Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (198)

Search Parameters:
Keywords = critical islanding time

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2237 KiB  
Article
Flood Season Division Model Based on Goose Optimization Algorithm–Minimum Deviation Combination Weighting
by Yukai Wang, Jun Li and Jing Fu
Sustainability 2025, 17(15), 6968; https://doi.org/10.3390/su17156968 (registering DOI) - 31 Jul 2025
Abstract
The division of the flood season is of great significance for the precise operation of water conservancy projects, flood control and disaster reduction, and the rational allocation of water resources, alleviating the contradiction of the uneven spatial and temporal distribution of water resources. [...] Read more.
The division of the flood season is of great significance for the precise operation of water conservancy projects, flood control and disaster reduction, and the rational allocation of water resources, alleviating the contradiction of the uneven spatial and temporal distribution of water resources. The single weighting method can only determine the weight of the flood season division indicators from a certain perspective and cannot comprehensively reflect the time-series attributes of the indicators. This study proposes a Flood Season Division Model based on the Goose Optimization Algorithm and Minimum Deviation Combined Weighting (FSDGOAMDCW). The model uses the Goose Optimization Algorithm (GOA) to solve the Minimum Deviation Combination model, integrating weights from two subjective methods (Expert Scoring and G1) and three objective methods (Entropy Weight, CV, and CRITIC). Combined with the Set Pair Analysis Method (SPAM), it realizes comprehensive flood season division. Based on daily precipitation data of the Nandujiang River (1961–2022), the study determines its flood season from 1 May to 30 October. Comparisons show that: ① GOA converges faster than the Genetic Algorithm, stabilizing at T = 5 and achieving full convergence at T = 24; and ② The model’s division results have the smallest Intra-Class Differences, avoiding indistinguishability between flood and non-flood seasons under special conditions. This research aims to support flood season division studies in tropical islands. Full article
Show Figures

Figure 1

22 pages, 6820 KiB  
Article
Bathymetric Profile and Sediment Composition of a Dynamic Subtidal Bedform Habitat for Pacific Sand Lance
by Matthew R. Baker, H. G. Greene, John Aschoff, Michelle Hoge, Elisa Aitoro, Shaila Childers, Junzhe Liu and Jan A. Newton
J. Mar. Sci. Eng. 2025, 13(8), 1469; https://doi.org/10.3390/jmse13081469 - 31 Jul 2025
Abstract
The eastern North Pacific Ocean coastline (from the Salish Sea to the western Aleutian Islands) is highly glaciated with relic sediment deposits scattered throughout a highly contoured and variable bathymetry. Oceanographic conditions feature strong currents and tidal exchange. Sand wave fields are prominent [...] Read more.
The eastern North Pacific Ocean coastline (from the Salish Sea to the western Aleutian Islands) is highly glaciated with relic sediment deposits scattered throughout a highly contoured and variable bathymetry. Oceanographic conditions feature strong currents and tidal exchange. Sand wave fields are prominent features within these glaciated shorelines and provide critical habitat to sand lance (Ammodytes spp.). Despite an awareness of the importance of these benthic habitats, attributes related to their structure and characteristics remain undocumented. We explored the micro-bathymetric morphology of a subtidal sand wave field known to be a consistent habitat for sand lance. We calculated geomorphic attributes of the bedform habitat, analyzed sediment composition, and measured oceanographic properties of the associated water column. This feature has a streamlined teardrop form, tapered in the direction of the predominant tidal current. Consistent flow paths along the long axis contribute to well-defined and maintained bedform morphology and margin. Distinct patterns in amplitude and period of sand waves were documented. Strong tidal exchange has resulted in well-sorted medium-to-coarse-grained sediments with coarser sediments, including gravel and cobble, within wave troughs. Extensive mixing related to tidal currents results in a highly oxygenated water column, even to depths of 80 m. Our analysis provides unique insights into the physical characteristics that define high-quality habitat for these fish. Further work is needed to identify, enumerate, and map the presence and relative quality of these benthic habitats and to characterize the oceanographic properties that maintain these benthic habitats over time. Full article
(This article belongs to the Special Issue Dynamics of Marine Sedimentary Basin)
Show Figures

Figure 1

31 pages, 4584 KiB  
Article
A Discrete-Event Based Power Management System Framework for AC Microgrids
by Paolo C. Erazo Huera, Thamiris B. de Paula, João M. T. do Amaral, Thiago M. Tuxi, Gustavo S. Viana, Emanuel L. van Emmerik and Robson F. S. Dias
Energies 2025, 18(15), 3964; https://doi.org/10.3390/en18153964 - 24 Jul 2025
Viewed by 255
Abstract
This paper presents a practical framework for the design and real-time implementation of a Power Management System (PMS) for microgrids based on Supervisory Control Theory (SCT) for discrete-event systems. A detailed step-by-step methodology is provided, which covers the entire process from defining discrete [...] Read more.
This paper presents a practical framework for the design and real-time implementation of a Power Management System (PMS) for microgrids based on Supervisory Control Theory (SCT) for discrete-event systems. A detailed step-by-step methodology is provided, which covers the entire process from defining discrete events, modeling microgrid components, synthesizing supervisory controllers, and realizing them in MATLAB (R2024b) Stateflow. This methodology is applied to a case study, where a decentralized supervisor controller is designed for a microgrid containing a Battery Energy Storage System (BESS), a generator set (Genset), a wind and a solar generation system, critical loads, and noncritical loads. Unlike previous works based on SCT, the proposed PMS addresses the following functionalities: (i) grid-connected and islanded operation; (ii) peak shaving; (iii) voltage support; (iv) load shedding. Finally, a CHIL testing is employed to validate the synthesized SCT-based PMS. Full article
Show Figures

Figure 1

13 pages, 1649 KiB  
Article
Assessing the Population Demographic History of the Tsushima Leopard Cat and Its Genetic Divergence Time from Continental Populations
by Hideyuki Ito, Nobuyoshi Nakajima, Manabu Onuma, Takushi Kishida and Miho Inoue-Murayama
Biology 2025, 14(7), 880; https://doi.org/10.3390/biology14070880 - 18 Jul 2025
Viewed by 239
Abstract
The Tsushima leopard cat (Prionailurus bengalensis euptilurus), an endangered feline endemic to Tsushima Island, Japan, faces critical threats due to its small and isolated population. Understanding its demographic history and genetic differentiation from continental populations is essential for conservation planning. In [...] Read more.
The Tsushima leopard cat (Prionailurus bengalensis euptilurus), an endangered feline endemic to Tsushima Island, Japan, faces critical threats due to its small and isolated population. Understanding its demographic history and genetic differentiation from continental populations is essential for conservation planning. In this study, we performed whole-genome sequencing of four Tsushima individuals and applied demographic inference methods, including pairwise sequentially Markovian coalescent (PSMC) and Sequentially Markovian Coalescent (SMC++), to reconstruct the historical effective population size (Ne) and estimate divergence times. PSMC revealed a population expansion between 200,000 and 100,000 years ago, followed by a long-term decline. SMC++ inferred a continuous decline and estimated that the divergence from the Korean leopard cat population occurred approximately 30,000–20,000 years ago. Genetic diversity analysis showed that the Tsushima population has significantly lower heterozygosity and higher inbreeding levels than continental populations. Genetic clustering based on genome-wide SNPs indicated that the Tsushima population is genetically closest to the Korean population, forming a northern cluster distinct from southern populations, such as Borneo and the Malay Peninsula. These findings provide valuable insights into the evolutionary history and genetic status of the Tsushima leopard cat and contribute critical data for the design of future conservation strategies targeting this unique insular lineage. Full article
(This article belongs to the Special Issue Genetic Variability within and between Populations)
Show Figures

Figure 1

28 pages, 1051 KiB  
Article
Probabilistic Load-Shedding Strategy for Frequency Regulation in Microgrids Under Uncertainties
by Wesley Peres, Raphael Paulo Braga Poubel and Rafael Alipio
Symmetry 2025, 17(7), 1125; https://doi.org/10.3390/sym17071125 - 14 Jul 2025
Viewed by 284
Abstract
This paper proposes a novel integer-mixed probabilistic optimal power flow (IM-POPF) strategy for frequency regulation in islanded microgrids under uncertain operating conditions. Existing load-shedding approaches face critical limitations: continuous frameworks fail to reflect the discrete nature of actual load disconnections, while deterministic models [...] Read more.
This paper proposes a novel integer-mixed probabilistic optimal power flow (IM-POPF) strategy for frequency regulation in islanded microgrids under uncertain operating conditions. Existing load-shedding approaches face critical limitations: continuous frameworks fail to reflect the discrete nature of actual load disconnections, while deterministic models inadequately capture the stochastic behavior of renewable generation and load variations. The proposed approach formulates load shedding as an integer optimization problem where variables are categorized as integer (load disconnection decisions at specific nodes) and continuous (voltages, power generation, and steady-state frequency), better reflecting practical power system operations. The key innovation combines integer load-shedding optimization with efficient uncertainty propagation through Unscented Transformation, eliminating the computational burden of Monte Carlo simulations while maintaining accuracy. Load and renewable uncertainties are modeled as normally distributed variables, and probabilistic constraints ensure operational limits compliance with predefined confidence levels. The methodology integrates Differential Evolution metaheuristics with Unscented Transformation for uncertainty propagation, requiring only 137 deterministic evaluations compared to 5000 for Monte Carlo methods. Validation on an IEEE 33-bus radial distribution system configured as an islanded microgrid demonstrates significant advantages over conventional approaches. Results show 36.5-fold computational efficiency improvement while achieving 95.28% confidence level compliance for frequency limits, compared to only 50% for deterministic methods. The integer formulation requires minimal additional load shedding (21.265%) compared to continuous approaches (20.682%), while better aligning with the discrete nature of real-world operational decisions. The proposed IM-POPF framework successfully minimizes total load shedding while maintaining frequency stability under uncertain conditions, providing a computationally efficient solution for real-time microgrid operation. Full article
(This article belongs to the Special Issue Symmetry and Distributed Power System)
Show Figures

Figure 1

16 pages, 1889 KiB  
Article
Experimental Evaluation of the Sustainable Performance of Filtering Geotextiles in Green Roof Systems: Tensile Properties and Surface Morphology After Long-Term Use
by Olga Szlachetka, Joanna Witkowska-Dobrev, Anna Baryła and Marek Dohojda
Sustainability 2025, 17(14), 6242; https://doi.org/10.3390/su17146242 - 8 Jul 2025
Viewed by 308
Abstract
Green roofs are increasingly being adopted as sustainable, nature-based solutions for managing urban stormwater, mitigating the urban heat island effect, and saving energy in buildings. However, the long-term performance of their individual components—particularly filter geotextiles—remains understudied, despite their critical role in maintaining system [...] Read more.
Green roofs are increasingly being adopted as sustainable, nature-based solutions for managing urban stormwater, mitigating the urban heat island effect, and saving energy in buildings. However, the long-term performance of their individual components—particularly filter geotextiles—remains understudied, despite their critical role in maintaining system functionality. The filter layer, responsible for preventing clogging of the drainage layer with fine substrate particles, directly affects the hydrological performance and service life of green roofs. While most existing studies focus on the initial material properties, there is a clear gap in understanding how geotextile filters behave after prolonged exposure to real-world environmental conditions. This study addresses this gap by assessing the mechanical and structural integrity of geotextile filters after five years of use in both extensive and intensive green roof systems. By analyzing changes in surface morphology, microstructure, and porosity through tensile strength tests, digital imaging, and scanning electron microscopy, this research offers new insights into the long-term performance of geotextiles. Results showed significant retention of tensile strength, particularly in the machine direction (MD), and a 56% reduction in porosity, which may affect filtration efficiency. Although material degradation occurs, some geotextiles retain their structural integrity over time, highlighting their potential for long-term use in green infrastructure applications. This research emphasizes the importance of material selection, long-term monitoring, and standardized evaluation techniques to ensure the ecological and functional resilience of green roofs. Furthermore, the findings contribute to advancing knowledge on the durability and life-cycle performance of filter materials, promoting sustainability and longevity in urban green infrastructure. Full article
Show Figures

Figure 1

17 pages, 2556 KiB  
Article
Novel Hybrid Islanding Detection Technique Based on Digital Lock-In Amplifier
by Muhammad Noman Ashraf, Abdul Shakoor Akram and Woojin Choi
Energies 2025, 18(13), 3449; https://doi.org/10.3390/en18133449 - 30 Jun 2025
Viewed by 246
Abstract
Islanding detection remains a critical challenge for grid-connected distributed generation systems, as passive techniques suffer from inherent non-detection zones (NDZ), and active methods often degrade power quality. This paper introduces a hybrid detection strategy based on monitoring inherent grid harmonics via a Digital [...] Read more.
Islanding detection remains a critical challenge for grid-connected distributed generation systems, as passive techniques suffer from inherent non-detection zones (NDZ), and active methods often degrade power quality. This paper introduces a hybrid detection strategy based on monitoring inherent grid harmonics via a Digital Lock-In Amplifier. By comparing real-time 5th and 7th harmonic amplitudes against their three-cycle-delayed values, the passive stage adaptively identifies potential islanding without fixed thresholds. Upon detecting significant relative variation, a brief injection of a non-characteristic 10th harmonic (limited to under 3% distortion for three line cycles) serves as active verification, ensuring robust discrimination between islanding and normal disturbances. Case studies demonstrate detection within 140 ms—faster than typical reclosing delays and well below the 2 s limit of IEEE std. 1547—while preserving current zero-crossings and enabling grid impedance estimation. The method’s resilience to grid disturbances and stiffness is validated through PSIM simulations and laboratory experiments, meeting IEEE 1547 and UL 1741 requirements. Comparative analysis shows superior accuracy and minimal power-quality impact relative to existing passive, active, and intelligent approaches. Full article
(This article belongs to the Special Issue Power Electronics and Power Quality 2025)
Show Figures

Figure 1

23 pages, 8779 KiB  
Article
Visual Storytelling of Landscape Change on Rathlin Island, UK
by Ying Zheng, Rebecca Jane McConnell, Zehan Zhou, Tom Jefferies, Greg Keeffe, Sean Cullen and Emma Campbell
Land 2025, 14(6), 1304; https://doi.org/10.3390/land14061304 - 19 Jun 2025
Viewed by 629
Abstract
Islands represent distinctive geographical landscapes where cultural heritage, history, and ecological systems converge, offering critical insights into human–environment interactions. This study investigates how visual storytelling through digital tools such as the Historical Environment Map Viewer, Environment Digimap, Google Maps and Google Street View, [...] Read more.
Islands represent distinctive geographical landscapes where cultural heritage, history, and ecological systems converge, offering critical insights into human–environment interactions. This study investigates how visual storytelling through digital tools such as the Historical Environment Map Viewer, Environment Digimap, Google Maps and Google Street View, and ArcGIS Field Maps can be employed to capture, interpret, and communicate islands’ landscape changes. By integrating historical environmental mapping, landscape change mapping, street map views, and field observations, this study creates a layered visual narrative that reveals shifts in land use, settlement patterns, and ecological features over time. Rathlin Island represents a distinctive island landscape, and this study uses visual storytelling as a tool to foster a broader public understanding of environmental conservation and engagement with the island’s ecologial challenges. The study demonstrates that multi-perspective, interdisciplinary methods provide valuable insights into the complex dynamics of landscape change, while also offering a comprehensive vision of sustainable future landscape on small islands. Full article
(This article belongs to the Special Issue Urban Resilience and Heritage Management (Second Edition))
Show Figures

Figure 1

10 pages, 232 KiB  
Article
Impact of the COVID-19 Pandemic on Emergency Air Medical Transport of Pediatric Patients in the Penghu Islands
by Hung-Hsiang Fang, Chuang-Yen Huang, Po-Chang Hsu, Chia-Cheng Sung, Sheng-Ping Li and Chung-Yu Lai
Healthcare 2025, 13(12), 1450; https://doi.org/10.3390/healthcare13121450 - 17 Jun 2025
Viewed by 418
Abstract
Background and Objectives: The coronavirus disease 2019 (COVID-19) pandemic significantly impacted healthcare systems worldwide. As a result, remote areas such as the Penghu Islands have encountered unique challenges related to pediatric care. This study examined the effects of the pandemic on the emergency [...] Read more.
Background and Objectives: The coronavirus disease 2019 (COVID-19) pandemic significantly impacted healthcare systems worldwide. As a result, remote areas such as the Penghu Islands have encountered unique challenges related to pediatric care. This study examined the effects of the pandemic on the emergency air medical transport (EAMT) of pediatric patients from the Penghu Islands to Taiwan. Materials and Methods: This retrospective study analyzed 40 pediatric patients who received EAMT from the Penghu Islands to Taiwan between January 2017 and December 2022. This study compared patients before and during the COVID-19 pandemic and focused on patient demographics, reasons for EAMT, and clinical outcomes. Due to the small sample size, non-parametric statistical methods were applied, including the Mann–Whitney U-test for continuous variables and Fisher’s exact test for categorical variables. Results: Among the 40 pediatric patients analyzed, the median age decreased from 3 years (IQR, 0–5 years) before the pandemic to 1 year (IQR, 0–5 years) during the pandemic. While the overall increase in hospital length of stay during the pandemic was not statistically significant, a significant prolongation was observed in preschool-aged children and neonates without trauma (20 days vs. 9 days; p < 0.05). The lack of specialist physicians became an increasingly prominent factor for EAMT during the pandemic (p = 0.056). The most common medical reasons for EAMT were critical illness (35%), neonatal diseases (30%), and neurological conditions (27.5%), with similar distributions across both time periods. Conclusions: The COVID-19 pandemic heightened existing healthcare disparities in the Penghu Islands, particularly by increasing reliance on EAMT due to a shortage of pediatric specialists. Hospital stays for preschool children and neonates significantly increased during the pandemic, suggesting delayed or prolonged care. These findings underscore the need to strengthen local pediatric infrastructure, decentralize specialist services, and improve emergency preparedness to better support vulnerable populations in remote areas during future public health emergencies. Full article
Show Figures

Figure 1

18 pages, 3910 KiB  
Article
Simulation-Based Assessment of Urban Pollution in Almaty: Influence of Meteorological and Environmental Parameters
by Lyazat Naizabayeva, Kateryna Kolesnikova and Victoriia Khrutba
Appl. Sci. 2025, 15(12), 6391; https://doi.org/10.3390/app15126391 - 6 Jun 2025
Viewed by 461
Abstract
Background: Air pollution is a persistent and critical challenge for Almaty, Kazakhstan’s largest city. The city’s unique topographical and meteorological conditions—being located in a mountain basin with dense urban development—restrict natural ventilation and contribute to frequent exceedances of air quality standards. These factors [...] Read more.
Background: Air pollution is a persistent and critical challenge for Almaty, Kazakhstan’s largest city. The city’s unique topographical and meteorological conditions—being located in a mountain basin with dense urban development—restrict natural ventilation and contribute to frequent exceedances of air quality standards. These factors make accurate assessment and management of atmospheric pollution particularly urgent for the region. Aim: This study aims to develop and apply a novel, high-resolution three-dimensional numerical model to analyze the spatial distribution of key atmospheric indicators—air velocity, temperature, and pollutant concentrations in Almaty. The goal is to provide a comprehensive understanding of how meteorological and urban factors influence air quality, with a focus on both horizontal and vertical stratification. Methods: A three-dimensional computational model was constructed, integrating real meteorological data and detailed urban topography. The model solves the compressible Navier–Stokes, energy, and pollutant transport equations using the finite volume method over a 1000 × 1000 × 500 m domain. Meteorological fields are synthesized along all spatial axes to account for vortex structures, urban heat islands, and stratification effects. This approach enables the simulation of atmospheric parameters with unprecedented spatial resolution for Almaty. Results: The simulation reveals significant spatial heterogeneity in atmospheric parameters. Wind velocity ranges from 0.31 to 5.76 m/s (mean: 2.14 m/s), temperature varies between 12.03 °C and 19.47 °C (mean: 16.12 °C), and pollutant concentrations fluctuate from 5.02 to 102.35 μg/m3 (mean: 44.87 μg/m3). Notably, pollutant levels in the city center exceed those at the periphery by more than two-fold (68.23 μg/m3, 29.14 μg/m3), and vertical stratification leads to a marked decrease in concentrations with altitude. These findings provide, for the first time, a comprehensive and quantitative picture of air quality dynamics in Almaty. Conclusion: The developed model advances the scientific understanding of urban air pollution in complex terrains and offers practical tools for city planners and policymakers. By identifying pollution hotspots and elucidating the influence of meteorological factors, the model supports the optimization of urban infrastructure, zoning, and environmental monitoring systems. This research lays the groundwork for evidence-based strategies to mitigate air pollution and improve public health in Almaty and similar urban environments. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

23 pages, 8232 KiB  
Article
Modeling of the 2007 Aysén Tsunami Generated by the Punta Cola and North Mentirosa Island Landslides
by Francisco Uribe, Mauricio Fuentes and Jaime Campos
Coasts 2025, 5(2), 19; https://doi.org/10.3390/coasts5020019 - 4 Jun 2025
Viewed by 464
Abstract
This study presents numerical simulations of the Aysén tsunami, which occurred on 21 April 2007. The tsunami was triggered by hundreds of landslides caused by a magnitude 6.2 earthquake. With an estimated wave height of 50 m at the northern tip of the [...] Read more.
This study presents numerical simulations of the Aysén tsunami, which occurred on 21 April 2007. The tsunami was triggered by hundreds of landslides caused by a magnitude 6.2 earthquake. With an estimated wave height of 50 m at the northern tip of the Mentirosa Island, the event resulted in 10 fatalities and the destruction of multiple salmon farms along the fjord. We employed the NHWAVE and FUNWAVE-TVD numerical software to conduct a series of simulations using various landslide configurations and two approaches to model landslide motion: a viscous flow and a solid slide governed by Coulomb friction. The numerical results indicate that the solid landslide model without basal friction provides the most accurate representation of the measured in situ run-up heights and generates the largest inundation areas. Furthermore, the simulation results show that the arrival time of the tsunami waves was approximately 600 s. Our findings indicate that the volume of the landslide is the most critical factor in determining tsunami wave heights. Additionally, the Coulomb friction angle is another significant parameter to consider in the modeling process. Full article
Show Figures

Figure 1

38 pages, 4699 KiB  
Article
Enhancing Island Energy Resilience: Optimized Networked Microgrids for Renewable Integration and Disaster Preparedness
by Zheng Grace Ma, Magnus Værbak, Lu Cong, Joy Dalmacio Billanes and Bo Nørregaard Jørgensen
Electronics 2025, 14(11), 2186; https://doi.org/10.3390/electronics14112186 - 28 May 2025
Cited by 1 | Viewed by 626
Abstract
Island communities that depend on mainland grid connections face substantial risks when natural disasters sever undersea or overhead cables, often resulting in long-lasting outages. This paper presents a comprehensive and novel two-part methodological framework for enhancing the resilience of these communities through networked [...] Read more.
Island communities that depend on mainland grid connections face substantial risks when natural disasters sever undersea or overhead cables, often resulting in long-lasting outages. This paper presents a comprehensive and novel two-part methodological framework for enhancing the resilience of these communities through networked microgrids that interconnect local renewable energy resources and battery storage. The framework integrates techno-economic capacity optimization using HOMER Pro with agent-based simulation in AnyLogic to determine cost-effective solar and storage capacities and to model dynamic real-time dispatch under varying conditions. Six island communities across three Indonesian provinces serve as illustrative case studies, tested under best-case and worst-case disruption scenarios that reflect seasonal extremes of solar availability. Simulation results reveal that isolated expansions of PV and battery storage can ensure critical residential loads, though certain islands with limited resources continue to experience shortfalls. By contrast, networked microgrids enable surplus power transfers between islands, significantly reducing unmet demand and alleviating the need for large-scale, individual storage. These findings demonstrate the significant potential of clustered microgrid designs to improve reliability, lower operational costs, and facilitate secure energy supply even during prolonged cable outages. The proposed framework offers a scalable roadmap for deploying resilient microgrid clusters in remote regions, with direct policy implications for system planners and local stakeholders seeking to leverage renewable energy in high-risk environments. Full article
Show Figures

Figure 1

32 pages, 11121 KiB  
Article
Construction of a Cold Island Spatial Pattern from the Perspective of Landscape Connectivity to Alleviate the Urban Heat Island Effect
by Qianli Ouyang, Bohong Zheng, Junyou Liu, Xi Luo, Shengyan Wu and Zhaoqian Sun
ISPRS Int. J. Geo-Inf. 2025, 14(6), 209; https://doi.org/10.3390/ijgi14060209 - 23 May 2025
Viewed by 750
Abstract
This study presents an innovative approach to mitigating the urban heat island (UHI) effect by constructing a cold island spatial pattern (CSP) from the perspective of landscape connectivity, integrating three-dimensional (3D) urban morphology and meteorological factors for the first time. Unlike traditional studies [...] Read more.
This study presents an innovative approach to mitigating the urban heat island (UHI) effect by constructing a cold island spatial pattern (CSP) from the perspective of landscape connectivity, integrating three-dimensional (3D) urban morphology and meteorological factors for the first time. Unlike traditional studies that focus on isolated patches or single-city scales, we propose a hierarchical framework for urban agglomerations, combining morphological spatial pattern analysis (MSPA), landscape connectivity assessment, and circuit theory to a construct CSP at the scale of urban agglomeration. By incorporating wind environment data and 3D building features (e.g., height, density) into the resistance surface, we enhance the accuracy of cooling network identification, revealing 39 cold island sources, 89 cooling corridors, and optimal corridor widths (600 m) in the Changsha–Zhuzhou–Xiangtan urban agglomeration (CZXUA). Ultimately, a three-tiered heat island mitigation framework for urban agglomerations was established based on the CSP. This study offers an innovative perspective on urban climate adaptability planning within the context of contemporary urbanization. Our methodology and findings provide critical insights for future studies to integrate multiscale, multidimensional, and climate-adaptive approaches in urban thermal environment governance, fostering sustainable urbanization under escalating climate challenges. Full article
Show Figures

Figure 1

27 pages, 6791 KiB  
Review
Holocene Forest Dynamics in Western Mediterranean Islands: Rates, Periodicity, and Trends
by Fabrizio Michelangeli, Elisa De Luca, Donatella Magri, Simone De Santis, Alessandra Celant, Matthieu Ghilardi, Matteo Vacchi, Jordi Revelles, Rita Teresa Melis, Juan Ochando, José Carrión, Roberta Pini, Gabriel Servera-Vives and Federico Di Rita
Forests 2025, 16(5), 808; https://doi.org/10.3390/f16050808 - 13 May 2025
Cited by 1 | Viewed by 843
Abstract
The forest ecosystems of large Mediterranean islands are critical hubs of evolutionary diversity with unique floristic composition and distinctive vegetation patterns reflecting long-term population dynamics and ecological legacies. Mediterranean islands provide invaluable natural archives, preserving crucial insights into the resilience of past forest [...] Read more.
The forest ecosystems of large Mediterranean islands are critical hubs of evolutionary diversity with unique floristic composition and distinctive vegetation patterns reflecting long-term population dynamics and ecological legacies. Mediterranean islands provide invaluable natural archives, preserving crucial insights into the resilience of past forest ecosystems and their responses to climate variability. In this paper, we provide a comprehensive overview of the Holocene vegetation history of major western Mediterranean islands, with the twofold aim of examining the timing, extent, and rates of vegetation changes over the last few thousand years, and evaluating the influence of Rapid Climate Changes (RCCs) on forest ecosystems. The rate of change analysis allowed the identification of a distinct pattern of rapid shifts in forest composition, corresponding to periods of climate instability. These shifts align with the periodicity of Bond events, suggesting synchronicity between changes in forest ecosystems and centennial-scale climatic oscillations at a supra-regional scale. A REDFIT spectral analysis applied to palynological proxies of forest cover changes identified prominent periodicities suggesting a direct influence of solar activity and/or a relation with complex ocean–atmosphere circulation mechanisms triggered by global climate forcings. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

16 pages, 551 KiB  
Article
Replanting the Birthing Trees: A Call to Transform Intergenerational Trauma into Cycles of Healing and Nurturing
by Catherine Chamberlain, Jacynta Krakouer, Paul Gray, Madeleine Lyon, Shakira Onwuka, Ee Pin Chang, Lesley Nelson, Valda Duffield, Janine Mohamed, Shaydeen Stocker, Yalmay Yunupingu, Sally Maymuru, Bronwyn Rossingh, Fiona Stanley, Danielle Cameron, Marilyn Metta, Tess M. Bright, Renna Gayde, Bridgette Kelly, Tatiana Corrales, Roz Walker, Tamara Lacroix, Helen Milroy, Alison Weatherstone, Kimberley A. Jones, Kristen Smith and Marcia Langtonadd Show full author list remove Hide full author list
Genealogy 2025, 9(2), 52; https://doi.org/10.3390/genealogy9020052 - 6 May 2025
Viewed by 2342
Abstract
Aboriginal and Torres Strait Islander ways of knowing, being and doing have fostered physical, social, and emotional wellbeing for millenia, forming a foundation of strength and resilience. However, colonisation, systemic violence and discrimination—including the forced removal of Aboriginal and Torres Strait Islander children, [...] Read more.
Aboriginal and Torres Strait Islander ways of knowing, being and doing have fostered physical, social, and emotional wellbeing for millenia, forming a foundation of strength and resilience. However, colonisation, systemic violence and discrimination—including the forced removal of Aboriginal and Torres Strait Islander children, which continues today—have disrupted this foundation, leading to compounding cycles of intergenerational and complex trauma. The enduring impact of intergenerational and complex trauma is exemplified in increasing proportions of Aboriginal and Torres Strait Islander children being removed from their families and involved in the child protection and youth justice system—which represents a national crisis. Despite this crisis, the national response remains insufficient. To address these urgent issues, over 200 predominantly Aboriginal and Torres Strait Islander stakeholders, participated in Gathering the Seeds Symposium, the inaugural meeting for the Replanting the Birthing Trees project held in Perth in April 2023. This meeting marked the beginning of a public dialogue aimed at Closing the Gap by advancing community-led strategies to break cycles of trauma and foster cycles of nurturing, recovery, and wellbeing for Aboriginal and Torres Strait Islander parents and children across the first 2000 days. We outline critical shortcomings in the current child protection and youth justice systems, and the urgent need for child wellbeing reform. Importantly we highlight recommendations made in submissions in 2023 to two key Australian inquiries—the National Early Years Strategy and the Human Rights Commission inquiry into out of home care and youth justice systems. We argue that structural reforms and culturally safe and skillful care for parents experiencing trauma and violence is a serious gap, and a national priority. The first 2000 days represents a critical window of opportunity to transform cycles of trauma into cycles of healing. It is time to ‘replant the birthing trees’ and ensure that all Aboriginal and Torres Strait Islander babies and families can have the best possible start to life through comprehensive models of care grounded in recognition of the right to self-determination and culture. Full article
(This article belongs to the Special Issue Self Determination in First Peoples Child Protection)
Show Figures

Figure 1

Back to TopTop