Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (275)

Search Parameters:
Keywords = coupled-resonator filters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4707 KB  
Article
A Novel 3D Probe for Near-Field Scanning Microwave Microscopy
by Ali M. Almuhlafi and Omar M. Ramahi
Sensors 2026, 26(3), 995; https://doi.org/10.3390/s26030995 - 3 Feb 2026
Abstract
Near-field scanning microwave microscopy (NSMM) offers the ability to probe local electromagnetic properties beyond the classical Abbe diffraction limit, but achieving high resolution over practical scan areas remains challenging. In this work, we introduce a novel three-dimensional (3D) NSMM probe consisting of a [...] Read more.
Near-field scanning microwave microscopy (NSMM) offers the ability to probe local electromagnetic properties beyond the classical Abbe diffraction limit, but achieving high resolution over practical scan areas remains challenging. In this work, we introduce a novel three-dimensional (3D) NSMM probe consisting of a split-ring resonator (SRR) coupled to a microstrip line and loaded with vertically extended metallic bars. The 3D loading enhances electric-field localization in the sensing region by introducing field singularities. Full-wave numerical simulations are used to extract the field-spread function (FSF) of the probe and to quantify how probe geometry, stand-off distance, and bar dimensions control the FSF and its spatial-frequency (k-space) content. An imaging model is then developed in which the NSMM image is represented as a convolution between the object and FSF in one and two dimensions. This framework demonstrates that progressively localized FSFs, obtained through 3D loading and resonator miniaturization, systematically improve image fidelity and preserve higher spatial frequencies. The probe is fabricated using printed circuit board technology (PCB) with vertically attached metallic bars, and its performance is validated by imaging a dielectric slab containing a cylindrical air-filled void. The measured line profiles and two-dimensional images are in good agreement in general characteristics with the convolution-based model, confirming that the proposed 3D SRR-based probe operates as a spatial filter whose engineered near-field distribution governs the achievable resolution in NSMM imaging. Full article
Show Figures

Figure 1

13 pages, 1278 KB  
Article
Four-State Programmable Quasi-BIC Metasurface with Polarization-Divergent Dispersion Rewriting
by Wenbin Wang and Yun Meng
Photonics 2026, 13(2), 105; https://doi.org/10.3390/photonics13020105 - 23 Jan 2026
Viewed by 216
Abstract
A central challenge in reconfigurable photonics based on quasi bound states in the continuum (quasi-BICs) is to move beyond binary switching toward multistate and polarization-aware programmability. Here we propose a dual-phase-change material (PCM) metasurface that enables four-state nonvolatile switching and polarization-divergent dispersion rewriting [...] Read more.
A central challenge in reconfigurable photonics based on quasi bound states in the continuum (quasi-BICs) is to move beyond binary switching toward multistate and polarization-aware programmability. Here we propose a dual-phase-change material (PCM) metasurface that enables four-state nonvolatile switching and polarization-divergent dispersion rewriting within a single unit cell. Two independently switchable PCM layers provide four addressable configurations (0-0, 0-1, 1-0, 1-1) at a fixed geometry, allowing the resonance landscape to be reprogrammed through complex-index rewriting without structural modification. Angle-resolved transmission maps reveal fundamentally different evolution pathways for orthogonal polarizations. For p polarization, the quasi-BIC exhibits strong state sensitivity with dispersion reshaping and multi-branch features near normal incidence; the resonance red-shifts from ~1331 nm to ~1355 nm while the quality factor decreases from ~6.7 × 104 to ~4.0 × 104. In contrast, for s polarization, a single weakly dispersive branch translates coherently across states, producing a much larger shift from ~1635 nm to ~1790 nm while the quality factor increases from ~9.0 × 103 to ~1.8 × 104. The opposite quality-factor trajectories, together with the polarization-contrasting tuning ranges, demonstrate that dual-PCM programming reconfigures polarization-selective radiative coupling rather than imposing a uniform resonance shift. This compact two-bit metasurface platform provides multistate, high-Q control with active dispersion engineering, enabling polarization-multiplexed reconfigurable filters, state-addressable sensors, and other programmable photonic devices. Full article
(This article belongs to the Special Issue Advances in the Propagation and Coherence of Light)
Show Figures

Figure 1

21 pages, 2253 KB  
Article
Feedback-Controlled Manipulation of Multiple Defect Bands of Phononic Crystals with Segmented Piezoelectric Sensor–Actuator Array
by Soo-Ho Jo
Mathematics 2026, 14(2), 361; https://doi.org/10.3390/math14020361 - 21 Jan 2026
Viewed by 95
Abstract
Defect modes in phononic crystals (PnCs) provide strongly localized resonances that are essential for frequency-dependent wave filtering and highly sensitive sensing. Their functionality increases greatly when their spectral characteristics can be externally tuned without altering the structural configuration. However, existing feedback control strategies [...] Read more.
Defect modes in phononic crystals (PnCs) provide strongly localized resonances that are essential for frequency-dependent wave filtering and highly sensitive sensing. Their functionality increases greatly when their spectral characteristics can be externally tuned without altering the structural configuration. However, existing feedback control strategies rely on laminated piezoelectric defects, which have uniform electromechanical loading that causes voltage cancellation for even-symmetric defect modes. Consequently, only odd-symmetric defect bands can be manipulated effectively, which limits multi-band tunability. To overcome this constraint, we propose a segmented piezoelectric sensor–actuator design that enables symmetry-dependent feedback at the defect site. We develop a transfer-matrix analytical framework to incorporate complex-valued feedback gains directly into dispersion and transmission calculations. Analytical predictions demonstrate that real-valued feedback yields opposite stiffness modifications for odd- and even-symmetric modes. This enables the simultaneous tuning of both defect bands and induces an exceptional-point-like coalescence. In contrast, imaginary feedback preserves stiffness but modulates effective damping, generating a parity-dependent amplification-suppression response. The analytical results closely match those of fully coupled finite-element simulations, reducing computation time by more than two orders of magnitude. These findings demonstrate that segmentation-enabled feedback provides an efficient and scalable approach to tunable, multi-band, non-Hermitian wave control in piezoelectric PnCs. Full article
(This article belongs to the Special Issue Analytical Methods in Wave Scattering and Diffraction, 3rd Edition)
Show Figures

Figure 1

22 pages, 2181 KB  
Article
Design and Manufacturability-Aware Optimization of a 30 GHz Gap Waveguide Bandpass Filter Using Resonant Posts
by Antero Ccasani-Davalos, Erwin J. Sacoto-Cabrera, L. Walter Utrilla Mego, Julio Cesar Herrera-Levano, Roger Jesus Coaquira-Castillo, Yesenia Concha-Ramos and Edison Moreno-Cardenas
Electronics 2026, 15(2), 382; https://doi.org/10.3390/electronics15020382 - 15 Jan 2026
Viewed by 273
Abstract
This paper presents the design and optimization, based on electromagnetic simulation, of a fifth-order bandpass filter centered at 30 GHz, implemented using Gap Waveguide (GWG) technology and pole-type cylindrical resonators, intended for applications in 5G communication systems and high-frequency satellite links. Unlike conventional [...] Read more.
This paper presents the design and optimization, based on electromagnetic simulation, of a fifth-order bandpass filter centered at 30 GHz, implemented using Gap Waveguide (GWG) technology and pole-type cylindrical resonators, intended for applications in 5G communication systems and high-frequency satellite links. Unlike conventional Chebyshev designs reported in the literature, this study proposes an integrated methodology that combines theoretical synthesis, full-wave electromagnetic modeling, and multivariable optimization, while accounting for manufacturing constraints. The developed method encompasses the electromagnetic characterization of individual resonators, the extraction of cavity–cavity coupling parameters, and the complete implementation of the filter using full-wave electromagnetic simulations. A distinctive aspect of the proposed approach is the explicit incorporation of practical manufacturing effects, such as rounded corners induced by machining processes, alongside analytical and numerical geometric compensation procedures that preserve the device’s electrical response. Furthermore, a combination of gradient-based optimization algorithms and evolutionary strategies is employed to align the electromagnetic response with the target theoretical behavior. The results obtained through electromagnetic simulation indicate that the designed filter achieves return losses exceeding 20 dB and a fractional bandwidth of 4.95%, consistent with the reference Chebyshev response. Finally, the potential extension of the proposed approach to higher frequency bands is discussed conceptually, laying the groundwork for future work that includes experimental validation. Full article
Show Figures

Figure 1

16 pages, 4721 KB  
Article
A Substrate-Integrated Waveguide Filtering Power Divider with Broadside-Coupled Inner-Meander-Slot Complementary Split-Ring Resonator
by Jinjia Hu, Chen Wang, Yongmao Huang, Shuai Ding and Maurizio Bozzi
Micromachines 2026, 17(1), 103; https://doi.org/10.3390/mi17010103 - 13 Jan 2026
Viewed by 273
Abstract
In this work, a substrate-integrated waveguide (SIW) filtering power divider with a modified complementary split-ring resonator (CSRR) is reported. Firstly, by integrating the meander-shaped slots with the conventional CSRR, the proposed inner-meander-slot CSRR (IMSCSRR) can enlarge the total length of the defected slot [...] Read more.
In this work, a substrate-integrated waveguide (SIW) filtering power divider with a modified complementary split-ring resonator (CSRR) is reported. Firstly, by integrating the meander-shaped slots with the conventional CSRR, the proposed inner-meander-slot CSRR (IMSCSRR) can enlarge the total length of the defected slot and increase the width of the split, thus enhancing the equivalent capacitance and inductance. In this way, the fundamental resonant frequency of the IMSCSRR can be effectively decreased without enlarging the circuit size, which can generally help to reduce the physical size by over 35%. Subsequently, to further reduce the circuit size, two IMSCSRRs are separately loaded on the top and bottom metal covers to constitute a broadside-coupled IMSCSRR, which is combined with the SIW. To verify the efficacy of the proposed SIW-IMSCSRR unit cell, a two-way filtering power divider is implemented. It combines the band-selection function of a filter and the power-distribution property of a power divider, thereby enhancing system integration and realizing size compactness. Experimental results show that the proposed filtering power divider achieves a center frequency of 3.53 GHz, a bandwidth of about 320 MHz, an in-band insertion loss of (3 + 1.3) dB, an in-band isolation of over 21 dB, and a size reduction of about 30% compared with the design without broadside-coupling, as well as good magnitude and phase variations. All the results indicate that the proposed filtering power divider achieves a good balance between low loss, high isolation, and compact size, which is suitable for system integration applications in microwave scenarios. Full article
(This article belongs to the Special Issue Microwave Passive Components, 3rd Edition)
Show Figures

Figure 1

24 pages, 5278 KB  
Article
Research on Optimization and Matching of Cab Suspension Systems for Commercial Vehicles Based on Ride Comfort
by Changcheng Yin, Yiyang Liu, Jiwei Zhang, Hui Yuan, Baohua Wang and Yunfei Zhang
Vehicles 2026, 8(1), 15; https://doi.org/10.3390/vehicles8010015 - 12 Jan 2026
Viewed by 182
Abstract
Improving the ride comfort of commercial vehicles is crucial for driver health and operational safety. This study focuses on optimizing the parameters of a cab suspension system to improve its vibration isolation performance. Initially, nonlinear fitting was applied to experimental data characterizing air [...] Read more.
Improving the ride comfort of commercial vehicles is crucial for driver health and operational safety. This study focuses on optimizing the parameters of a cab suspension system to improve its vibration isolation performance. Initially, nonlinear fitting was applied to experimental data characterizing air spring stiffness and damping, which informed the development of a multi-body rigid-flexible coupled dynamic model of the suspension system; its dynamic characteristics were subsequently validated through modal analysis. Road excitation data, filtered through the chassis suspension, were collected during vehicle testing, and displacement excitations for ride comfort simulation were reconstructed using virtual iteration technology. Thereafter, an integrated ISIGHT platform, combining ADAMS and MATLAB, was employed to systematically optimize suspension parameters and key bushing stiffness via a multi-island genetic algorithm. The optimization results demonstrated significant performance improvements: on General roads, the overall weighted root-mean-square acceleration was markedly reduced with enhanced isolation efficiency; on Belgian pave roads, resonance in the cab’s X-axis direction was effectively suppressed; and on Cobblestone roads, the pitch angle was successfully constrained within the design limit. This research provides an effective parameter matching methodology for performance optimization of cab suspension systems. Full article
(This article belongs to the Special Issue Tire and Suspension Dynamics for Vehicle Performance Advancement)
Show Figures

Figure 1

14 pages, 3147 KB  
Article
Simulated Comparison of On-Chip Terahertz Filters for Sub-Wavelength Dielectric Sensing
by Josh Paul Robert Nixon, Connor Devyn William Mosley, Sae June Park, Christopher David Wood and John Cunningham
Sensors 2026, 26(1), 129; https://doi.org/10.3390/s26010129 - 24 Dec 2025
Viewed by 516
Abstract
This paper discusses the application of on-chip terahertz (THz) filters attached to waveguides that can act as sensor elements, including for scanned imaging applications. Our work presents a comparative numerical study of several different geometries (comprising five split-ring resonator geometries and a quarter-wavelength [...] Read more.
This paper discusses the application of on-chip terahertz (THz) filters attached to waveguides that can act as sensor elements, including for scanned imaging applications. Our work presents a comparative numerical study of several different geometries (comprising five split-ring resonator geometries and a quarter-wavelength stub resonator, the latter being well established as a sensor at THz frequencies and therefore able to act as a benchmark). We designed each structure to have a resonant frequency of 500 GHz, allowing the impact of resonator geometry on sensing performance to be isolated; the performance was quantified by assessing each design using four figures of merit: resonance quality factor, sensitivity (relative frequency shift under dielectric loading), responsivity (sensitivity weighted by resonance sharpness), and the electric field confinement area. Simulations were conducted using Ansys HFSS using the properties of a commercially available photoresist (Shipley 1813) as a dielectric load to assess performance under conditions comparable to previous experimental studies. The analysis showed that while sensitivity remained broadly similar across geometries, responsivity and quality factor differed substantially between resonators. Furthermore, the spatial distribution of the electric field and current density, particularly in rotated configurations, was found to significantly impact coupling efficiency between the resonator and transmission line. Our findings provide guidance for the general design of systems employing THz sensors while establishing a framework with which to benchmark future sensor geometries. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

22 pages, 6550 KB  
Article
High-Performance and Thermally Robust A1-Mode Lamb Wave Resonators on Bonded LiNbO3/SiC Membranes
by Noriyuki Watanabe, Shoji Kakio, Yoshiki Sakaida, Hidehiko Oku and Shigeomi Hishiki
Micromachines 2025, 16(12), 1413; https://doi.org/10.3390/mi16121413 - 15 Dec 2025
Viewed by 1163
Abstract
In radiofrequency filters, there is an increasing demand for high-frequency, wide-bandwidth operation. Recently, laterally excited A1-mode Lamb wave resonators (XBARs) have attracted significant attention; however, freestanding structures are mechanically fragile, limiting their practical implementation. To address this challenge, a novel bonded [...] Read more.
In radiofrequency filters, there is an increasing demand for high-frequency, wide-bandwidth operation. Recently, laterally excited A1-mode Lamb wave resonators (XBARs) have attracted significant attention; however, freestanding structures are mechanically fragile, limiting their practical implementation. To address this challenge, a novel bonded membrane structure consisting of a lithium niobate (LiNbO3; LN) thin plate supported by a silicon carbide (SiC) layer is proposed to realize high-frequency, high-performance, and thermally robust acoustic resonators. Finite element simulations were performed to analyze the excitation and propagation of A1-mode Lamb waves in the LN/SiC membrane, clarifying the distinct behavior compared with XBARs. The influence of the bonded SiC thin layer on A1-mode Lamb waves was systematically evaluated in terms of coupling coefficient and phase velocity, and design guidelines were established based on these insights. A fabricated LN/SiC resonator with an interdigital electrode pitch of 12 µm exhibited a clear A1-mode response near 1.2 GHz, showing an effective electromechanical coupling coefficient of 24% and a phase velocity exceeding 14,000 m/s. These results demonstrate the feasibility of the bonded LN/SiC membrane as a promising platform for high electromechanical coupling, high-speed, and thermally stable acoustic devices. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

19 pages, 9701 KB  
Article
Analytical, Numerical, and Experimental Investigation of an Eccentric Double-Ring Microwave Resonator for Electromagnetic Shielding Applications
by Slavko Rupčić, Vanja Mandrić and Ismail Baxhaku
Appl. Sci. 2025, 15(24), 12928; https://doi.org/10.3390/app152412928 - 8 Dec 2025
Viewed by 291
Abstract
This study presents an in-depth investigation of an eccentric double-ring microwave resonator comprising two asymmetrically coupled conductive loops connected at a single point. The configuration was systematically analyzed using analytical modeling, full-wave electromagnetic simulations (Ansys HFSS), and experimental characterization. Analytical formulations based on [...] Read more.
This study presents an in-depth investigation of an eccentric double-ring microwave resonator comprising two asymmetrically coupled conductive loops connected at a single point. The configuration was systematically analyzed using analytical modeling, full-wave electromagnetic simulations (Ansys HFSS), and experimental characterization. Analytical formulations based on the resonant condition of thin conductive rings provided theoretical estimates of the fundamental and higher-order eigenmodes, while simulations yielded accurate resonance frequencies, transmission responses, and electric field distributions. The transmission coefficient (S21) exhibited two distinct resonance dips at 436 MHz and 708 MHz, confirming strong inter-ring coupling and hybrid mode formation. Electric field mapping revealed pronounced confinement within the resonator region (E > 170 V/m) and substantial attenuation of the transmitted field (E < 13 V/m), demonstrating efficient electromagnetic energy suppression. Experimental results showed excellent consistency with theoretical predictions. This paper aims to establish a compact, low-cost, and tunable resonant structure capable of frequency-selective attenuation and field confinement without using lossy materials. Unlike conventional symmetric resonators, the eccentric configuration enables enhanced coupling control and modal diversity, making it highly relevant for the design of next-generation electromagnetic shielding, filtering, and sensing systems. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

26 pages, 6618 KB  
Article
A Multi-Mode Oscillation Suppression Strategy for Grid-Connected Inverter Systems Based on Amplitude–Phase Reconstruction
by Haibin Sun, Guobin Fu, Xuebin Wang, Yuxin Gan, Yujie Ding, Shangde Sun and Tong Wang
Electronics 2025, 14(23), 4761; https://doi.org/10.3390/electronics14234761 - 3 Dec 2025
Viewed by 390
Abstract
As the primary interface for integrating renewable energy sources such as wind and solar power into the grid, inverters are prone to inducing sub-/super-synchronous or medium-to-high-frequency oscillations during grid-connected operation under weak grid conditions. Optimizing the control structure of a single wind turbine [...] Read more.
As the primary interface for integrating renewable energy sources such as wind and solar power into the grid, inverters are prone to inducing sub-/super-synchronous or medium-to-high-frequency oscillations during grid-connected operation under weak grid conditions. Optimizing the control structure of a single wind turbine inverter struggles to address multi-mode resonance issues comprehensively. Therefore, a cooperative control strategy for parallel-coupled inverters is proposed. First, a frequency-domain impedance reconstruction method for parallel wind turbines is proposed based on the phase-neutralizing characteristics and damping variation patterns of parallel-coupled impedances. Second, the damping characteristics of inverters are enhanced through the design of an additional damping controller, while the phase-frequency characteristics of wind turbines are improved using active damping based on notch filters. Finally, simulation models based on 2.5 MW permanent magnet synchronous generator (PMSG) units validate the effectiveness of the control strategy. Research results demonstrate that this cooperative control strategy effectively suppresses sub-/super-synchronous and medium-to-high-frequency oscillations: In the 0~300 Hz key oscillation band, the amplitude suppression rate of oscillating current reaches ≥60%, the total harmonic distortion (THD) of the 5th harmonic at the grid connection point decreases from 4.465% to 3.518%. Full article
Show Figures

Figure 1

10 pages, 1539 KB  
Article
A Compact L-Band Reconfigurable Dual-Mode Patch Filter
by Abdel Fattah Sheta, Majeed A. S. Alkanhal and Ibrahim Elshafiey
Micromachines 2025, 16(11), 1294; https://doi.org/10.3390/mi16111294 - 19 Nov 2025
Viewed by 2104
Abstract
This research presents a novel dual-mode filter design that offers significant advantages in terms of frequency agility and miniaturization compared to conventional fixed multi-resonator filters. The design and implementation of a compact tunable bandpass filter are presented. The basic design structure is based [...] Read more.
This research presents a novel dual-mode filter design that offers significant advantages in terms of frequency agility and miniaturization compared to conventional fixed multi-resonator filters. The design and implementation of a compact tunable bandpass filter are presented. The basic design structure is based on a slotted non-degenerate dual-mode microstrip square patch. The slots are etched symmetrically, which makes the slotted dual-mode square patch equivalent to a two-coupled-resonator filter. The asymmetrical feed lines enable the excitation of dual resonant modes. The patch length, slot size, and dielectric material properties primarily determine the filter’s center frequency and bandwidth. Tunability is achieved by loading the slotted square patch with reversed bias varactor diodes located at the square patch corners, allowing electronic control of the filter center frequency. The design utilizes RT/Duroid 6010.2 laminates with a dielectric constant of 10.2 and a thickness of 0.635 mm. A bias tee at one of the filter ports is used to provide reverse bias to varactor diodes. Simulations and experimental results demonstrate tunable characteristics. Among the attractive features of the proposed design, good levels of insertion loss and impedance matching are noticed in the entire tunable band. The advantages of the proposed design make it well-suited for modern wireless technology applications in communication, radar, and satellite systems. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

10 pages, 3281 KB  
Article
Multi-Peak Narrowband Perfect Absorber Based on the Strong Coupling Between Fabry–Perot Mode and SPP Waveguide Mode
by Yusheng Zhai, Weiji He and Qian Chen
Photonics 2025, 12(11), 1131; https://doi.org/10.3390/photonics12111131 - 15 Nov 2025
Viewed by 473
Abstract
Plasmonic- or metamaterial-based multi-narrowband perfect absorbers hold significant potential applications in filtering, photodetection, and spectroscopic sensing. However, it is rather challenging to realize multi-peak and narrowband absorption simultaneously only using plasmonic metallic materials due to the single or dual resonance and large optical [...] Read more.
Plasmonic- or metamaterial-based multi-narrowband perfect absorbers hold significant potential applications in filtering, photodetection, and spectroscopic sensing. However, it is rather challenging to realize multi-peak and narrowband absorption simultaneously only using plasmonic metallic materials due to the single or dual resonance and large optical losses in the metallic nanostructure. Here, we numerically demonstrate a new multi-narrowband perfect absorber based on the strong coupling between the Fabry–Perot cavity modes and the surface plasmon polariton waveguide modes in a nanostructure consisting of periodic Ag grating and Ag film separated by a SiO2 waveguide layer. Six absorption peaks, an ultranarrow absorption resonance with FWHM as narrow as 8 nm, and an absorption peak amplitude surpassing 95% have been achieved. Furthermore, the optical properties of the designed nanostructures can be precisely tuned by modulating the grating period, slit width, height, as well as the thickness and refractive index of the waveguide layer. This approach establishes a versatile platform for designing high performance multi-narrowband absorbers, with promising applications in optical filters, nonlinear optics, and biosensors. Full article
Show Figures

Figure 1

17 pages, 5887 KB  
Article
Compact Microstrip Fixed-Frequency Double-Coupled Double-Tuned Filter with Selected Band Suppression
by Dariusz Wójcik, Maciej Surma and Mirosław Magnuski
Sensors 2025, 25(21), 6768; https://doi.org/10.3390/s25216768 - 5 Nov 2025
Cited by 1 | Viewed by 514
Abstract
This paper presents the design and analysis of a compact microstrip fixed-frequency double-inductive-coupled filter with selected band suppression. The filter can be used as an input filter in wireless IoT sensors. The proposed structure has reduced dimensions and improved out-of-band attenuation, achieved through [...] Read more.
This paper presents the design and analysis of a compact microstrip fixed-frequency double-inductive-coupled filter with selected band suppression. The filter can be used as an input filter in wireless IoT sensors. The proposed structure has reduced dimensions and improved out-of-band attenuation, achieved through the use of radial stub lines as elements of the resonators. These lines act as capacitors within the passband, while in a selected sub-band as series resonant circuits, effectively enhancing attenuation. The frequency response of the filter is shaped using two transmission zeros: the first one improves the steepness of the frequency response at the upper transition band, while the second increases attenuation in a chosen sub-band of the stopband. An analysis of the filter is presented, and key equations describing its properties are derived. An example filter for the frequency band 2.391–2.525 GHz, with additional suppression introduced in the U-NII 5 GHz band was designed, manufactured and examined. The insertion loss achieved by the proposed filter is lower than 1.6 dB, its attenuation across the whole stopband exceeds 30 dB and reaches over 40 dB in the 4.7–5.9 GHz frequency band. Full article
(This article belongs to the Special Issue Feature Papers in Electronic Sensors 2025)
Show Figures

Figure 1

15 pages, 2026 KB  
Review
RF Multifunctional Components with Integrated Filtering Characteristics: A Review
by Weiyu He and Kaida Xu
Microwave 2025, 1(3), 11; https://doi.org/10.3390/microwave1030011 - 5 Nov 2025
Viewed by 2942
Abstract
This paper provides a comprehensive review of recent advancements in radio-frequency (RF) multifunctional components with integrated filtering characteristics, including tunable filtering attenuators, filtering power dividers, filtering couplers, and filtering Butler matrices, all of which play critical roles in wireless communication systems. With the [...] Read more.
This paper provides a comprehensive review of recent advancements in radio-frequency (RF) multifunctional components with integrated filtering characteristics, including tunable filtering attenuators, filtering power dividers, filtering couplers, and filtering Butler matrices, all of which play critical roles in wireless communication systems. With the increasing demand for miniaturization, integration, and low-loss performance in RF front-ends, multifunctional components with filtering characteristics have become essential. This review first introduces tunable attenuators and filtering attenuators based on various technologies such as PIN diodes, graphene-based structures, and RF-MEMS switches, and also analyzes their advantages, limitations, and performance. Then, we discuss filtering power dividers developed from Wilkinson structures, three-line coupled structures, resonator-based coupling matrix methods, and SSPP-waveguide hybrids. Furthermore, filtering couplers and filtering Butler matrices are reviewed, highlighting their capability to simultaneously achieve amplitude and phase control, making them suitable for multi-beam antenna feeding networks. Finally, a brief conclusion is summarized. Future research directions, such as hybrid technologies, novel materials, broadband and multi-band designs, and antenna-matrix co-design, are suggested to further enhance the performance and practicality of multifunctional RF components for next-generation wireless communication systems. Full article
Show Figures

Figure 1

8 pages, 3412 KB  
Communication
Fano Resonances in Location-Dependent Terahertz Stub Waveguide
by Yanrui Li, Shuxiang Ma, Hongguang Li, Yuanbo Wang, Deng Zhang, Lin Chen and Yiming Zhu
Photonics 2025, 12(11), 1088; https://doi.org/10.3390/photonics12111088 - 4 Nov 2025
Viewed by 535
Abstract
The quest for simpler structures that do not require the use of nanofabrication techniques and exhibit high Q Fano resonances has attracted growing interest in the past decade. Here, we study an arrangement of coupled resonator waveguides that can excite Fano resonances. The [...] Read more.
The quest for simpler structures that do not require the use of nanofabrication techniques and exhibit high Q Fano resonances has attracted growing interest in the past decade. Here, we study an arrangement of coupled resonator waveguides that can excite Fano resonances. The results show that an odd mode, except for the usual even mode, is excited due to the symmetry breaking of the position stub intersection. The superposition of the even and odd modes generates a Fano-shaped spectrum with a very narrow linewidth. Coupled mode theory is used to analyze these waveguide-based Fano resonances. Experimental results obtained using VNA and VDI show good agreement with theory and simulations. Such waveguide-based Fano resonances can be tailored and are simple in structure and have potential applications in narrowband filtering, sensing, lasing, and nonlinearity enhancement. Full article
(This article belongs to the Special Issue Emerging Terahertz Devices and Applications)
Show Figures

Figure 1

Back to TopTop