave the way for scalable quantum computation. To this aim, InAs two-dimensional electron gases are among the ideal semiconductor systems due to their vanishing Schottky barrier; however, their exploitation is limited by the unavailability of commercial lattice-matched substrates. We show that in situ growth of superconducting aluminum on two-dimensional electron gases forming in metamorphic near-surface InAs quantum wells can be performed by molecular beam epitaxy on GaAs substrates with state-of-the-art quality. Adaptation of the metamorphic growth protocol has allowed us to reach low-temperature electron mobilities up to 1.3 × 105 cm2/Vs in Si-doped InAs/In0.81Ga0.19As two-dimensional electron gases placed 10 nm from the surface with charge density up to 1 × 1012/cm2. Shubnikov-de Haas oscillations on Hall bar structures show well-developed quantum Hall plateaus, including the Zeeman split features. X-ray diffraction and cross-sectional transmission electron microscopy experiments demonstrate the coexistence of (011) and (111) crystal domains in the Al layers. The resistivity of 10-nm-thick Al films as a function of temperature was comparable to the best Al layers on GaAs, and a superconducting proximity effect was observed in a Josephson junction. Full article
Show Figures

Figure 1

15 pages, 4411 KiB  
Article
Spectroscopic and Quantum Chemical Evidence of Amine–CO2 and Alcohol–CO2 Interactions: Confirming an Intriguing Affinity of CO2 to Monoethanolamine (MEA)
by Sahar Hafizi Yazdabadi, Dmytro Mihrin, Karen Louise Feilberg and René Wugt Larsen
Molecules 2024, 29(23), 5521; https://doi.org/10.3390/molecules29235521 - 22 Nov 2024
Viewed by 1273
Abstract
A recent broadband rotational spectroscopic investigation of the cross-association mechanisms of CO2 with monoethanolamine (MEA) in molecular beams [F. Xie et al., Angew. Chem. Int. Ed., 2023, 62, e202218539] revealed an intriguing affinity of CO2 to the hydroxy [...] Read more.
A recent broadband rotational spectroscopic investigation of the cross-association mechanisms of CO2 with monoethanolamine (MEA) in molecular beams [F. Xie et al., Angew. Chem. Int. Ed., 2023, 62, e202218539] revealed an intriguing affinity of CO2 to the hydroxy group. These findings have triggered the present systematic vibrational spectroscopic exploration of weakly bound amine··CO2 and alcohol··CO2 van der Waals cluster molecules embedded in inert “quantum” matrices of neon at 4.2 K complemented by high-level quantum chemical conformational analyses. The non-covalent interactions formed between the amino and hydroxy groups and the electron-deficient carbon atom of CO2 are demonstrated to lift the degeneracy of the doubly degenerate intramolecular CO2-bending fundamental significantly with characteristic observed spectral splittings for the amine··CO2 (≈35–45 cm−1) and alcohol··CO2 (≈20–25 cm−1) interactions, respectively, despite the almost identically predicted total association energies (≈12–14 kJ·mol−1) for these van der Waals contacts, as revealed by benchmark Domain-based Local Pair Natural Orbital Coupled Cluster DLPNO-CCSD(T) theory. These high-level theoretical predictions reveal significantly higher “geometry preparation energies” for the amine··CO2 systems leading to a more severe distortion of the CO2 linearity upon complexation in agreement with the infrared spectroscopic findings. The systematic combined spectroscopic and quantum chemical evidences for cross-association between CO2 and amines/alcohols in the present work unambiguously confirm an intriguing binding preference of CO2 to the hydroxy group of the important carbon capture agent MEA, with an accurate vibrational zero-point energy corrected association energy (D0) of 13.5 kJ·mol−1 at the benchmark DLPNO-CCSD(T)/aug-cc-pV5Z level of theory. Full article
(This article belongs to the Special Issue Molecular Spectroscopy in Applied Chemistry)
Show Figures

Figure 1

11 pages, 4947 KiB  
Article
Growth of Hg0.7Cd0.3Te on Van Der Waals Mica Substrates via Molecular Beam Epitaxy
by Shuo Ma, Wenwu Pan, Xiao Sun, Zekai Zhang, Renjie Gu, Lorenzo Faraone and Wen Lei
Molecules 2024, 29(16), 3947; https://doi.org/10.3390/molecules29163947 - 21 Aug 2024
Viewed by 4123
Abstract
In this paper, we present a study on the direct growth of Hg0.7Cd0.3Te thin films on layered transparent van der Waals mica (001) substrates through weak interface interaction through molecular beam epitaxy. The preferred orientation for [...] Read more.
In this paper, we present a study on the direct growth of Hg0.7Cd0.3Te thin films on layered transparent van der Waals mica (001) substrates through weak interface interaction through molecular beam epitaxy. The preferred orientation for growing Hg0.7Cd0.3Te on mica (001) substrates is found to be the (111) orientation due to a better lattice match between the Hg0.7Cd0.3Te layer and the underlying mica substrate. The influence of growth parameters (mainly temperature and Hg flux) on the material quality of epitaxial Hg0.7Cd0.3Te thin films is studied, and the optimal growth temperature and Hg flux are found to be approximately 190 °C and 4.5 × 104 Torr as evidenced by higher crystalline quality and better surface morphology. Hg0.7Cd0.3Te thin films (3.5 µm thick) grown under these optimal growth conditions present a full width at half maximum of 345.6 arc sec for the X-ray diffraction rocking curve and a root-mean-square surface roughness of 6 nm. However, a significant number of microtwin defects are observed using cross-sectional transmission electron microscopy, which leads to a relatively high etch pit density (mid-107 cm2) in the Hg0.7Cd0.3Te thin films. These findings not only facilitate the growth of HgCdTe on mica substrates for fabricating curved IR sensors but also contribute to a better understanding of growth of traditional zinc-blende semiconductors on layered substrates. Full article
(This article belongs to the Special Issue Recent Advances in Epitaxial Growth: Materials and Methods)
Show Figures

Figure 1

28 pages, 32029 KiB  
Article
Target Development towards First Production of High-Molar- Activity 44gSc and 47Sc by Mass Separation at CERN-MEDICIS
by Edgars Mamis, Charlotte Duchemin, Valentina Berlin, Cyril Bernerd, Mathieu Bovigny, Eric Chevallay, Bernard Crepieux, Vadim Maratovich Gadelshin, Reinhard Heinke, Ronaldo Mendez Hernandez, Jake David Johnson, Patrīcija Kalniņa, Alexandros Koliatos, Laura Lambert, Ralf Erik Rossel, Sebastian Rothe, Julien Thiboud, Felix Weber, Klaus Wendt, Rudolfs Jānis Zabolockis, Elīna Pajuste and Thierry Storaadd Show full author list remove Hide full author list
Pharmaceuticals 2024, 17(3), 390; https://doi.org/10.3390/ph17030390 - 18 Mar 2024
Cited by 2 | Viewed by 5571
Abstract
The radionuclides 43Sc,  44g/mSc, and 47Sc can be produced cost-effectively in sufficient yield for medical research and applications by irradiating  natTi and  natV target materials with protons. Maximizing [...] Read more.
The radionuclides 43Sc,  44g/mSc, and 47Sc can be produced cost-effectively in sufficient yield for medical research and applications by irradiating  natTi and  natV target materials with protons. Maximizing the production yield of the therapeutic 47Sc in the highest cross section energy range of 24–70 MeV results in the co-production of long-lived, high-γ-ray-energy 46Sc and 48Sc contaminants if one does not use enriched target materials. Mass separation can be used to obtain high molar activity and isotopically pure Sc radionuclides from natural target materials; however, suitable operational conditions to obtain relevant activity released from irradiated  natTi and  natV have not yet been established at CERN-MEDICIS and ISOLDE. The objective of this work was to develop target units for the production, release, and purification of Sc radionuclides by mass separation as well as to investigate target materials for the mass separation that are compatible with high-yield Sc radionuclide production in the 9–70 MeV proton energy range. In this study, the in-target production yield obtained at MEDICIS with 1.4 GeV protons is compared with the production yield that can be reached with commercially available cyclotrons. The thick-target materials were irradiated at MEDICIS and comprised of metallic  natTi,  natV metallic foils, and  natTiC pellets. The produced radionuclides were subsequently released, ionized, and extracted from various target and ion source units and mass separated. Mono-atomic Sc laser and molecule ionization with forced-electron-beam-induced arc-discharge ion sources were investigated. Sc radionuclide production in thick  natTi and  natV targets at MEDICIS is equivalent to low- to medium-energy cyclotron-irradiated targets at medically relevant yields, furthermore benefiting from the mass separation possibility. A two-step laser resonance ionization scheme was used to obtain mono-atomic Sc ion beams. Sc radionuclide release from irradiated target units most effectively could be promoted by volatile scandium fluoride formation. Thus, isotopically pure  44g/mSc, 46Sc, and 47Sc were obtained as mono-atomic and molecular ScF 2+ ion beams and collected for the first time at CERN-MEDICIS. Among all the investigated target materials,  natTiC is the most suitable target material for Sc mass separation as molecular halide beams, due to high possible operating temperatures and sustained release. Full article
Show Figures

Figure 1

11 pages, 351 KiB  
Article
Electron Capture from Molecular Hydrogen by Metastable Sn2+* Ions
by Klaas Bijlsma, Lamberto Oltra, Emiel de Wit, Luc Assink, Ismanuel Rabadán, Luis Méndez and Ronnie Hoekstra
Atoms 2024, 12(2), 9; https://doi.org/10.3390/atoms12020009 - 1 Feb 2024
Cited by 3 | Viewed by 2436
Abstract
Over a wide and partly overlapping energy range, the single-electron capture cross-sections for collisions of metastable Sn2+(5s5p Po3) (Sn2+) ions with H2 molecules were measured (0.1–10 [...] Read more.
Over a wide and partly overlapping energy range, the single-electron capture cross-sections for collisions of metastable Sn2+(5s5p Po3) (Sn2+) ions with H2 molecules were measured (0.1–10 keV) and calculated (0.3–1000 keV). The semi-classical calculations use a close-coupling method on a basis of electronic wavefunctions of the (SnH2)2+ system. The experimental cross-sections were extracted from double collisions in a crossed-beam experiment of Sn3+ with H2. The measured capture cross-sections for Sn2+ show good agreement with the calculations between 2 and 10 keV, but increase toward lower energies, whereas the calculations decrease. Additional Landau–Zener calculations were performed and show that the inclusion of spin-orbit splitting cannot explain the large cross-sections at the lowest energies which we now assume to be likely due to vibrational effects in the molecular hydrogen target. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

18 pages, 2437 KiB  
Article
The Influence of Ionizing Radiation on Paclitaxel-Loaded Nanoparticles Based on PLGA
by Izabela M. Domańska, Ramona Figat, Aldona Zalewska, Krystyna Cieśla, Sebastian Kowalczyk, Karolina Kędra and Marcin Sobczak
Appl. Sci. 2023, 13(19), 11052; https://doi.org/10.3390/app131911052 - 7 Oct 2023
Cited by 6 | Viewed by 1829
Abstract
The effect of ionizing radiation (γ-rays and electron beam) on anticancer drug delivery systems (DDSs) properties was evaluated concerning potential sterilization. For this purpose, paclitaxel (PTX)-loaded nanoparticles were obtained using a biodegradable, self-developed copolymer of l-lactide and glycolide (PLGA), synthesized in the [...] Read more.
The effect of ionizing radiation (γ-rays and electron beam) on anticancer drug delivery systems (DDSs) properties was evaluated concerning potential sterilization. For this purpose, paclitaxel (PTX)-loaded nanoparticles were obtained using a biodegradable, self-developed copolymer of l-lactide and glycolide (PLGA), synthesized in the presence of bismuth 2-ethylhexanoate catalyst. The nanoparticles were obtained with a high encapsulation efficiency of PTX (EE = 94.2%). The average size of the nanoparticles was 253.5 nm. The influence of irradiation (sterilization dose, 25 kGy) on the microstructure and the physicochemical and thermal properties of the polymer matrix was investigated, as well as the effect of irradiation on the morphology and physicochemical properties of the pharmaceutical formulations of the nanoparticles. Additionally, an in vitro drug release study was conducted regarding any alterations in the kinetic profiles of drug release. It was confirmed that the irradiation with both types of ionizing radiation, i.e., γ-rays and electron-beam (EB), slightly decreased the average molecular weight of the polymer matrix. While only negligible changes in the microstructure and thermal properties of PLGA were observed after irradiation with EB, the average length of lactidyl blocks (lLL) in the copolymer chains irradiated with γ-rays decreased from 4.33 to 3.35. Moreover, the contribution of crystalline phase (Xc) in γ-irradiated samples decreased significantly from 35.1% to 22.7%, suggesting a dominant mechanism of chain scission over cross-linking in PLGA samples irradiated with γ-rays. In vitro drug release results demonstrate a sustained and controlled release of PTX from the nanoparticles based on PLGA. The kinetics of drug release was defined as first order with non-Fickian diffusion. Only negligible differences in the kinetic profiles of PTX release from PLGA drug carriers were observed after irradiation. The overall results suggest good resistance of PLGA nanoparticles to irradiation within the conditions used and the great potential of EB in the sterilization process of the polymeric DDSs. Full article
(This article belongs to the Special Issue Nanomaterials in Medical Diagnosis and Therapy)
Show Figures

Figure 1

9 pages, 1656 KiB  
Communication
Double Photoionization of Nitrosyl Chloride by Synchrotron Radiation in the 24–70 eV Photon Energy Range
by Luca Schio, Michele Alagia, Robert Richter, Vitali Zhaunerchyk, Stefano Stranges, Fernando Pirani, Franco Vecchiocattivi, Marco Parriani and Stefano Falcinelli
Molecules 2023, 28(13), 5218; https://doi.org/10.3390/molecules28135218 - 5 Jul 2023
Viewed by 1669
Abstract
The behavior of nitrosyl chloride (ClNO) exposed to ionizing radiation was studied by direct probing valence-shell electrons in temporal coincidence with ions originating from the fragmentation process of the transient ClNO2+. Such a molecular dication was produced by double photoionization with [...] Read more.
The behavior of nitrosyl chloride (ClNO) exposed to ionizing radiation was studied by direct probing valence-shell electrons in temporal coincidence with ions originating from the fragmentation process of the transient ClNO2+. Such a molecular dication was produced by double photoionization with synchrotron radiation in the 24–70 eV photon energy range. The experiment has been conducted at the Elettra Synchrotron Facility of Basovizza (Trieste, Italy) using a light beam linearly polarized with the direction of the polarization vector parallel to the ClNO molecular beam axis. ClNO molecules crossing the photon beam at right angles in the scattering region are generated by effusive expansion and randomly oriented. The threshold energy for the double ionization of ClNO (30.1 ± 0.1 eV) and six dissociation channels producing NO+/Cl+, N+/Cl+, N+/O+, O+/Cl+, ClN+/O+, NO+/Cl2+ ion pairs, with their relative abundance and threshold energies, have been measured. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

16 pages, 562 KiB  
Article
Dynamics of Twisted Electron Impact Ionization of CH4 and NH3 Molecule
by Nikita Dhankhar, Neha and Rakesh Choubisa
Atoms 2023, 11(5), 82; https://doi.org/10.3390/atoms11050082 - 10 May 2023
Cited by 4 | Viewed by 1889
Abstract
Electron vortex beams (EVBs, also known as twisted electron beams) possess an intrinsic orbital angular momentum (OAM) with respect to their propagation direction. This intrinsic OAM represents a new degree of freedom that provides new insights into investigating the dynamics of electron impact [...] Read more.
Electron vortex beams (EVBs, also known as twisted electron beams) possess an intrinsic orbital angular momentum (OAM) with respect to their propagation direction. This intrinsic OAM represents a new degree of freedom that provides new insights into investigating the dynamics of electron impact ionization. In this communication, we present, in the first Born approximation (FBA), the angular profiles of the triple differential cross section (TDCS) for the (e, 2e) process on CH4 and NH3 molecular targets in the coplanar asymmetric geometry. We compare the TDCS of the EVB for different values of OAM number m with that of the plane wave. For a more realistic scenario, we investigate the average TDCS for macroscopic targets to explore the influence of the opening angle θp of the twisted electron beam on the TDCS. In addition, we also present the TDCS for the coherent superposition of two EVBs. The results demonstrate that the twisted (e, 2e) process retrieves the p-type character of the molecular orbitals, which is absent in the plane wave TDCS for the given kinematics. The results for the coherent superposition of two Bessel beams show the sensitivity of TDCS toward the OAM number m. Full article
(This article belongs to the Special Issue Recent Advances in Atomic and Molecular Spectroscopy)
Show Figures

Figure 1

18 pages, 9061 KiB  
Article
Influence of Laser Beam Power on the Temperature Distribution and Dimensions of the Molten-Pool Formed during Laser Boriding of Nimonic 80A-Alloy
by Natalia Makuch and Piotr Dziarski
Crystals 2023, 13(3), 507; https://doi.org/10.3390/cryst13030507 - 15 Mar 2023
Cited by 1 | Viewed by 1596
Abstract
Laser boriding is a surface treatment that involves the simultaneous re-melting and mixing of the alloying material, containing amorphous boron blended with diluted polyvinyl alcohol, with the substrate material (Nimonic 80A-alloy). As a result of high cooling rates, the boride layer is formed [...] Read more.
Laser boriding is a surface treatment that involves the simultaneous re-melting and mixing of the alloying material, containing amorphous boron blended with diluted polyvinyl alcohol, with the substrate material (Nimonic 80A-alloy). As a result of high cooling rates, the boride layer is formed from a solidifying molten pool. The thickness of the produced layer depends on the laser treatment parameters, e.g., power of the laser beam, scanning rate, and laser beam radius. These parameters influence the temperature distribution on the cross-section of laser tracks and, thus, directly determine the size of the molten pool, from which the boride layer is formed after crystallization. In the present study, laser borided layers were produced on Nimonic 80A alloy using a CO2 molecular laser. Differences in the laser beam power used resulted in the formation of layers of different thicknesses, which resulted directly from the differences in the temperature distribution in the treated material. The amount of boron in the molten pool directly influenced the obtained hardness of the laser borided layer. It was found that the lower laser beam power had an advantageous effect on the hardness due to the higher percentage of nickel borides and chromium borides in the layer. The reasons for this situation are discussed in detail. Full article
Show Figures

Figure 1

13 pages, 2505 KiB  
Article
Low-Frequency Noise Characteristics of (Al, Ga)As and Ga(As, Bi) Quantum Well Structures for NIR Laser Diodes
by Simona Armalytė, Justinas Glemža, Vytautas Jonkus, Sandra Pralgauskaitė, Jonas Matukas, Simona Pūkienė, Andrea Zelioli, Evelina Dudutienė, Arnas Naujokaitis, Andrius Bičiūnas, Bronislovas Čechavičius and Renata Butkutė
Sensors 2023, 23(4), 2282; https://doi.org/10.3390/s23042282 - 17 Feb 2023
Cited by 3 | Viewed by 2380
Abstract
Fabry–Perot laser diodes based on (Al, Ga)As and Ga(As, Bi) with single or multiple parabolic or rectangular-shaped quantum wells (QWs) emitting at the 780–1100 nm spectral range were fabricated and investigated for optimization of the laser QW design and composition of QWs. The [...] Read more.
Fabry–Perot laser diodes based on (Al, Ga)As and Ga(As, Bi) with single or multiple parabolic or rectangular-shaped quantum wells (QWs) emitting at the 780–1100 nm spectral range were fabricated and investigated for optimization of the laser QW design and composition of QWs. The laser structures were grown using the molecular beam epitaxy (MBE) technique on the n-type GaAs(100) substrate. The photolithography process was performed to fabricate edge-emitting laser bars of 5 μm by 500 μm in size. The temperature-dependent power-current measurements showed that the characteristic threshold current of the fabricated LDs was in the 60–120 mA range. Light and current characteristics were almost linear up to (1.2–2.0) Ith. Low-frequency 10 Hz–20 kHz electrical and optical noise characteristics were measured in the temperature range from 70 K to 290 K and showed that the low-frequency optical and electrical noise spectra are comprised of 1/f and Lorentzian-type components. The positive cross-correlation between optical and electrical fluctuations was observed. Full article
(This article belongs to the Special Issue Advances in Microwave Communications and Radar Technologies)
Show Figures

Figure 1

15 pages, 1337 KiB  
Review
Incoherent Neutron Scattering and Terahertz Time-Domain Spectroscopy on Protein and Hydration Water
by Hiroshi Nakagawa and Naoki Yamamoto
Life 2023, 13(2), 318; https://doi.org/10.3390/life13020318 - 23 Jan 2023
Cited by 3 | Viewed by 2391
Abstract
Incoherent inelastic and quasi-elastic neutron scattering (INS) and terahertz time-domain spectroscopy (THz-TDS) are spectroscopy methods that directly detect molecular dynamics, with an overlap in the measured energy regions of each method. Due to the different characteristics of their probes (i.e., neutron and light), [...] Read more.
Incoherent inelastic and quasi-elastic neutron scattering (INS) and terahertz time-domain spectroscopy (THz-TDS) are spectroscopy methods that directly detect molecular dynamics, with an overlap in the measured energy regions of each method. Due to the different characteristics of their probes (i.e., neutron and light), the information obtained and the sample conditions suitable for each method differ. In this review, we introduce the differences in the quantum beam properties of the two methods and their associated advantages and disadvantages in molecular spectroscopy. Neutrons are scattered via interaction with nuclei; one characteristic of neutron scattering is a large incoherent scattering cross-section of a hydrogen atom. INS records the auto-correlation functions of atomic positions. By using the difference in neutron scattering cross-sections of isotopes in multi-component systems, some molecules can be selectively observed. In contrast, THz-TDS observes the cross-correlation function of dipole moments. In water-containing biomolecular samples, the absorption of water molecules is particularly large. While INS requires large-scale experimental facilities, such as accelerators and nuclear reactors, THz-TDS can be performed at the laboratory level. In the analysis of water molecule dynamics, INS is primarily sensitive to translational diffusion motion, while THz-TDS observes rotational motion in the spectrum. The two techniques are complementary in many respects, and a combination of the two is very useful in analyzing the dynamics of biomolecules and hydration water. Full article
(This article belongs to the Special Issue Biomolecular Dynamics Explored by Incoherent Neutron Spectroscopy)
Show Figures

Figure 1

19 pages, 3210 KiB  
Article
Near-Threshold and Resonance Effects in Rotationally Inelastic Scattering of D2O with Normal-H2
by Astrid Bergeat, Alexandre Faure, Laurent Wiesenfeld, Chloé Miossec, Sébastien B. Morales and Christian Naulin
Molecules 2022, 27(21), 7535; https://doi.org/10.3390/molecules27217535 - 3 Nov 2022
Cited by 6 | Viewed by 1846
Abstract
We present a combined experimental and theoretical study on the rotationally inelastic scattering of heavy water, D2O, with normal-H2. Crossed-molecular beam measurements are performed in the collision energy range between 10 and 100 cm−1, corresponding to [...] Read more.
We present a combined experimental and theoretical study on the rotationally inelastic scattering of heavy water, D2O, with normal-H2. Crossed-molecular beam measurements are performed in the collision energy range between 10 and 100 cm−1, corresponding to the near-threshold regime in which scattering resonances are most pronounced. State-to-state excitation cross-sections are obtained by probing three low-lying rotational levels of D2O using the REMPI technique. These measurements are complemented by quantum close-coupling scattering calculations based on a high-accuracy D2O–H2 interaction potential. The agreement between experiment and theory is within the experimental error bars at 95% confidence intervals, leading to a relative difference of less than 7%: the near-threshold rise and the overall shape of the cross-sections, including small undulations due to resonances, are nicely reproduced by the calculations. Isotopic effects (D2O versus H2O) are also discussed by comparing the shape and magnitude of the respective cross-sections. Full article
Show Figures

Figure 1

19 pages, 1774 KiB  
Article
Electron Impact Ionization of Adenine: Partial Cross Sections
by Mohammad Atiqur Rehman and E. Krishnakumar
Atoms 2022, 10(4), 100; https://doi.org/10.3390/atoms10040100 - 23 Sep 2022
Cited by 5 | Viewed by 1991
Abstract
Electron ionization of a genetically important nucleobase, adenine, was investigated from threshold to 500 eV using crossed electron beam–effusive molecular beam geometry and time-of-flight mass spectrometry. We measured the complete set of absolute partial cross sections for adenine using the relative flow technique [...] Read more.
Electron ionization of a genetically important nucleobase, adenine, was investigated from threshold to 500 eV using crossed electron beam–effusive molecular beam geometry and time-of-flight mass spectrometry. We measured the complete set of absolute partial cross sections for adenine using the relative flow technique (RFT) up to an electron energy of 500 eV. Normalization to absolute values was performed using electron ionization cross sections for argon and the vapor pressure data of adenine. The total cross sections obtained by summing the partial cross sections were compared with the existing theoretical and experimental data. The appearance energies of various fragment ions were also measured and compared with the reported data. The prominence of ions with mass (HCN)n+ (n = 1 to 5) indicated a possible pathway to form adenine in the interstellar medium through aggregation of HCN units. Analysis of the partial cross sections for various groups of fragment ions as a function of electron energy was found to give insights into their composition. Full article
(This article belongs to the Special Issue Electron Scattering from Atoms, Ions and Molecules)
Show Figures

Figure 1

Back to TopTop