RF Multifunctional Components with Integrated Filtering Characteristics: A Review
Abstract
1. Introduction
2. Tunable Attenuators and Tunable Filtering Attenuators
3. Filtering Power Dividers
4. Filtering Couplers and Filtering Butler Matrices
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Osio, J.; Keith, E. 5G Tracker: 94 Markets Worldwide Have Commercial 5G Services. S&P Global Market Intelligence. 2023. Available online: https://www.spglobal.com/market-intelligence/en/news-insights/research/5g-tracker-94-markets-worldwide-have-commercial-5g-services (accessed on 6 April 2025).
- Cruz, P.; Gomes, H.; Carvalho, N. Receiver Front-End Architectures—Analysis and Evaluation. In Advanced Microwave and Millimeter Wave Technologies Semiconductor Devices Circuits and Systems; InTech: Huston, TX, USA, 2010; Volume 1. [Google Scholar]
- Ananasso, F.G. A low phase shift step attenuator using p-i-n diodes switch. IEEE Trans. Microw. Theory Tech. 1980, 28, 774–776. [Google Scholar] [CrossRef]
- Jang, B.-J. Voltage-controlled PIN diode attenuator with a temperature-compensation circuit. IEEE Microw. Wirel. Compon. Lett. 2003, 13, 7–9. [Google Scholar] [CrossRef]
- Chen, J.; Peng, H.; Chen, L.; Sun, T.; Liu, Y.; Tatu, S.O.; Yang, T. Voltage-controlled attenuator based on PIN diode and compensated gold wire inductors. Microw. Opt. Technol. Lett. 2024, 66, e34295. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, S.J.; Fumeaux, C. Transmission-Type Varactor-Based Tunable Attenuator. IEEE Trans. Microw. Theory Tech. 2024, 72, 5082–5094. [Google Scholar] [CrossRef]
- Han, B.-Y.; Xu, J.; Su, J.-H.; Zhao, M.; Liu, F.; Wan, H. A Broadband Attenuator Using Dual-Branch Resistors and Microstrip-Line-Loaded Slotline Structure with Improved Attenuation Slope. IEEE Microw. Wirel. Technol. Lett. 2024, 34, 1227–1230. [Google Scholar] [CrossRef]
- Yasir, M.; Bistarelli, S.; Cataldo, A.; Bozzi, M.; Perregrini, L.; Bellucci, S. Enhanced tunable microstrip attenuator based on few layer graphene fakes. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 332–334. [Google Scholar] [CrossRef]
- Yasir, M.; Bistarelli, S.; Cataldo, A.; Bozzi, M.; Perregrini, L.; Bellucci, S. Voltage-Controlled and Input-Matched Tunable Microstrip Attenuators Based on Few-Layer Graphene. IEEE Trans. Microw. Theory Tech. 2020, 68, 701–710. [Google Scholar] [CrossRef]
- Zhang, A.-Q.; Lu, W.-B.; Liu, Z.-G.; Chen, H.; Huang, B.-H. Dynamically tunable substrate-integrated-waveguide attenuator using graphene. IEEE Trans. Microw. Theory Tech. 2018, 66, 3081–3089. [Google Scholar] [CrossRef]
- Tian, D.; Kianinejad, A.; Zhang, A.X.; Chen, Z.N. Graphene-based dynamically tunable attenuator on spoof surface plasmon polaritons waveguide. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 388–390. [Google Scholar] [CrossRef]
- Yasir, M.; Savi, P. Commercial graphene nanoplatelets-based tunable attenuator. Electron. Lett. 2020, 56, 184–187. [Google Scholar] [CrossRef]
- Tang, J.; Chen, P.; Zhang, F.; Ni, H. The Structure Design of a Microstrip Tunable Attenuator Based on Few-Layer Graphene. J. Phys. Conf. Ser. 2023, 2625, 012035. [Google Scholar]
- Zhang, A.-Q.; Liu, Z.-G.; Wei-Bing, L.; Chen, H. Graphene-Based Dynamically Tunable Attenuator on a Coplanar Waveguide or a Slotline. IEEE Trans. Microw. Theory Tech. 2019, 67, 70–77. [Google Scholar] [CrossRef]
- Zhang, A.-Q.; Liu, Z.-G.; Yi, Y.; Lu, W.-B. Graphene-Based Tunable Attenuator on Coplanar Waveguide. In Proceedings of the 2018 IEEE International Conference on Computational Electromagnetics (ICCEM), Chengdu, China, 26–28 March 2018; pp. 1–3. [Google Scholar]
- Wu, B.; Zhang, Y.; Zu, H.; Fan, C.; Lu, W. Tunable Grounded Coplanar Waveguide Attenuator Based on Graphene Nanoplates. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 330–332. [Google Scholar] [CrossRef]
- Iannacci, J.; Huhn, M.; Tschoban, C.; Pötter, H. RF-MEMS technology for future mobile and high-frequency applications: Reconfigurable 8-bit power attenuator rested up to 110 GHz. IEEE Electron. Device Lett. 2016, 37, 1646–1649. [Google Scholar] [CrossRef]
- Hah, D. RF MEMS variable attenuators with improved dB-linearity. Microsyst. Technol. 2023, 29, 311–320. [Google Scholar] [CrossRef]
- Saavedra, C.E.; Zheng, Y. Ring-hybrid microwave voltage-variable attenuator using HFET transistors. IEEE Trans. Microw. Theory Tech. 2005, 53, 2430–2434. [Google Scholar] [CrossRef]
- Daoud, S.M.; Shastry, P.N. A novel wideband MMIC voltage controlled attenuator with a bandpass filter topology. IEEE Trans. Microw. Theory Tech. 2005, 54, 629–632. [Google Scholar]
- Bae, J.; Nguyen, C. A 44 GHz CMOS RFIC dual-function attenuator with band-pass-filter response. IEEE Microw. Wirel. Comp. Lett. 2015, 25, 241–243. [Google Scholar] [CrossRef]
- Wu, B.; Fan, C.; Feng, X.; Zhao, Y.-T.; Ning, J.; Wang, D.; Su, T. Dynamically tunable filtering attenuator based on graphene integrated microstrip resonators. IEEE Trans. Microw. Theory Tech. 2020, 68, 5270–5278. [Google Scholar] [CrossRef]
- Fan, C.; Wu, B.; Sun, S. Controllable design of filtering attenuators based on graphene integrated dual-mode microstrip resonator. In Proceedings of the IEEE 4th International Conference on Electronic Information and Communication Technology (ICEICT), Xi’an, China, 18–20 August 2021; pp. 833–835. [Google Scholar]
- Yi, Y.; Zhang, A.-Q. A tunable graphene filtering attenuator based on effective spoof surface plasmon polariton waveguide. IEEE Trans. Microw. Theory Tech. 2020, 68, 5169–5177. [Google Scholar] [CrossRef]
- Hou, R.; Chen, J.; Zhao, Y.-T.; Su, T.; Li, L.; Xu, K.-D. Varactor-graphene-based bandpass filter with independently tunable characteristics of frequency and amplitude. IEEE Trans. Compon. Packag. Manuf. Technol. 2022, 12, 1375–1385. [Google Scholar] [CrossRef]
- Yang, Z.-Q.; Wen, Q.-L.; Fan, C.; Wu, B.; Qiu, Y. Dynamically Tunable Multifunction Attenuator Based on Graphene-Integrated Dual-Mode Microstrip Resonators. Electronics 2025, 14, 137. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, J.; Zhao, Y.; Li, L.; Su, T.; Fan, C.; Wu, B. High-Selectivity Bandpass Filter with Controllable Attenuation Based on Graphene Nanoplates. Materials 2022, 15, 1694. [Google Scholar] [CrossRef]
- Lin, Z.-C.; Liu, Y.; Li, L.; Li, J.; Chen, J.; Xu, J.; Xu, K.-D. Dual-Band Bandpass Filter with Independently Tunable Attenuation Characteristics Using Graphene Nanoplates. IEEE Trans. Plasma Sci. 2022, 50, 5031–5037. [Google Scholar] [CrossRef]
- Li, J.; He, W.; Xu, K.-D.; Chen, J.; Zhang, X.Y. Compact Tunable Broadband Filtering Attenuator Based on Variable Resistors. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 983–986. [Google Scholar] [CrossRef]
- Wen, P.; Jiang, Y.; Liu, F.; Ma, Z.; Wang, Y. Direct Synthesis of Continuously Tunable Wideband Bandpass Filtering Attenuator with Multiple Transmission Zeros. IEEE Trans. Circuits Syst. II Express Briefs 2024, 71, 4346–4350. [Google Scholar] [CrossRef]
- Knowles, J.M.; Sigmarsson, H.H.; McDaniel, J.W. Design of a symmetric lumped-element bandpass filtering attenuator (Filtenuator). In Proceedings of the 2022 IEEE 22nd Annual Wireless and Microwave Technology Conference (WAMICON), Clearwater, FL, USA, 27–28 April 2022; pp. 1–4. [Google Scholar]
- Pal, B.; Mandal, M.K.; Kahar, M.; Dwari, S. Filtering attenuator with electronically tunable attenuation. In Proceedings of the IEEE MTT-S International Microwave and RF Conference (IMaRC), Kanpur, India, 17–19 December 2021; pp. 1–4. [Google Scholar]
- He, W.; Li, J.; Xu, K.-D.; Yan, S.; Chen, J. Voltage-Controlled Tunable Filtering Attenuator Using PIN Diodes. IEEE Trans. Circuits Syst. II Express Briefs 2024, 71, 562–566. [Google Scholar] [CrossRef]
- Nadeem, A.; Nikolaou, S.; Psychogiou, D.; Vryonides, P. Multifunctional and Reconfigurable Bandpass Filters with Continuously Tunable Attenuation or Quasi-Reflectionless Behavior. IEEE Trans. Circuits Syst. II Express Briefs 2024, 71, 4466–4470. [Google Scholar] [CrossRef]
- Wei, F.; Liu, H.-Y.; Zhou, X.-C.; Cui, P.-Z.; Jin, G. Tunable Loss Reflectionless Filtering Attenuator with Ultrawide Bandwidth and Extended Tunable Attenuation Range. IEEE Microw. Wirel. Technol. Lett. 2025, 35, 666–669. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; He, W.; Song, Y.; Zheng, Z.; Xu, K.-D. A Wideband Continuously-Tunable Quasi-Reflectionless Filtering Attenuator. IEEE Microw. Wirel. Technol. Lett. 2025, 35, 1304–1307. [Google Scholar] [CrossRef]
- Knowles, J.M.; Sigmarsson, H.H.; McDaniel, J.W. Generalized Theory and Realization of Continuously Loss-Programmable Bandpass Filtering Attenuators. IEEE Trans. Microw. Theory Tech. 2023, 71, 5280–5294. [Google Scholar] [CrossRef]
- Liu, X.; Xiang, Q.; Feng, Q. Voltage-controlled filtering attenuator with fully tunable passband and attenuation, AEU—International. J. Electron. Commun. 2025, 200, 155926. [Google Scholar]
- Knowles, J.M.; Sigmarsson, H.H.; McDaniel, J.W. Higher-Order Filtering Attenuator Design Considerations for Filter Shape Optimization. In Proceedings of the 2023 IEEE Wireless and Microwave Technology Conference (WAMICON), Melbourne, FL, USA, 17–18 April 2023; pp. 85–88. [Google Scholar]
- Han, B.-Y.; Xu, J.; Su, J.-H.; Zhou, G.-Q.; Liu, F.; Wan, H. Broadband Filtering Attenuator with Bandwidth Enhancement in High Attenuation Level. IEEE Microw. Wirel. Technol. Lett. 2025, 1–4. [Google Scholar] [CrossRef]
- Chao, S.-F.; Lin, W.-C. Filtering power divider with good isolation performance. Electron. Lett. 2014, 50, 815–817. [Google Scholar] [CrossRef]
- Yuan, C.-L.; Quan, X.; Xiu, Y.-Z. Single-and dual-band power dividers integrated with bandpass filters. IEEE Trans. Microw. Theory Tech. 2013, 61, 69–76. [Google Scholar]
- Chau, W.-M.; Hsu, K.-W.; Tu, W.-H. Filter-based Wilkinson power divider. IEEE Microw. Wirel. Compon. Lett. 2014, 24, 239–241. [Google Scholar] [CrossRef]
- Da Xu, K.; Bai, Y.; Ren, X.; Xue, Q. Broadband filtering power dividers using simple three-line coupled structures. IEEE Trans. Compon. Packag. Manuf. Technol. 2018, 9, 1103–1110. [Google Scholar]
- Zhang, G.; Wang, J.-P.; Zhu, L. Dual-band filtering power divider with high selectivity and good isolation. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 774–776. [Google Scholar] [CrossRef]
- Wu, S.F.; Li, J.X.; Li, Y.J.; Yan, S.; Zhang, X.Y. SLM printed dual-band dual-polarized shared-aperture filtering antenna array for millimeter-wave integrated sensing and communication. IEEE Trans. Antennas Propag. 2024, 72, 2855–2860. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, Y.; Wang, E.; Yang, J. Multilayer packaging SIW three-way filtering power divider with adjustable power division. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 3003–3007. [Google Scholar] [CrossRef]
- Feng, W.; Shi, Y.; Zhou, X.Y.; Shen, X.; Che, W. A bandpass push–pull high power amplifier based on SIW filtering balun power divider. IEEE Trans. Plasma Sci. 2019, 47, 4281–4286. [Google Scholar] [CrossRef]
- Moznebi, A.-R.; Afrooz, K.; Danaeian, M.; Mousavi, P. Four-way filtering power divider using SIW and eighth-mode SIW cavities with ultrawide out-of-band rejection. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 586–588. [Google Scholar] [CrossRef]
- Wu, S.; Li, J.; Chen, X.; Yan, S.; Zhang, X.Y. A Ka-band SLM printed filtering divider-fed magnetoelectric dipole antenna array using embedded gap waveguide. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 774–778. [Google Scholar] [CrossRef]
- Chi, P.-L.; Chen, Y.-M.; Yang, T. Single-layer dual-band balanced substrate-integrated waveguide filtering power divider for 5G millimeter-wave applications. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 585–588. [Google Scholar] [CrossRef]
- Liu, B.-G.; Lyu, Y.-P.; Zhu, L.; Cheng, C.-H. Compact square substrate integrated waveguide filtering power divider with wideband isolation. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 109–112. [Google Scholar] [CrossRef]
- Guo, Y.-J.; Xu, K.-D.; Tang, X. Spoof plasmonic waveguide developed from coplanar stripline for strongly confined terahertz propagation and its application in microwave filters. Opt. Express 2018, 26, 10589–10596. [Google Scholar] [CrossRef]
- Xu, K.-D.; Guo, Y.-J.; Deng, X.-J. Terahertz broadband spoof surface plasmon polaritons using high-order mode developed from ultra-compact split-ring grooves. Opt. Express 2019, 27, 4354–4363. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhang, K.; Wu, Q.; Dai, R.; Sha, X. Broadband high-order mode of spoof surface plasmon polaritons supported by compact complementary structure with high efficiency. Opt. Lett. 2018, 43, 3176–3179. [Google Scholar] [CrossRef]
- Liu, L.; Li, Z.; Xu, B.; Gu, C.; Chen, C.; Ning, P.; Yan, J.; Chen, X. High-efficiency transition between rectangular waveguide and domino plasmonic waveguide. AIP Adv. 2015, 5, 027105. [Google Scholar] [CrossRef]
- Gao, X.; Zhou, L.; Yu, X.Y.; Cao, W.P.; Li, H.O.; Ma, H.F.; Cui, T.J. Ultra-wideband surface plasmonic Y-splitter. Opt. Express 2015, 23, 23270–23277. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wu, Y.; Qu, M.; Li, Q.; Liu, Y. A novel power divider with ultra-wideband harmonics suppression based on double-sided parallel spoof surface plasmon polaritons transmission line. Int. J. RF Microw. Comput.-Aided Eng. 2018, 28, e21231. [Google Scholar] [CrossRef]
- Farokhipour, E.; Komjani, N.; Chaychizadeh, M.A. An ultra-wideband three-way power divider based on spoof surface plasmon polaritons. J. Appl. Phys. 2018, 124, 235310. [Google Scholar] [CrossRef]
- Pan, B.C.; Yu, P.; Liao, Z.; Zhu, F.; Luo, G.Q. A compact filtering power divider based on spoof surface plasmon polaritons and substrate integrated waveguide. IEEE Microw. Wirel. Compon. Lett. 2022, 32, 101–104. [Google Scholar] [CrossRef]
- Yu, P.; Pan, B.-C. Band-pass power divider based on spoof surface plasmon polaritons and substrate integrated waveguide. In Proceedings of the 2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC), Fuzhou, China, 13–16 December 2020; pp. 1–3. [Google Scholar]
- Mirhadi, S.; Soleimani, S. A band-pass power divider based on substrate integrated plasmonic waveguide. In Proceedings of the 31st International Conference on Electrical Engineering (ICEE), Tehran, Iran, 9–11 May 2023; pp. 1–4. [Google Scholar]
- Lv, S.; Li, J.; He, W.; Wu, S.; Chen, J. Dual-band millimeter-wave filtering power divider using groove gap waveguide and spoof surface plasmon polariton. In Proceedings of the IEEE 6th International Conference on Electronic Information and Communication Technology (ICEICT), Qingdao, China, 21–24 July 2023; pp. 1–4. [Google Scholar]
- Pan, B.C.; Yu, P.; Guo, B.J.; Qian, Y.H.; Luo, G.Q. Unequal bandpass filtering power divider based on hybrid HMSIW-SSPP modes. Front. Phys. 2022, 10, 102345. [Google Scholar] [CrossRef]
- He, W.; Li, J.; Wu, S.; Yan, S.; Chen, J. A mmWave Waveguide Filtering Power Divider Based on SSPP-RWG Structure. In Proceedings of the 2023 IEEE 11th Asia-Pacific Conference on Antennas and Propagation (APCAP), Guangzhou, China, 22–24 November 2023; pp. 1–2. [Google Scholar]
- Li, J.; Lv, S.; He, W.; Li, Q.; Yan, S.; Xu, K.-D. Millimeter-Wave Filtering Power Divider with Sharp Roll-Off Skirt Using Rectangular Waveguide-Spoof Surface Plasmon Polariton Structure. IEEE Trans. Compon. Packag. Manuf. Technol. 2025, 15, 1454–1461. [Google Scholar] [CrossRef]
- Lin, C.-K.; Chung, S.-J. A compact filtering 180° hybrid. IEEE Trans. Microw. Theory Tech. 2011, 59, 3030–3036. [Google Scholar] [CrossRef]
- Chen, C.-F.; Li, J.-J.; Wang, G.-Y.; Zhou, K.-W.; Chen, R.-Y. Design of compact filtering 180-degree hybrids with arbitrary power division and filtering response. IEEE Access 2019, 7, 18521–18530. [Google Scholar] [CrossRef]
- Lin, F.; Chu, Q.-X.; Wong, S.-W. Design of dual-band filtering quadrature coupler using λ/2 and λ/4 resonators. IEEE Microw. Wirel. Compon. Lett. 2012, 22, 565–567. [Google Scholar] [CrossRef]
- Chou, P.-J.; Yang, C.-C.; Chang, C.-Y. Exact synthesis of unequal power division filtering rat-race ring couplers. IEEE Trans. Microw. Theory Tech. 2018, 66, 3277–3287. [Google Scholar] [CrossRef]
- Rosenberg, U.; Salehi, M.; Bornemann, J.; Mehrshahi, E. A novel frequency-selective power combiner/divider in single-layer substrate integrated waveguide technology. IEEE Microw. Wirel. Compon. Lett. 2013, 23, 406–408. [Google Scholar] [CrossRef]
- Rosenberg, U.; Salehi, M.; Amari, S.; Bornemann, J. Compact multi-port power combination/distribution with inherent bandpass filter characteristics. IEEE Trans. Microw. Theory Tech. 2014, 62, 2659–2672. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Zhang, Q.-F. Ring-shaped D-band E-plane filtering coupler. IEEE Microw. Wireless Compon. Lett. 2021, 31, 953–956. [Google Scholar] [CrossRef]
- Uchida, H.; Yoneda, N.; Konishi, Y.; Makino, S. Bandpass directional couplers with electromagnetically-coupled resonators. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, USA, 11–16 June 2006; pp. 1–4. [Google Scholar]
- Zheng, S.-Y.; Zheng, Y.-X. Bandpass filtering coupler based on dual-mode dielectric resonators. In Proceedings of the Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), Xi’an, China, 16–19 October 2017; pp. 1–3. [Google Scholar]
- Hagag, M.F.; Abu Khater, M.; Sinanis, M.D.; Peroulis, D. Ultra-compact tunable filtering rat-race coupler based on half-mode SIW evanescent-mode cavity resonators. IEEE Trans. Microw. Theory Tech. 2018, 66, 5563–5572. [Google Scholar] [CrossRef]
- Crestvolant, V.T.; Iglesias, P.M.; Lancaster, M.J. Advanced Butler matrices with integrated bandpass filter functions. IEEE Trans. Microw. Theory Tech. 2015, 63, 3433–3444. [Google Scholar] [CrossRef]
- Shao, Q.; Chen, F.C.; Chu, Q.X.; Lancaster, M.J. Novel filtering 180° hybrid coupler and its application to 2 × 4 filtering Butler matrix. IEEE Trans. Microw. Theory Tech. 2018, 66, 3288–3296. [Google Scholar] [CrossRef]
- Shao, Q.; Chen, F.-C.; Wang, Y.; Chu, Q.-X.; Lancaster, M.J. Design of modified 4 × 6 filtering Butler matrix based on all-resonator structures. IEEE Trans. Microw. Theory Tech. 2019, 67, 3617–3627. [Google Scholar] [CrossRef]
- Shao, Q.; Chen, F.-C. Design of 2 × 8 filtering Butler matrix with arbitrary power distribution. IEEE Trans. Circuits Syst. II Exp. Briefs 2021, 68, 3527–3531. [Google Scholar] [CrossRef]
- Shao, Q.; Chen, F.-C.; Wang, Y.; Chu, Q.X. Design of 4 × 4 and 8 × 8 filtering Butler matrices utilizing combined 90° and 180° couplers. IEEE Trans. Microw. Theory Tech. 2021, 69, 3842–3852. [Google Scholar] [CrossRef]
- He, W.; Wu, S.; Li, J. Design of a millimeter-wave 4 × 4 filtering Butler matrix. In Proceedings of the TENCON 2022—2022 IEEE Region 10 Conference (TENCON), Hong Kong, China, 1–4 November 2022; pp. 1–4. [Google Scholar]
- Qi, S.-S.; Guo, Y.; Wang, J.; Wang, X.; Wu, W. A dual-band filtering 4 × 4 Butler matrix based on SLR. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 3167–3171. [Google Scholar] [CrossRef]
- Zhang, Z.; Psychogiou, D. Multifunctional Bandpass Filter with Codesigned Tunable Attenuator and Reflectionless Phase Shifter Functionalities. IEEE Microw. Wirel. Technol. Lett. 2024, 34, 737–740. [Google Scholar] [CrossRef]
- EWilkinson, J. An n-way hybrid power divider. IEEE Trans. Microw. Theory Tech. 1960, 8, 116–118. [Google Scholar] [CrossRef]
- Pendry, J.B.; Martín-Moreno, L.; Garcia-Vidal, F.J. Mimicking surface plasmons with structured surfaces. Science 2004, 305, 847–848. [Google Scholar] [CrossRef] [PubMed]





| Ref. | Technology | Filtering Response | Frequency Range | Attenuation Range (dB) | Key Features |
|---|---|---|---|---|---|
| [4] | PIN diodes | No | — | 0.5–15 | Voltage-controlled design |
| [6] | Graphene flakes | No | — | 0–60 | Voltage-controlled design |
| [8] | Graphene sandwich structures (GSSs) | No | — | 0.3–15 | Voltage-controlled design |
| [18] | RF-MEMS 8-bit | No | — | 10–45 | Compact chip-level implementation |
| [22] | Graphene sandwich structures (GSSs) | Yes | About 1.6–1.8 GHz | 1.3–7.6 | Single and dual-band designs |
| [29] | Variable resistors | Yes | 1.3–2.8 GHz | 3.26–15.61 | Broadband, low-cost implementation |
| [32] | PIN diodes | Yes | 2.19–2.6 GHz | 3.8–30.4 | Voltage-controlled design |
| Ref. | Structure/Technology | Frequency Range | Isolation (dB) | Key Features |
|---|---|---|---|---|
| [41] | Wilkinson-based | 0.81–1.23 GHz | >23 | Filtered impedance lines |
| [44] | Three-line coupled | 1.42–3.42 GHz | >23 | Tunable bandwidth |
| [46] | Waveguide (coupling matrix) | 26.9–30.7 GHz | — | Rectangular resonators |
| [65] | SSPP–RWG hybrid | 22.65–27.32 GHz | — | Low-loss, compact |
| Ref. | Structure | Center Frequency | Filtering Order/Modes | Key Features |
|---|---|---|---|---|
| [67] | Microstrip resonators | 2.4 GHz | 2nd-order Chebyshev | Basic 180° filtering coupler |
| [71] | SIW resonators | 11 GHz | 2nd-order | Compact single-layer design |
| [73] | E-plane ring waveguide | 150 GHz | 2nd-order | Miniaturized structure |
| [77] | Waveguide | 12.5 GHz | 2nd-order | Used as basis of filtering matrix |
| Ref. | Matrix Size | Structure | Center Frequency | Phase Differences | Key Features |
|---|---|---|---|---|---|
| [77] | 4 × 4 | Waveguide | 12.5 GHz | — | First waveguide filtering Butler matrix |
| [78] | 2 × 4 | Microstrip resonator | 2.4 GHz | 0°/180° | Equal amplitude, dual input modes |
| [82] | 4 × 4 | Waveguide | 30 GHz | 0°, 180°, ±90° | Stable phase balance, mmWave operation |
| [83] | 4 × 4 (dual-band) | SLR-based | 12.25/17.25 GHz | — | Dual-band operation, compact design |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, W.; Xu, K. RF Multifunctional Components with Integrated Filtering Characteristics: A Review. Microwave 2025, 1, 11. https://doi.org/10.3390/microwave1030011
He W, Xu K. RF Multifunctional Components with Integrated Filtering Characteristics: A Review. Microwave. 2025; 1(3):11. https://doi.org/10.3390/microwave1030011
Chicago/Turabian StyleHe, Weiyu, and Kaida Xu. 2025. "RF Multifunctional Components with Integrated Filtering Characteristics: A Review" Microwave 1, no. 3: 11. https://doi.org/10.3390/microwave1030011
APA StyleHe, W., & Xu, K. (2025). RF Multifunctional Components with Integrated Filtering Characteristics: A Review. Microwave, 1(3), 11. https://doi.org/10.3390/microwave1030011

