Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,242)

Search Parameters:
Keywords = critical animal studies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2252 KiB  
Article
The Influence of the Geometric Configuration of the Drive System on the Motion Dynamics of Jaw Crushers
by Emilian Mosnegutu, Claudia Tomozei, Oana Irimia, Vlad Ciubotariu, Diana Mirila, Mirela Panainte-Lehadus, Marcin Jasiński, Nicoleta Sporea and Ivona Camelia Petre
Processes 2025, 13(8), 2498; https://doi.org/10.3390/pr13082498 (registering DOI) - 7 Aug 2025
Abstract
This study presents a comparative analysis of two double-toggle drive systems for jaw crushers that are tension based and compression based (this refers to the way in which the connecting rod is mechanically stressed within the drive mechanism), with the objective of identifying [...] Read more.
This study presents a comparative analysis of two double-toggle drive systems for jaw crushers that are tension based and compression based (this refers to the way in which the connecting rod is mechanically stressed within the drive mechanism), with the objective of identifying the optimal configuration from both kinematic and functional perspectives. Jaw crushers play a critical role in the extractive industry, and their performance is strongly influenced by the geometry and positioning of the drive mechanism. A theoretical approach based on mathematical modeling and numerical simulation was applied to a real constructive model (SMD-117), assessing variations in the linear velocity of the moving links as a function of mechanism placement. The study employed Mathcad 15, Roberts Animator, and GIM (Graphical Interactive Mechanisms) 2025.4 software to perform calculations and simulate motion. Results revealed a sinusoidal velocity pattern with significant differences between the two systems: the tension-based drive achieves peak velocities at the beginning of the angular variation interval, while the compression-based system reaches its maximum toward the end. Link C consistently exhibits higher velocities than link E, indicating increased mechanical stress. Polar graphic analysis identified critical velocity angles, and simulations confirmed the model’s validity with a maximum error of just 1.79%. The findings emphasize the importance of selecting an appropriate drive system to enhance performance, durability, and energy efficiency, offering concrete recommendations for equipment design and operation. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
30 pages, 11384 KiB  
Article
An AI-Driven Multimodal Monitoring System for Early Mastitis Indicators in Italian Mediterranean Buffalo
by Maria Teresa Verde, Mattia Fonisto, Flora Amato, Annalisa Liccardo, Roberta Matera, Gianluca Neglia and Francesco Bonavolontà
Sensors 2025, 25(15), 4865; https://doi.org/10.3390/s25154865 - 7 Aug 2025
Abstract
Mastitis is a significant challenge in the buffalo industry, affecting both milk production and animal health and resulting in economic losses. This study presents the first fully automated AI-driven thermal imaging system integrated with robotic milking, specifically developed for the real-time, non-invasive monitoring [...] Read more.
Mastitis is a significant challenge in the buffalo industry, affecting both milk production and animal health and resulting in economic losses. This study presents the first fully automated AI-driven thermal imaging system integrated with robotic milking, specifically developed for the real-time, non-invasive monitoring of udder health in Italian Mediterranean buffalo. Unlike traditional approaches, the system leverages the synchronized acquisition of thermal images during milking and compensates for environmental variables through a calibrated weather station. A transformer-based neural network (SegFormer) segments the udder area, enabling the extraction of maximum udder skin surface temperature (USST), which is significantly correlated with somatic cell count (SCC). Initial trials demonstrate the feasibility of this approach in operational farm environments, paving the way for scalable, precision diagnostics of subclinical mastitis. This work represents a critical step toward intelligent, automated systems for early detection and intervention, improving animal welfare and reducing antibiotic use. Full article
(This article belongs to the Collection Instrument and Measurement)
Show Figures

Figure 1

19 pages, 371 KiB  
Review
Human Breast Milk as a Biological Matrix for Assessing Maternal and Environmental Exposure to Dioxins and Dioxin-like Polychlorinated Biphenyls: A Narrative Review of Determinants
by Artemisia Kokkinari, Evangelia Antoniou, Kleanthi Gourounti, Maria Dagla, Aikaterini Lykeridou, Stefanos Zervoudis, Eirini Tomara and Georgios Iatrakis
Pollutants 2025, 5(3), 25; https://doi.org/10.3390/pollutants5030025 - 7 Aug 2025
Abstract
(1) Background: Dioxins and dioxin-like polychlorinated biphenyls (dl-PCBs) are persistent organic pollutants (POPs), characterized by high toxicity and strong lipophilicity, which promote their bioaccumulation in human tissues. Their detection in breast milk raises concerns about early-life exposure during lactation. Although dietary intake is [...] Read more.
(1) Background: Dioxins and dioxin-like polychlorinated biphenyls (dl-PCBs) are persistent organic pollutants (POPs), characterized by high toxicity and strong lipophilicity, which promote their bioaccumulation in human tissues. Their detection in breast milk raises concerns about early-life exposure during lactation. Although dietary intake is the primary route of maternal exposure, environmental pathways—including inhalation, dermal absorption, and residential proximity to contaminated sites—may also significantly contribute to the maternal body burden. (2) Methods: This narrative review examined peer-reviewed studies investigating maternal and environmental determinants of dioxin and dl-PCB concentrations in human breast milk. A comprehensive literature search was conducted in PubMed, Scopus, and Web of Science (2000–2024), identifying a total of 325 records. Following eligibility screening and full-text assessment, 20 studies met the inclusion criteria. (3) Results: The included studies consistently identified key exposure determinants, such as high consumption of animal-based foods (e.g., meat, fish, dairy), living near industrial facilities or waste sites, and maternal characteristics including age, parity, and body mass index (BMI). Substantial geographic variability was observed, with higher concentrations reported in regions affected by industrial activity, military pollution, or inadequate waste management. One longitudinal study from Japan demonstrated a declining trend in dioxin levels in breast milk, suggesting the potential effectiveness of regulatory interventions. (4) Conclusions: These findings highlight that maternal exposure to dioxins is influenced by identifiable environmental and behavioral factors, which can be mitigated through public health policies, targeted dietary guidance, and environmental remediation. Breast milk remains a critical bioindicator of human exposure. Harmonized, long-term research is needed to clarify health implications and minimize contaminant transfer to infants, particularly among vulnerable populations. Full article
Show Figures

Figure 1

13 pages, 745 KiB  
Article
Optimizing Selenium Polysaccharide Supplementation: Impacts on Growth, Oxidative Stress, and Tissue Selenium in Juvenile Large Yellow Croaker (Larimichthys crocea)
by Jinxing Xiao, Zhoudi Miao, Shiliang Dong, Kaiyang Wang, Fan Zhou and Zilong Li
Animals 2025, 15(15), 2292; https://doi.org/10.3390/ani15152292 - 6 Aug 2025
Abstract
Selenium (Se) is an essential trace element critical for animal growth and immune function. This study investigated the dietary selenium requirement of juvenile large yellow croaker (Larimichthys crocea) through an 8-week feeding trial. Five experimental diets were formulated by supplementing a [...] Read more.
Selenium (Se) is an essential trace element critical for animal growth and immune function. This study investigated the dietary selenium requirement of juvenile large yellow croaker (Larimichthys crocea) through an 8-week feeding trial. Five experimental diets were formulated by supplementing a basal diet with selenium polysaccharides (Se-PS) at 0, 20, 30, 40, and 50 mg/kg, resulting in analyzed Se concentrations of 0.35, 0.54, 0.71, 0.93, and 1.11 mg/kg, respectively. The results demonstrated that growth performance and feed efficiency improved with increasing dietary selenium, peaking at 0.93 mg/kg before declining at higher levels. Antioxidant enzyme activities—superoxide dismutase (SOD) and catalase (CAT)—in serum and liver tissues exhibited a dose-dependent increase, reaching maximal levels at 1.11 mg/kg. Conversely, malondialdehyde (MDA), a marker of oxidative stress, progressively decreased in both serum and liver, attaining its lowest concentration at 1.11 mg/kg, though this did not differ significantly from the 0.93 mg/kg group (p = 0.056). Tissue selenium accumulation was highest at these optimal dietary levels. Based on the growth performance, oxidative stress response, and tissue selenium retention, the recommended dietary selenium requirement for juvenile large yellow croaker is 0.93 mg/kg. These findings highlight the importance of optimal Se supplementation in aquafeeds to enhance growth and physiological health in farmed fish. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

51 pages, 2918 KiB  
Review
Therapeutic Applications and Mechanisms of Superoxide Dismutase (SOD) in Different Pathogenesis
by Shehwaz Anwar, Tarique Sarwar, Amjad Ali Khan and Arshad Husain Rahmani
Biomolecules 2025, 15(8), 1130; https://doi.org/10.3390/biom15081130 - 5 Aug 2025
Abstract
An imbalance between the generation of reactive oxygen species (ROS) and antioxidant defenses is known as oxidative stress, and it is implicated in a number of diseases. The superoxide radical O2– is produced by numerous biochemically relevant redox processes and is thought [...] Read more.
An imbalance between the generation of reactive oxygen species (ROS) and antioxidant defenses is known as oxidative stress, and it is implicated in a number of diseases. The superoxide radical O2– is produced by numerous biochemically relevant redox processes and is thought to play role in diseases and pathological processes, such as aging, cancer, membrane or DNA damage, etc.; SOD, or superoxide dismutase, is essential for reducing oxidative stress. As a result, the elimination of ROS by SOD may be a useful disease prevention tactic. There have been reports of protective effects against neurodegeneration, apoptosis, carcinogenesis, and radiation. Exogenous SODs’ low bioavailability has drawn criticism. However, this restriction might be removed, and interest in SOD’s medicinal qualities increased with advancements in its formulation. This review discusses the findings of human and animal studies that support the benefits of SOD enzyme regulation in reducing oxidative stress in various ways. Additionally, this review summarizes contemporary understandings of the biology of Cu/Zn superoxide dismutase 1 (SOD1) from SOD1 genetics and its therapeutic potential. Full article
(This article belongs to the Topic Enzymes and Enzyme Inhibitors in Drug Research)
Show Figures

Figure 1

25 pages, 723 KiB  
Review
Quantitative Variables Derived from the Electroencephalographic Signal to Assess Depth of Anaesthesia in Animals: A Narrative Review
by Susanne Figueroa, Olivier L. Levionnois and Alessandro Mirra
Animals 2025, 15(15), 2285; https://doi.org/10.3390/ani15152285 - 5 Aug 2025
Viewed by 18
Abstract
Accurately assessing the depth of anaesthesia in animals remains a challenge, as traditional monitoring methods fail to capture subtle changes in brain activity. This review aimed to systematically map and critically evaluate the range of quantitative variables derived from electroencephalography (EEG) used to [...] Read more.
Accurately assessing the depth of anaesthesia in animals remains a challenge, as traditional monitoring methods fail to capture subtle changes in brain activity. This review aimed to systematically map and critically evaluate the range of quantitative variables derived from electroencephalography (EEG) used to monitor sedation or anaesthesia in live animals, excluding laboratory rodents, over the past 35 years. Studies were identified through comprehensive searches in major biomedical databases (PubMed, Embase, CAB Abstract). To be included, studies had to report EEG use in relation to anaesthesia or sedation in living animals. A total of 169 studies were selected after screening and data extraction. Information was charted by animal species and reported EEG-derived variables. The most frequently reported variables were spectral edge frequencies, spectral power metrics, suppression ratio, and proprietary indices, such as the Bispectral Index. Methodological variability was high, and no consensus emerged on optimal EEG measures across species. While EEG-derived quantitative variables provide valuable insights, their interpretation remains highly context-dependent. Further research is necessary to refine these methods, explore variable combinations, and improve their clinical relevance in veterinary medicine. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

19 pages, 1242 KiB  
Review
Modeling the Bone Marrow Microenvironment to Better Understand the Pathogenesis, Progression, and Treatment of Hematological Cancers
by Kathryn A. Skelding, Daniel L. Barry and Lisa F. Lincz
Cancers 2025, 17(15), 2571; https://doi.org/10.3390/cancers17152571 - 4 Aug 2025
Viewed by 119
Abstract
Despite significant advancements in understanding the pathogenesis and treatment of hematological malignancies, including leukemia and multiple myeloma, the majority of patients continue to experience poor long-term outcomes. This is partly due to the difficulty of accurately recapitulating the malignant microenvironment in vitro, particularly [...] Read more.
Despite significant advancements in understanding the pathogenesis and treatment of hematological malignancies, including leukemia and multiple myeloma, the majority of patients continue to experience poor long-term outcomes. This is partly due to the difficulty of accurately recapitulating the malignant microenvironment in vitro, particularly the bone marrow niche. The complexity of the bone marrow microenvironment poses a challenge for the in vitro examination of hematological malignancies. Traditionally, 2D culture and animal models have been utilized, but these representations are limited and have been criticized for their lack of human physiological relevance. In an attempt to overcome this, 3D models have been developed that more accurately recapitulate the in vivo microenvironment. Herein, we present an overview of recent developments in 2D and 3D models used for studying the bone marrow niche in hematological malignancies, highlighting their advantages and limitations. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

20 pages, 1291 KiB  
Review
Ultrasound Imaging Modalities in the Evaluation of the Dog’s Stifle Joint
by Anargyros T. Karatrantos, Aikaterini I. Sideri, Pagona G. Gouletsou, Christina G. Bektsi and Mariana S. Barbagianni
Vet. Sci. 2025, 12(8), 734; https://doi.org/10.3390/vetsci12080734 - 4 Aug 2025
Viewed by 122
Abstract
This review presents a comprehensive overview of various ultrasound imaging techniques employed in the evaluation of the canine knee joint. It critically analyzes studies conducted on both human and animal subjects, with a focus on the diagnostic accuracy of B-mode ultrasound, Doppler examination, [...] Read more.
This review presents a comprehensive overview of various ultrasound imaging techniques employed in the evaluation of the canine knee joint. It critically analyzes studies conducted on both human and animal subjects, with a focus on the diagnostic accuracy of B-mode ultrasound, Doppler examination, contrast-enhanced ultrasound, and elastography in both normal and pathological conditions. The review underscores the necessity of strict adherence to the protocols of each ultrasound modality and emphasizes the importance of a thorough understanding of the anatomical region to achieve optimal outcomes. The findings suggest that these ultrasound techniques can significantly enhance the diagnostic process, providing valuable insights into anatomy, size, blood supply, and tissue elasticity. Additionally, in cases where advanced imaging modalities such as computed tomography (CT) or magnetic resonance imaging (MRI) are cost-prohibitive or less accessible, ultrasound serves as a reliable alternative, delivering high diagnostic accuracy and critical information regarding mechanical changes in the joint and neovascularization. Full article
Show Figures

Figure 1

19 pages, 94974 KiB  
Article
Promotion of Bone Defect Repair Using Decellularized Antler Cancellous Bone Loaded with Deer Osteoglycin
by Yusu Wang, Ying Zong, Weijia Chen, Naichao Diao, Quanmin Zhao, Boyin Jia, Miao Zhang, Jianming Li, Yan Zhao, Zhongmei He and Rui Du
Biomolecules 2025, 15(8), 1124; https://doi.org/10.3390/biom15081124 - 4 Aug 2025
Viewed by 171
Abstract
The combination of scaffold materials and bioactive factors is a promising strategy for promoting bone defect repair in tissue engineering. Previous studies have shown that osteoglycin (OGN) is highly expressed in the bone repair process using deer antler as an animal model of [...] Read more.
The combination of scaffold materials and bioactive factors is a promising strategy for promoting bone defect repair in tissue engineering. Previous studies have shown that osteoglycin (OGN) is highly expressed in the bone repair process using deer antler as an animal model of bone defects. It suggests that OGN may be a key active component involved in the bone repair process. The aim of this study was to investigate whether deer OGN (dOGN) could effectively promote bone regeneration. We successfully expressed dOGN using the E. coli pET30a system and evaluated its biological activity through cell proliferation and migration assays. At a concentration of 5 μg/mL, dOGN significantly promoted cell proliferation and migration. We then incorporated dOGN onto decellularized antler cancellous bone (DACB) scaffolds and assessed their osteogenic potential both in vitro and in vivo. The results indicated that dOGN loading enhanced cell proliferation, adhesion, and osteogenic activity. In vivo experiments confirmed that the dOGN-DACB scaffold significantly improved bone regeneration compared to DACB alone. This study demonstrates that dOGN-loaded DACB scaffolds hold great potential for clinical applications in treating critical-sized bone defects by mimicking the rapid regenerative properties of deer antlers. Full article
(This article belongs to the Special Issue Tissue Calcification in Normal and Pathological Environments)
Show Figures

Figure 1

14 pages, 4469 KiB  
Article
Molecular Characterization of Tick-Borne Pathogens in Jiangxi Province: A High Prevalence of Rickettsia, Anaplasma and Ehrlichia in Rhipicephalus microplus in Cattle from Ganzhou City, China
by Jia He, Meng Yang, Zhongqiu Teng, Peng Wang, Junrong Liang, Yusheng Zou, Wen Wang, Na Zhao and Tian Qin
Pathogens 2025, 14(8), 770; https://doi.org/10.3390/pathogens14080770 - 4 Aug 2025
Viewed by 146
Abstract
Rickettsia, Anaplasma, and Ehrlichia species are emerging tick-borne pathogens that cause zoonotic diseases, including rickettsiosis, anaplasmosis, and ehrlichiosis in both human and animal populations. This study aimed to investigate the prevalence of these pathogens in cattle-associated ticks from Ganzhou City, Jiangxi [...] Read more.
Rickettsia, Anaplasma, and Ehrlichia species are emerging tick-borne pathogens that cause zoonotic diseases, including rickettsiosis, anaplasmosis, and ehrlichiosis in both human and animal populations. This study aimed to investigate the prevalence of these pathogens in cattle-associated ticks from Ganzhou City, Jiangxi Province, China. Through molecular characterization using multilocus sequence analysis (16S rRNA, gltA, groEL, and ompA genes), we analyzed 392 Rhipicephalus microplus ticks collected from March to September in 2022. The PCR results showed that eight Rickettsiales bacteria were detected, including two species of Rickettsia (51/392, 13.0%), four species of Anaplasma (52/392, 13.3%), and two species of Ehrlichia (70/392, 17.9%). Notably, the circulation of multiple pathogen species within R. microplus populations demonstrates significant microbial diversity in this region. Further consideration and investigation should be given to the possible occurrence of rickettsiosis, ehrlichiosis, and anaplasmosis in humans and domestic animals. Our study provides critical baseline data for developing targeted surveillance strategies and informing public health interventions against tick-borne diseases in southeastern China. Full article
(This article belongs to the Special Issue Tick-Borne Pathogens and Their Impact on Human and Animal Health)
Show Figures

Figure 1

22 pages, 11423 KiB  
Article
Adornments from the Sea: Fish Skins, Heads, Bones, Vertebras, and Otoliths Used by Alaska Natives and Greenlandic Inuit
by Elisa Palomino
Wild 2025, 2(3), 30; https://doi.org/10.3390/wild2030030 - 4 Aug 2025
Viewed by 151
Abstract
This paper investigates the cultural, spiritual, and ecological use and value of fish by-products in the material practices of Alaska Native (Indigenous Peoples are the descendants of the populations who inhabited a geographical region at the time of colonisation and who retain some [...] Read more.
This paper investigates the cultural, spiritual, and ecological use and value of fish by-products in the material practices of Alaska Native (Indigenous Peoples are the descendants of the populations who inhabited a geographical region at the time of colonisation and who retain some or all of their own social, economic, cultural, and political institutions. In this paper, I use the terms “Indigenous” and “Native” interchangeably. In some countries, one of these terms may be favoured over the other.) and Greenlandic Inuit women. It aims to uncover how fish remnants—skins, bones, bladders, vertebrae, and otoliths—were transformed through tanning, dyeing, and sewing into garments, containers, tools, oils, glues, and adornments, reflecting sustainable systems of knowledge production rooted in Arctic Indigenous lifeways. Drawing on interdisciplinary methods combining Indigenist research, ethnographic records, and sustainability studies, the research contextualises these practices within broader environmental, spiritual, and social frameworks. The findings demonstrate that fish-based technologies were not merely utilitarian but also carried symbolic meanings, linking wearers to ancestral spirits, animal kin, and the marine environment. These traditions persisted even after European contact and the introduction of glass trade beads, reflecting continuity and cultural adaptability. The paper contributes to academic discourse on Indigenous innovation and environmental humanities by offering a culturally grounded model of zero-waste practice and reciprocal ecology. It argues that such ancestral technologies are directly relevant to contemporary sustainability debates in fashion and material design. By documenting these underexamined histories, the study provides valuable insight into Indigenous resilience and offers a critical framework for integrating Indigenous knowledge systems into current sustainability practices. Full article
Show Figures

Figure 1

20 pages, 4467 KiB  
Review
Structuring the Future of Cultured Meat: Hybrid Gel-Based Scaffolds for Edibility and Functionality
by Sun Mi Zo, Ankur Sood, So Yeon Won, Soon Mo Choi and Sung Soo Han
Gels 2025, 11(8), 610; https://doi.org/10.3390/gels11080610 - 3 Aug 2025
Viewed by 106
Abstract
Cultured meat is emerging as a sustainable alternative to conventional animal agriculture, with scaffolds playing a central role in supporting cellular attachment, growth, and tissue maturation. This review focuses on the development of gel-based hybrid biomaterials that meet the dual requirements of biocompatibility [...] Read more.
Cultured meat is emerging as a sustainable alternative to conventional animal agriculture, with scaffolds playing a central role in supporting cellular attachment, growth, and tissue maturation. This review focuses on the development of gel-based hybrid biomaterials that meet the dual requirements of biocompatibility and food safety. We explore recent advances in the use of naturally derived gel-forming polymers such as gelatin, chitosan, cellulose, alginate, and plant-based proteins as the structural backbone for edible scaffolds. Particular attention is given to the integration of food-grade functional additives into hydrogel-based scaffolds. These include nanocellulose, dietary fibers, modified starches, polyphenols, and enzymatic crosslinkers such as transglutaminase, which enhance mechanical stability, rheological properties, and cell-guidance capabilities. Rather than focusing on fabrication methods or individual case studies, this review emphasizes the material-centric design strategies for building scalable, printable, and digestible gel scaffolds suitable for cultured meat production. By systemically evaluating the role of each component in structural reinforcement and biological interaction, this work provides a comprehensive frame work for designing next-generation edible scaffold systems. Nonetheless, the field continues to face challenges, including structural optimization, regulatory validation, and scale-up, which are critical for future implementation. Ultimately, hybrid gel-based scaffolds are positioned as a foundational technology for advancing the functionality, manufacturability, and consumer readiness of cultured meat products, distinguishing this work from previous reviews. Unlike previous reviews that have focused primarily on fabrication techniques or tissue engineering applications, this review provides a uniquely food-centric perspective by systematically evaluating the compositional design of hybrid hydrogel-based scaffolds with edibility, scalability, and consumer acceptance in mind. Through a comparative analysis of food-safe additives and naturally derived biopolymers, this review establishes a framework that bridges biomaterials science and food engineering to advance the practical realization of cultured meat products. Full article
(This article belongs to the Special Issue Food Hydrocolloids and Hydrogels: Rheology and Texture Analysis)
Show Figures

Figure 1

15 pages, 744 KiB  
Article
Investigation of Effects of Low Ruminal pH Values on Serum Concentrations of Macrominerals, Trace Elements, and Vitamins and Oxidative Status of Dairy Cows
by Panagiotis D. Katsoulos, Bengü Bilgiç, Duygu Tarhan, Fatma Ateş, Suat Ekin, Süleyman Kozat, Banu Dokuzeylül, Mehmet Erman Or, Emmanouil Kalaitzakis, Georgios E. Valergakis and Nikolaos Panousis
Ruminants 2025, 5(3), 35; https://doi.org/10.3390/ruminants5030035 - 2 Aug 2025
Viewed by 375
Abstract
Due to the feeding system (high-concentrate diet) during the early lactation stage, ruminal pH in dairy cows follows a diurnal pattern and can remain below the critical level of 5.5 for extended periods of the day. This study aimed to evaluate the effect [...] Read more.
Due to the feeding system (high-concentrate diet) during the early lactation stage, ruminal pH in dairy cows follows a diurnal pattern and can remain below the critical level of 5.5 for extended periods of the day. This study aimed to evaluate the effect of low ruminal pH on blood concentrations of certain macrominerals, trace minerals, and fat-soluble vitamins and on the oxidative status of dairy cows during the first half of lactation. Fifty-three randomly selected lactating Holstein cows were used; blood and ruminal fluid samples were collected from all cows on days 30, 90 and 150 of lactation. Blood samples were obtained via coccygeal venipuncture, while the ruminal fluid was obtained by rumenocentesis and the pH was measured immediately after collection. Using a threshold pH of 5.5, samples were classified as normal (pH > 5.5) or low pH (pH ≤ 5.5). Serum concentrations of Ca, Mg, K, Cr, Mn, Zn, Se, and vitamins A, D3, E, and K were not significantly affected by ruminal pH, either by days in milk or by their interaction (p > 0.05). Plasma malondialdehyde and reduced glutathione followed the same trend (p > 0.05). Copper concentration was significantly higher (p < 0.05), and Fe concentration tended to be higher in cows with low pH compared to those with normal pH (p = 0.052). On day 150 of lactation, Cu, Fe, and Co concentrations were significantly higher in low-pH cows compared to normal-pH cows (p < 0.05). Low ruminal pH is associated with significant changes in serum concentrations of copper, iron, and cobalt but has no significant effect on the oxidative status of the animals or on the serum concentrations of the macro elements and fat-soluble vitamins studied. Full article
Show Figures

Figure 1

28 pages, 2191 KiB  
Article
An Evaluation of Food Security and Grain Production Trends in the Arid Region of Northwest China (2000–2035)
by Yifeng Hao and Yaodong Zhou
Agriculture 2025, 15(15), 1672; https://doi.org/10.3390/agriculture15151672 - 2 Aug 2025
Viewed by 244
Abstract
Food security is crucial for social stability and economic development. Ensuring food security in the arid region of Northwest China presents unique challenges due to limited water and soil resources. This study addresses these challenges by integrating a comprehensive water and soil resource [...] Read more.
Food security is crucial for social stability and economic development. Ensuring food security in the arid region of Northwest China presents unique challenges due to limited water and soil resources. This study addresses these challenges by integrating a comprehensive water and soil resource matching assessment with grain production forecasting. Based on data from 2000 to 2020, this research projects the food security status to 2035 using the GM(1,1) model, incorporating a comprehensive index of soil and water resource matching and regression analysis to inform production forecasts. Key assumptions include continued historical trends in population growth, urbanization, and dietary shifts towards an increased animal protein consumption. The findings revealed a consistent upward trend in grain production from 2000 to 2020, with an average annual growth rate of 3.5%. Corn and wheat emerged as the dominant grain crops. Certain provinces demonstrated comparative advantages for specific crops like rice and wheat. The most significant finding is that despite the projected growth in the total grain output by 2035 compared to 2020, the regional grain self-sufficiency rate is projected to range from 79.6% to 84.1%, falling below critical food security benchmarks set by the FAO and China. This projected shortfall carries significant implications, underscoring a serious challenge to regional food security and highlighting the region’s increasing vulnerability to external food supply fluctuations. The findings strongly signal that current trends are insufficient and necessitate urgent and proactive policy interventions. To address this, practical policy recommendations include promoting water-saving technologies, enhancing regional cooperation, and strategically utilizing the international grain trade to ensure regional food security. Full article
(This article belongs to the Topic Food Security and Healthy Nutrition)
Show Figures

Figure 1

8 pages, 405 KiB  
Brief Report
Characterization of DNA Viruses in Hindgut Contents of Protaetia brevitarsis Larvae
by Jean Geung Min, Namkyong Min, Binh T. Nguyen, Rochelle A. Flores and Dongjean Yim
Insects 2025, 16(8), 800; https://doi.org/10.3390/insects16080800 - 1 Aug 2025
Viewed by 264
Abstract
The scarab species Protaetia brevitarsis, an edible insect, has been used in traditional medicine, as animal feed, and for converting agricultural organic wastes into biofertilizer. The intestinal tract, which contains a diverse array of microbiota, including viruses, plays a critical role in [...] Read more.
The scarab species Protaetia brevitarsis, an edible insect, has been used in traditional medicine, as animal feed, and for converting agricultural organic wastes into biofertilizer. The intestinal tract, which contains a diverse array of microbiota, including viruses, plays a critical role in animal health and homeostasis. We previously conducted a comparative analysis of the gut microbiota of third-instar larvae of P. brevitarsis obtained from five different farms and found significant differences in the composition of the gut bacterial microbiota between farms. To better understand the gut microbiota, the composition of DNA viruses in the hindgut contents of P. brevitarsis larvae obtained from five farms was investigated using metagenomic sequencing in this study. The β-diversity was significantly different between metagenomic data obtained from the five farms (PERMANOVA, pseudo-F = 46.95, p = 0.002). Family-based taxonomic analysis indicated that the relative abundance of viruses in the gut overall metagenome varied significantly between farms, with viral reads comprising approximately 41.2%, 15.0%, 4.3%, 4.0%, and 1.6% of metagenomic sequences from the farms Tohamsan gumbengi farm (TO), Secomnalagum gumbengi (IS), Gumbengi brothers (BR), Kyungpook farm (KB), and Jhbio (JH), respectively. More than 98% of the DNA viruses in the hindgut were bacteriophages, mainly belonging to the Siphoviridae family. At the species level, Phage Min1, infecting the genus Microbacterium, was detected in all farms, and it was the most abundant bacteriophage in intestinal microbiota, with a prevalence of 0.9% to 29.09%. The detected eukaryotic DNA viruses accounted for 0.01% to 0.06% of the intestinal microbiota and showed little or no relationship with insect viruses. Therefore, they most likely originated from contaminated feed or soil. These results suggest that the condition of substrates used as feed is more important than genetic factors in shaping the intestinal viral microbiota of P. brevitarsis larvae. These results can be used as reference data for understanding the hindgut microbiota of P. brevitarsis larvae and, more generally, the gut virome of insects. Full article
(This article belongs to the Topic Diversity of Insect-Associated Microorganisms)
Show Figures

Figure 1

Back to TopTop