Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (263)

Search Parameters:
Keywords = creep–fatigue

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6098 KiB  
Article
Performance Optimization of Stacked Weld in Hydrogen Production Reactor Based on Response Surface Methodology–Genetic Algorithm
by Yu Liu, Hongtao Gu, Jincheng Zhang, Zhiyi Leng, Ziguang Wang and Shengfang Zhang
Coatings 2025, 15(8), 889; https://doi.org/10.3390/coatings15080889 (registering DOI) - 31 Jul 2025
Viewed by 255
Abstract
To address the issues of hydrogen embrittlement, creep, and fatigue that commonly occur in the welds of hydrogen production reactor operating under hydrogen exposure, high temperature and high pressure, this study proposes adding Si and Mo as reinforcing elements to the welding materials [...] Read more.
To address the issues of hydrogen embrittlement, creep, and fatigue that commonly occur in the welds of hydrogen production reactor operating under hydrogen exposure, high temperature and high pressure, this study proposes adding Si and Mo as reinforcing elements to the welding materials to enhance weld performance. Given the varying performance requirements of different weld layers in the stacked weld, a gradient performance optimization method for the stacked weld of hydrogen production reactors based on the response surface methodology (RSM)–genetic algorithm (GA) is proposed. Using tensile strength, the hydrogen embrittlement sensitivity index, fatigue strain strength, creep rate and weld performance evaluation indices, a high-precision regression model for Si and Mo contents and weld performance indices was established through RSM and analysis of variance (ANOVA). A multi-objective optimization mathematical model for gradient improvement of the stacked weld was also established. This model was solved using a GA to obtain the optimal element content combination added to the welding wire and the optimal weld thickness for each weld layer. Finally, submerged arc welding experiments of the stacked weld were conducted according to the optimization results. The results show that the tensile strength of the base layer, filling layer and cover layer of the stacked weld increased by 5.60%, 6.16% and 4.53%, respectively. Hydrogen embrittlement resistance increased by 70.56%, 52.40% and 45.16%, respectively. The fatigue and creep resistance were also improved. The experimental results validate the feasibility and accuracy of the proposed optimization method. Full article
Show Figures

Figure 1

14 pages, 2594 KiB  
Article
Low-Temperature Performance and Thermal Control of Asphalt Modified with Microencapsulated Phase-Change Materials
by Liming Zhang, Junmao Wang, Jinhua Wu, Ran Zhang, Yinchuan Guo, Hongbo Shen, Xinghua Liu and Kuncan Li
Coatings 2025, 15(8), 879; https://doi.org/10.3390/coatings15080879 - 26 Jul 2025
Viewed by 365
Abstract
Conventional asphalt is prone to cracking in cold climates due to its poor flexibility and limited ability to regulate temperature. This study investigates the use of low-temperature microencapsulated phase-change materials (MPCMs) to improve both the thermal storage and low-temperature performance of asphalt. MPCMs [...] Read more.
Conventional asphalt is prone to cracking in cold climates due to its poor flexibility and limited ability to regulate temperature. This study investigates the use of low-temperature microencapsulated phase-change materials (MPCMs) to improve both the thermal storage and low-temperature performance of asphalt. MPCMs were incorporated into asphalt through physical blending at various concentrations. The physical, thermal, and rheological properties of the asphalt were then systematically evaluated. Tests included penetration, softening point, ductility, thermogravimetric analysis (TGA), and dynamic shear rheometer (DSR). The addition of MPCMs increased penetration and ductility. It slightly reduced the softening point and viscosity. These changes suggest improved flexibility and workability at low temperatures. Rheological tests showed reductions in rutting and fatigue factors. This indicates better resistance to thermal and mechanical stresses. Bending Beam Rheometer (BBR) results further confirmed that MPCMs lowered creep stiffness and increased the m-value. These findings demonstrate improved crack resistance under cold conditions. Thermal cycling tests also showed that MPCMs delayed the cooling process and reduced temperature fluctuations. This highlights their potential to enhance both energy efficiency and the durability of asphalt pavements in cold regions. Full article
(This article belongs to the Special Issue Synthesis and Application of Functional Polymer Coatings)
Show Figures

Graphical abstract

21 pages, 11034 KiB  
Article
Effect of Pre-Hoop Expansion Deformation on High-Temperature Mechanical Properties of Zirconium Plate at 400 °C
by Haidong Qi, Li You and Xiping Song
Metals 2025, 15(8), 827; https://doi.org/10.3390/met15080827 - 23 Jul 2025
Viewed by 218
Abstract
The role of pre-hoop expansion deformation on high-temperature mechanical properties of zirconium at 400 °C was investigated. The results showed that with the increase in the pre-strain, the yield strength and ultimate strength increased while the elongation decreased, all in a linear way. [...] Read more.
The role of pre-hoop expansion deformation on high-temperature mechanical properties of zirconium at 400 °C was investigated. The results showed that with the increase in the pre-strain, the yield strength and ultimate strength increased while the elongation decreased, all in a linear way. The creep life had a significant decrease as the creep stress exceeded 276 MPa. The fatigue–creep results indicated that as the stress ratio was less than 0.7, the deformation process was dominated by fatigue (the fatigue–creep life first increased and then decreased), while as the stress ratio was higher than 0.7, the deformation process was dominated by creep (the fatigue–creep life decreased monotonically). The dwell time had a negative effect on the fatigue–creep life. The stress field simulation results indicated that there existed a compressive stress zone, a stress transition zone, and a tensile stress zone around the pre-hoop expansion deformation zone. The compressive stress was beneficial while the tensile stress was harmful for the high-temperature mechanical properties of the zirconium plate. Full article
Show Figures

Figure 1

13 pages, 3867 KiB  
Article
Effect of Hot Isostatic Pressing on Mechanical Properties of K417G Nickel-Based Superalloy
by Fan Wang, Yuandong Wei, Yi Zhou, Wenqi Guo, Zexu Yang, Jinghui Jia, Shusuo Li and Haigen Zhao
Crystals 2025, 15(7), 643; https://doi.org/10.3390/cryst15070643 - 11 Jul 2025
Viewed by 223
Abstract
The cast nickel-based superalloy K417G exhibits excellent high-temperature strength, but non-equilibrium solidification during casting can cause defects such as irreparable interdendritic microporosity, which significantly degrades its fatigue and creep properties. This study uses hot isostatic pressing (HIP) to eliminate internal flaws such as [...] Read more.
The cast nickel-based superalloy K417G exhibits excellent high-temperature strength, but non-equilibrium solidification during casting can cause defects such as irreparable interdendritic microporosity, which significantly degrades its fatigue and creep properties. This study uses hot isostatic pressing (HIP) to eliminate internal flaws such as porosity in the K417G alloy, aiming to improve its mechanical properties. We investigated the microstructure and mechanical properties of K417G under two thermal conditions: solution heat treatment (SHT) and hot isostatic pressing (HIP). The results indicate that HIP significantly reduces microporosity. Compared to SHT, HIP improves the mechanical performance of K417G. The creep fracture mechanism shifts from intergranular brittle fracture (SHT) to ductile fracture (HIP). Consequently, HIP increases the alloy′s creep life approximately threefold and raises its fatigue limit by about 20 MPa. This improvement is attributed to pore density reduction, which decreases stress concentration zones and homogenizes the microstructure, thereby impeding fatigue crack nucleation and extending the crack incubation period. Full article
(This article belongs to the Special Issue Microstructure and Characterization of Crystalline Materials)
Show Figures

Figure 1

22 pages, 1654 KiB  
Review
A Review of Mechanical Performance Studies on Composite Concrete Beams and Slabs
by Xinhao Wang, Qiuwei Yang, Xi Peng, Kangshuo Xia and Bin Xu
Materials 2025, 18(14), 3259; https://doi.org/10.3390/ma18143259 - 10 Jul 2025
Viewed by 357
Abstract
This paper reviews the applications and performance advantages of ultra-high-performance concrete (UHPC), engineered cementitious composite (ECC), and recycled aggregate concrete (RAC) in composite flexural members. UHPC is characterized by its ultra-high strength, high toughness, excellent durability, and microcrack self-healing capability, albeit with high [...] Read more.
This paper reviews the applications and performance advantages of ultra-high-performance concrete (UHPC), engineered cementitious composite (ECC), and recycled aggregate concrete (RAC) in composite flexural members. UHPC is characterized by its ultra-high strength, high toughness, excellent durability, and microcrack self-healing capability, albeit with high costs and complex production processes. ECC demonstrates superior tensile, flexural, and compressive strength and durability, yet it exhibits a lower elastic modulus and greater drying shrinkage strain. RAC, as an eco-friendly concrete, offers cost-effectiveness and environmental benefits, although it poses certain performance challenges. The focus of this review is on how to enhance the load-bearing capacity of composite beams or slabs by modifying the interface roughness, adjusting the thickness of the ECC or UHPC layer, and altering the cross-sectional form. The integration of diverse concrete materials improves the performance of beam and slab elements while managing costs. For instance, increasing the thickness of the UHPC or ECC layer typically enhances the load-bearing capacity of composite beams or plates by approximately 10% to 40%. Increasing the roughness of the interface can significantly improve the interfacial bond strength and further augment the ultimate load-bearing capacity of composite components. Moreover, the optimized design of material mix proportions and cross-sectional shapes can also contribute to enhancing the load-bearing capacity, crack resistance, and ductility of composite components. Nevertheless, challenges persist in engineering applications, such as the scarcity of long-term monitoring data on durability, fatigue performance, and creep effects. Additionally, existing design codes inadequately address the nonlinear behavior of multi-material composite structures, necessitating further refinement of design theories. Full article
(This article belongs to the Special Issue Advances in Concrete and Binders for Sustainable Engineering)
Show Figures

Figure 1

16 pages, 4552 KiB  
Article
Life Prediction of Crack Growth for P92 Steel Under Strain-Controlled Creep–Fatigue Conditions Using a Sharp Notched Round Bar Specimen
by A. Toshimitsu Yokobori, Go Ozeki, Kazutaka Jinno, Hiroaki Seino, Ryuji Sugiura and Isamu Nonaka
Metals 2025, 15(7), 737; https://doi.org/10.3390/met15070737 - 30 Jun 2025
Viewed by 204
Abstract
Testing and the estimation methods for predicting the life of crack initiation and crack growth for P92 steel using a circular sharp notched round bar specimen (CNS) under strain-controlled creep and fatigue conditions have been reported previously. A unique estimation method for the [...] Read more.
Testing and the estimation methods for predicting the life of crack initiation and crack growth for P92 steel using a circular sharp notched round bar specimen (CNS) under strain-controlled creep and fatigue conditions have been reported previously. A unique estimation method for the cycle-sequential characteristics of tensile and compressive peak stresses is proposed; specifically, the nominal stress range σnet=(σmaxσmin)net and the measurement of crack length using the direct current electric potential drop (DCPD) method were adopted. This method was effective in specifying the failure life and crack initiation life by verifying the crack growth length. However, to show the universality of these results, it is important to compare the experimental results obtained under strain-controlled creep and fatigue conditions with those obtained under stress-controlled creep and fatigue conditions and with those for smooth specimens estimated based on the linear and nonlinear damage summation rule. Furthermore, it may also be important to compare these results with those of smooth specimens estimated based on the Manson–Coffin law when the failure life is fatigue-dominant. Considering these aspects, detailed experiments and analyses were systematically conducted for P92 steel in this study, and the above comparisons were conducted. The results aid in achieving a unified understanding of the law of fracture life, including those under stress- and strain-controlled creep and fatigue conditions. Full article
(This article belongs to the Special Issue Creep and Fatigue Behavior of Alloys)
Show Figures

Figure 1

15 pages, 966 KiB  
Article
Foam Rolling or Percussive Massage for Muscle Recovery: Insights into Delayed-Onset Muscle Soreness (DOMS)
by Sebastian Szajkowski, Jarosław Pasek and Grzegorz Cieślar
J. Funct. Morphol. Kinesiol. 2025, 10(3), 249; https://doi.org/10.3390/jfmk10030249 - 29 Jun 2025
Viewed by 1724
Abstract
Background: Pain manifestations as well as increased muscle tone and stiffness noted in the course of delayed-onset muscle soreness (DOMS) are reflected in altered values of the biomechanical and visco-elastic parameters of muscles. This study aimed to compare the effects of soft tissue [...] Read more.
Background: Pain manifestations as well as increased muscle tone and stiffness noted in the course of delayed-onset muscle soreness (DOMS) are reflected in altered values of the biomechanical and visco-elastic parameters of muscles. This study aimed to compare the effects of soft tissue mobilization with foam rolling and percussive massage on symptoms of DOMS induced by a standardized muscle fatigue protocol. Methods: Healthy volunteers (n = 60) were divided into three groups: FR group—foam rolling (n = 20), PM group—percussive massage (n = 20) and CON group—control/passive rest (n = 20). The fatigue protocol for the gastrocnemius muscle was carried out for development of DOMS in subsequent days. Therapeutic procedures were applied to participants for 3 consecutive days. The results of therapy were assessed by means of myotonometry, performed five times (before, three times during the treatment procedure, and after the end of the procedure). Results: Foam rolling significantly reduced the onset and duration of increased muscle tone (p = 0.006) and stiffness (p < 0.001), unlike percussive massage. The control group exhibited higher tone and stiffness after 48 h, at the peak of DOMS-related pain symptoms. Only foam rolling improved elasticity (decrement, p < 0.001), while visco-elastic properties (relaxation, creep) varied inversely with tone and stiffness. Foam rolling led to significantly lower stiffness (day 2) and reduced decrement and relaxation (day 4) compared to the control. Neither therapy was more effective than passive rest for pain relief during the observation period. Conclusions: Foam rolling and percussive massage accelerate recovery of muscle tone, stiffness, and elasticity after DOMS as compared to passive rest but offer no added benefit for pain relief. Full article
(This article belongs to the Section Functional Anatomy and Musculoskeletal System)
Show Figures

Figure 1

17 pages, 2556 KiB  
Article
Fatigue Life Analysis of In Situ Conversion Burner Heaters for Oil Shale Based on the Numerical Simulation Method
by Xiaoqing Duan, Fujian Ren, Weihua Zhang, Xiaohong Zhang and Yuan Wang
Energies 2025, 18(11), 2963; https://doi.org/10.3390/en18112963 - 4 Jun 2025
Viewed by 363
Abstract
Oil shale, an unconventional oil and gas resource, can generate the required hydrocarbons through high-temperature pyrolysis. In situ conversion extraction technology utilizes downhole heaters to directly inject high-temperature heat into the oil shale layer to achieve the effect of oil and gas recovery. [...] Read more.
Oil shale, an unconventional oil and gas resource, can generate the required hydrocarbons through high-temperature pyrolysis. In situ conversion extraction technology utilizes downhole heaters to directly inject high-temperature heat into the oil shale layer to achieve the effect of oil and gas recovery. For the metal material components of the combustion heaters, the uneven temperature fields experienced during the start of operations, processing, and end of operations can lead to fatigue conditions, such as high-temperature creep, micro-damage, and micro-deformation due to thermal effects. To prevent the occurrence of the aforementioned issues, it is necessary to conduct fatigue life analysis of downhole combustion heaters. By combining actual combustion heater operation experiments with finite element simulation, this paper analyzes the impact of temperature, structure, and stress amplitude on the fatigue life of heaters. The results indicate that the fatigue life of the heaters is most significantly influenced by the metal gaskets, and the higher the exhaust gas temperature, the lower the fatigue life of the heater. Heating operations significantly reduce the fatigue life of the heater, while cooling operations have almost no effect on the fatigue life. Circular-pore metal gaskets have a higher fatigue life than those with a square hole shape. Considering only the thickness of the metal gaskets, the thicker the gasket, the higher the fatigue life. Stress amplitude has the most significant impact on the fatigue life of the heater; when the stress amplitude is doubled, the metal gaskets quickly undergo fatigue damage. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

17 pages, 5744 KiB  
Article
Evaluation of Mechanical Characteristics of Tungsten Inert Gas (TIG) Welded Butt Joint of Inconel 600
by Arash Moradi, Fatemeh Marashi Najafi, Yong Chen and Mahmoud Chizari
J. Manuf. Mater. Process. 2025, 9(6), 177; https://doi.org/10.3390/jmmp9060177 - 28 May 2025
Viewed by 544
Abstract
Inconel 600 alloy has gained consideration as a favourable material for heat and power applications, particularly in turbine blades, due to its superior mechanical behaviour encompassing strength, toughness, oxidation resistance, and ductility. Tungsten Inert Gas (TIG) welding is one of the preferred techniques [...] Read more.
Inconel 600 alloy has gained consideration as a favourable material for heat and power applications, particularly in turbine blades, due to its superior mechanical behaviour encompassing strength, toughness, oxidation resistance, and ductility. Tungsten Inert Gas (TIG) welding is one of the preferred techniques for joining these alloys. Therefore, the investigation of the mechanical behaviour after the welding process is crucial for selecting the appropriate technique for joining Inconel 600 sheets. This research focuses on investigating the microstructure and mechanical behaviour of TIG-welded Inconel 600 through a series of tests, such as tensile, fatigue, creep, and hardness evaluations. In addition, microstructural analysis is combined with these mechanical evaluations to simulate the operating conditions experienced by turbine blades. Key parameters such as yield strength, tensile strength, and elongation have been evaluated through these analyses. The Ramberg–Osgood relationship has been investigated using the engineering and true stress–strain curves obtained from the welded specimens. The results of the fatigue test illustrate the relationship between strain amplitude and the number of cycles to failure for single and double-edge notched specimens. The test was performed at two different loads including 400 MPa and 250 MPa at a constant temperature of 650 °C, and the corresponding strain-time curves were recorded. The results showed rapid creep failure at 650 °C, suggesting that TIG welding may need to be optimized for high temperature applications. Full article
Show Figures

Figure 1

26 pages, 16116 KiB  
Article
Cyclic Thermomechanical Elasto-Viscoplasticity Implementation Using User Material Interface
by Marko Nagode, Simon Oman, Jernej Klemenc and Domen Šeruga
Materials 2025, 18(11), 2512; https://doi.org/10.3390/ma18112512 - 27 May 2025
Viewed by 401
Abstract
The paper introduces a user material for Abaqus, detailing the modeling of elasto-viscoplasticity under diverse thermomechanical conditions. Converting constitutive equations into a robust code requires extensive efforts to solve numerous crucial numerical challenges. In addition to deriving the equations, detailing the code is [...] Read more.
The paper introduces a user material for Abaqus, detailing the modeling of elasto-viscoplasticity under diverse thermomechanical conditions. Converting constitutive equations into a robust code requires extensive efforts to solve numerous crucial numerical challenges. In addition to deriving the equations, detailing the code is also crucial for an efficient implementation of a rheological model. The algorithm for multiaxial Prandtl operator approach presented here provides both. The subroutines of the numerical code are explained in detail and solutions to ensure numerical stability are demonstrated. The multiaxial Prandtl operator approach allows a simple and effective calculation of fatigue damage, creep damage, e.g., or dissipated energy using available uniaxial methods. To demonstrate practical application, the paper illustrates the usefulness of the code by analyzing perforated plates under tension–compression and shear loading. This contribution enriches the computational modeling of elasto-viscoplasticity for the finite element method. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Graphical abstract

20 pages, 3018 KiB  
Article
Performance Evaluation of Desulfurized Rubber Powder and Styrene-Butadiene-Styrene Composite-Modified Asphalt
by Bin Liu, Kai Zhang, Xiangyang Fan and Chongzhi Tu
Coatings 2025, 15(5), 607; https://doi.org/10.3390/coatings15050607 - 19 May 2025
Viewed by 500
Abstract
Rubber powder asphalt has been widely studied due to its favorable temperature sensitivity and fatigue resistance. However, because rubber powder does not easily swell in asphalt, it leads to poor storage stability and high viscosity, limiting its large-scale application. In this study, modified [...] Read more.
Rubber powder asphalt has been widely studied due to its favorable temperature sensitivity and fatigue resistance. However, because rubber powder does not easily swell in asphalt, it leads to poor storage stability and high viscosity, limiting its large-scale application. In this study, modified asphalt was prepared using desulfurized rubber powder (DRP) and styrene-butadiene-styrene (SBS) modifiers, aiming to identify the optimal formulation for enhanced performance. It was hypothesized that the combined use of DRP and SBS would produce synergistic effects, improving the overall mechanical and rheological properties of the asphalt. To test this, the effects of this composite modification were evaluated using Marshall tests (penetration, softening point, ductility, elastic recovery, and Brookfield viscosity) and Superpave tests (shear modulus, high-performance grade, rutting factor, fatigue factor, and creep and recovery). Additionally, moisture susceptibility, high-temperature stability, low-temperature cracking resistance, and fatigue resistance at the mixture level were assessed. Performance was evaluated according to the Chinese standard JT/T 798-2019 for rubberized asphalt using reclaimed tire rubber. Results show that DRP-modified asphalt demonstrates excellent temperature sensitivity, rutting resistance, deformation resistance, and fatigue performance. However, an excessive amount of DRP increases Brookfield viscosity, which negatively affects the workability of the asphalt binder. The addition of SBS further improves the softening point, ductility, and deformation recovery of the binder. Considering cost-effectiveness and overall performance, the optimal formulation was determined to be 25% DRP and 1% SBS. At this dosage, all performance indicators met the required standards. The rotational viscosity at 180 °C was approximately 35% lower than that of conventional rubber powder–modified asphalt, while the high-temperature rutting factor and fatigue resistance at medium-to-low temperatures outperformed those of SBS-modified asphalt. The mixture test results reveal that the gradation has an impact on the performance of the obtained mixture, but overall, the DRP-SBS composite-modified asphalt mixture has significant advantages in terms of performance and cost-effectiveness. Full article
(This article belongs to the Special Issue Advances in Asphalt and Concrete Coatings)
Show Figures

Figure 1

35 pages, 4393 KiB  
Review
Disruptive Manufacturing of Oxide Dispersion-Strengthened Steels for Nuclear Applications: Advances, Challenges, and Future Prospects
by Cory Murphy, Shaina Buksa, Joey Day, Argelia Felix-Lopez, Subin Antony Jose and Pradeep L. Menezes
Processes 2025, 13(5), 1572; https://doi.org/10.3390/pr13051572 - 19 May 2025
Viewed by 1165
Abstract
Oxide dispersion-strengthened (ODS) steels are emerging as leading candidate materials for next-generation nuclear reactor components due to their exceptional resistance to creep, fatigue, and irradiation, combined with high strength at elevated temperatures. This paper investigates the microstructural mechanisms underpinning these superior properties, with [...] Read more.
Oxide dispersion-strengthened (ODS) steels are emerging as leading candidate materials for next-generation nuclear reactor components due to their exceptional resistance to creep, fatigue, and irradiation, combined with high strength at elevated temperatures. This paper investigates the microstructural mechanisms underpinning these superior properties, with a particular focus on the critical role of nano-oxides in enhancing performance. Various manufacturing techniques, including powder metallurgy and additive manufacturing, are reviewed to assess their impact on the structural and mechanical properties of ODS steels. Recent case studies on their application in nuclear environments highlight the potential of ODS steels to significantly extend component longevity without necessitating major reactor redesigns. Nevertheless, further research is necessary to assess their reliability under extreme environmental conditions and to determine optimal, scalable manufacturing processes for large-scale production. Full article
(This article belongs to the Special Issue Advanced Functionally Graded Materials)
Show Figures

Figure 1

16 pages, 6813 KiB  
Article
Creep–Fatigue Behavior and Life Prediction of Medium-Si-Mo Ductile Iron
by Mucheng Liu, Huihua Feng and Peirong Ren
Appl. Sci. 2025, 15(10), 5406; https://doi.org/10.3390/app15105406 - 12 May 2025
Viewed by 512
Abstract
Exhaust manifolds accumulate creep and fatigue damage under cyclic thermal loading, leading to localized failure. Understanding a material’s mechanical behavior is crucial for accurate life assessment. This study systematically investigated the low-cycle fatigue (LCF) and creep–fatigue interaction behaviors of medium-silicon molybdenum ductile iron. [...] Read more.
Exhaust manifolds accumulate creep and fatigue damage under cyclic thermal loading, leading to localized failure. Understanding a material’s mechanical behavior is crucial for accurate life assessment. This study systematically investigated the low-cycle fatigue (LCF) and creep–fatigue interaction behaviors of medium-silicon molybdenum ductile iron. It was found that QTRSi4Mo exhibited cyclic hardening at room temperature and 400 °C, whereas it exhibited cyclic softening at 600 °C and 700 °C for low-cycle stress–strain responses. During creep–fatigue tests with hold time, variations in the strain amplitude did not alter the hysteresis loop shape or the hardening/softening characteristics of the material. They only induced a slight upward shift in the yield center. Additionally, stress relaxation primarily occurred in the initial phase of the hold period, so the hold duration had little effect on the final stress value. The investigation of creep–fatigue life models highlighted that accurately characterizing the damage induced by stress relaxation during the hold stage is critical for creep damage evaluation. The calculated creep damage results differed greatly from the experimental results of the time fraction model (TF). A combined approach using the strain energy density dissipation model (T-SEDE) and the Ostergren method demonstrated excellent predictive capability for creep–fatigue life. Full article
(This article belongs to the Special Issue Advances and Applications in Mechanical Fatigue and Life Assessment)
Show Figures

Figure 1

15 pages, 7566 KiB  
Article
Fatigue Properties of Methacrylic Adhesive Plexus MA300
by Paweł Maćkowiak
Materials 2025, 18(9), 2127; https://doi.org/10.3390/ma18092127 - 6 May 2025
Viewed by 354
Abstract
This study investigates the fatigue durability of Plexus MA300 methacrylic adhesive, which is employed in structural joints of metals, plastics, and composites. Cast adhesive specimens were subjected to cyclic tensile loads at a frequency of 5 Hz with a stress ratio R = [...] Read more.
This study investigates the fatigue durability of Plexus MA300 methacrylic adhesive, which is employed in structural joints of metals, plastics, and composites. Cast adhesive specimens were subjected to cyclic tensile loads at a frequency of 5 Hz with a stress ratio R = 0.1. Six load levels were tested. Hysteresis loops were recorded during testing and analyzed in detail. Significant differences in fatigue fracture characteristics were observed depending on load level. Specimens subjected to high loads exhibited a characteristic radial structure with a distinct crack initiation point, whereas specimens tested at lower loads showed more uniform, matte fracture surfaces. Hysteresis loop analysis revealed phenomena typical for polymers: creep and damping causing energy dissipation. Various fatigue approaches were compared: stress-based, strain-based, energy-based, and stiffness-based. The highest coefficient of determination (R²) was obtained for the model based on strain energy density, indicating its superior utility in predicting the fatigue life of the tested adhesive. The obtained results contribute to the understanding of the fatigue behavior of methacrylic adhesives and provide practical data for structural joint design involving this material class. Full article
Show Figures

Figure 1

20 pages, 13462 KiB  
Article
Anisotropy in the Creep–Fatigue Behaviors of a Directionally Solidified Ni-Based Superalloy: Damage Mechanisms and Life Assessment
by Anping Long, Xiaoshan Liu, Lei Xiao, Gaoxiang Zhang, Jiangying Xiong, Ganjiang Feng, Jianzheng Guo and Rutie Liu
Crystals 2025, 15(5), 429; https://doi.org/10.3390/cryst15050429 - 30 Apr 2025
Viewed by 377
Abstract
Aero-engine turbine vanes made from directionally solidified nickel-based superalloys often fail with crack formation from the external wall of cooling channels. Therefore, this study simulates the compressive load on the external wall of the vane and conducts a sequence of creep–fatigue evaluations at [...] Read more.
Aero-engine turbine vanes made from directionally solidified nickel-based superalloys often fail with crack formation from the external wall of cooling channels. Therefore, this study simulates the compressive load on the external wall of the vane and conducts a sequence of creep–fatigue evaluations at 980 °C to investigate the creep–fatigue damage mechanisms of a directionally solidified superalloy and to assess its life. It is found that at low strain ranges, creep damage is dominant, with creep cavities forming inside the specimen and fatigue sources mostly distributed in the specimen interior. As the strain range increases, the damage mechanism transitions from creep-dominated to creep–fatigue coupled damage, with cracks nucleating preferentially on the surface and exhibiting a characteristic of multiple fatigue sources. In the longitudinal (L) specimen, dislocations in multiple orientations of the {111}<110> slip system are activated simultaneously, interacting within the γ channels to form dislocation networks, and dislocations shear through the γ′ phase via antiphase boundary (APB) pairs. In the transverse (T) specimen, stacking intrinsic stacking faults (SISFs) accumulate within the limited {111}<112> slip systems, subsequently forming a dislocation slip band. The modified creep–fatigue life prediction model, incorporating strain energy dissipation and stress relaxation mechanisms, demonstrates an accurate fatigue life prediction under creep–fatigue coupling, with a prediction accuracy within an error band of 1.86 times. Full article
Show Figures

Figure 1

Back to TopTop