Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = coupled Eulerian–Lagrangian (CEL) method

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 16653 KiB  
Article
Integrated Assessment Methodology for Jack-Up Stability: Centrifuge Test of Entire Four-Legged Model for WTIVs
by Mingsheng Xiahou, Zhiyuan Wei, Yilin Wang, Deqing Yang, Jian Chi and Shuxiang Liu
Appl. Sci. 2025, 15(14), 7971; https://doi.org/10.3390/app15147971 - 17 Jul 2025
Viewed by 163
Abstract
Although wind turbine installation vessels (WTIVs) are increasingly operating in deepwater complex geological areas with larger scales, systematic research on and experimental validation of platform jack-up stability remain insufficient. This study aimed to establish a comprehensive evaluation framework encompassing penetration depth, anti-overturning/sliding stability, [...] Read more.
Although wind turbine installation vessels (WTIVs) are increasingly operating in deepwater complex geological areas with larger scales, systematic research on and experimental validation of platform jack-up stability remain insufficient. This study aimed to establish a comprehensive evaluation framework encompassing penetration depth, anti-overturning/sliding stability, and punch-through risk, thereby filling the gap in holistic platform stability analysis. An entire four-legged centrifuge test at 150× g was integrated with coupled Eulerian–Lagrangian (CEL) numerical simulations and theoretical methods to systematically investigate spudcan penetration mechanisms and global sliding/overturning evolution in clay/sand. The key findings reveal that soil properties critically influence penetration resistance and platform stability: Sand exhibited a six-times-higher ultimate bearing capacity than clay, yet its failure zone was 42% smaller. The sliding resistance in sand was 2–5 times greater than in clay, while the overturning behavior diverged significantly. Although the horizontal loads in clay were only 50% of those in sand, the tilt angles at equivalent sliding distances reached 8–10 times higher. Field validation at Guangdong Lemen Wind Farm confirmed the method’s reliability: penetration prediction errors of <5% and soil backflow/plugging effects were identified as critical control factors for punch-through risk assessment. Notably, the overturning safety factors for crane operation at 90° outreach and storm survival were equivalent, indicating operational load combinations dominate overturning risks. These results provide a theoretical and decision-making basis for the safe operation of large WTIVs, particularly applicable to engineering practices in complex stratified seabed areas. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

17 pages, 4945 KiB  
Article
Numerical Simulation of Regular Wave and Ice Floe Interaction Using Coupled Eulerian–Lagrangian Method
by Chaoge Yu and Yukui Tian
Water 2025, 17(13), 1879; https://doi.org/10.3390/w17131879 - 24 Jun 2025
Viewed by 467
Abstract
Wave propagation is impacted by the presence of ice floes. The influence of waves, on the other hand, causes ice floes to overlap and accumulate. In this paper, the interaction of ice floes and regular waves was simulated using the Finite Element Method. [...] Read more.
Wave propagation is impacted by the presence of ice floes. The influence of waves, on the other hand, causes ice floes to overlap and accumulate. In this paper, the interaction of ice floes and regular waves was simulated using the Finite Element Method. Firstly, natural ice floe fields were generated using the Python 3.10 programing language, with floe size distribution and randomness taken into consideration. Then, using the velocity inlet boundary wave generation method, regular simple harmonic waves were produced. The process where ice floes couple with waves was simulated with the Coupled Eulerian–Lagrangian (CEL) approach. Variations in wave height after passing through the ice floe field were investigated, and further research was conducted on the movement and fragmentation characteristics of ice floes. Simulations employing the Coupled Eulerian–Lagrangian (CEL) approach reveal that (1) ice floe motion exhibits periodic characteristics synchronized with incident wave periods; (2) wave height attenuation increases by 62–80% with rising ice concentration (70–90%); and (3) fragmentation predominantly occurs at wave trough phases due to flexural stress concentration. These findings quantitatively characterize wave–ice energy transfer mechanisms critical for polar navigation safety assessments. Full article
Show Figures

Figure 1

22 pages, 20084 KiB  
Article
A Comparative Analysis of In Situ Testing Methods for Clay Strength Evaluation Using the Coupled Eulerian–Lagrangian Method
by Hebo Wang, Yifa Wang, Biao Li, Wengang Qi and Ning Wang
J. Mar. Sci. Eng. 2025, 13(5), 935; https://doi.org/10.3390/jmse13050935 - 9 May 2025
Viewed by 512
Abstract
The progression of marine resource exploration into deepwater and ultra-deepwater regions has intensified the requirement for precise quantification of the undrained shear strength of clay. Although diverse in situ testing methodologies—including the vane shear test (VST), cone penetration test (CPT), T-bar penetration test [...] Read more.
The progression of marine resource exploration into deepwater and ultra-deepwater regions has intensified the requirement for precise quantification of the undrained shear strength of clay. Although diverse in situ testing methodologies—including the vane shear test (VST), cone penetration test (CPT), T-bar penetration test (TPT), and ball penetration test (BPT)—are widely utilized for the assessment of clay strength, systematic discrepancies and correlations between their derived measurements remain inadequately resolved. The aim of this work is to provide a systematic comparison of strength interpretations across different in situ testing methods, with emphasis on identifying method-specific biases under varying soil behaviors. To achieve this, a unified numerical simulation framework was developed to simulate these four prevalent testing techniques, employing large-deformation finite element analysis via the Coupled Eulerian–Lagrangian (CEL) approach. The model integrates critical constitutive behaviors of marine clays, specifically strain softening and strain rate dependency, to replicate in situ shear strength evolution. Rigorous sensitivity analyses confirm the model’s robustness. The results indicate that, when the stain rate and softening effects are neglected, the resistance factors from the CPT and VST remain largely insensitive to shear strength variations. However, T-bar and ball penetrometers tend to underestimate strength by up to 15% in high-strength soils due to the incomplete development of a full-flow failure mechanism. As a result, their application in high-strength soils is not recommended. With both the strain rate and softening effects considered, the interpreted strength value Sut from the CPT increases by 13.5% compared to cases excluding these effects, while other methods exhibit marginal decreases of 4–5%. The isolated analysis of strain softening reveals that, under identical softening parameters, the CPT demonstrates the least sensitivity to strain softening among the four methods examined, with the factor reduction ratio Ns/N0 ranging from 0.76 to 1.00, while the other three methods range from 0.65 to 0.88. The results indicate that the CPT is well suited for strength testing in soils exhibiting pronounced softening behavior, as it reduces the influence of strain softening on the measured results. These findings provide critical insights into method-specific biases in undrained shear strength assessments, supporting a more reliable interpretation of in situ test data for deepwater geotechnical applications. Full article
(This article belongs to the Special Issue Wave–Structure–Seabed Interaction)
Show Figures

Figure 1

15 pages, 3434 KiB  
Article
Underwater Explosion Analysis on Composite Marine Structures: A Comparison Between CEL and UEL Methods
by Jacopo Bardiani, Giada Kyaw Oo D’Amore, Claudio Sbarufatti and Andrea Manes
J. Compos. Sci. 2025, 9(4), 177; https://doi.org/10.3390/jcs9040177 - 5 Apr 2025
Cited by 1 | Viewed by 572
Abstract
Underwater explosion (UNDEX) problems are typically simulated using numerical coupled techniques, such as the Coupled Eulerian–Lagrangian (CEL) method, to accurately capture fluid–structure interaction (FSI) effects, which are non-negligible in such scenarios. While highly accurate, coupled methods are computationally expensive. Alternatively, uncoupled (or decoupled) [...] Read more.
Underwater explosion (UNDEX) problems are typically simulated using numerical coupled techniques, such as the Coupled Eulerian–Lagrangian (CEL) method, to accurately capture fluid–structure interaction (FSI) effects, which are non-negligible in such scenarios. While highly accurate, coupled methods are computationally expensive. Alternatively, uncoupled (or decoupled) techniques, like the Uncoupled Eulerian–Lagrangian (UEL) approach, offer greater computational efficiency by neglecting FSI effects, but at the cost of reduced predictive accuracy. This study provides a qualitative and quantitative evaluation of how far UEL results deviate from the more realistic CEL solutions in UNDEX scenarios. The comparison focuses on the structural response of a floating double-bottom fiber-reinforced composite structure subject to a near-field UNDEX. The numerical results indicate that the UEL approach overestimates structural response by up to 190% compared to CEL when added mass effects are considered, and up to 400% when they are not. However, a correction strategy based on modifying the Hull Shock Factor (HSF) is proposed to bridge the gap between UEL and CEL predictions. This study demonstrates that, with proper calibration, UEL simulations can serve as a computationally efficient alternative for preliminary UNDEX assessments in naval engineering. Full article
Show Figures

Figure 1

35 pages, 12953 KiB  
Article
Two-Dimensional Finite Element Analysis and Cutting Force Model for the Cutting of Circular Steel Bars Using Negative Rake Angle Cutters: Accounting for Chip Accumulation Effects
by Shifan Qiao, Chaobo Feng, Gang Wang, Taofu Liu and Jenisha Singh
Materials 2025, 18(6), 1339; https://doi.org/10.3390/ma18061339 - 18 Mar 2025
Viewed by 573
Abstract
The cutting force exerted on steel bars plays a crucial role in determining tunneling parameters for shield tunneling, especially when cutters are used to cut through existing pile foundations. This research focuses on the cutting force during the initial phase of the cutting [...] Read more.
The cutting force exerted on steel bars plays a crucial role in determining tunneling parameters for shield tunneling, especially when cutters are used to cut through existing pile foundations. This research focuses on the cutting force during the initial phase of the cutting process. Using 2D finite element analysis, this study examines the early stage of orthogonal cutting with negative rake angle cutters, exploring the formation of a slip plane mode. By combining slip line theory with the shear band model, a computational model is developed to calculate the cutting force for negative rake angle cutters when cutting a circular steel bar cross-section at various depths. In addition, with the incorporation of the Johnson–Cook model, this study models cutting forces under various conditions, taking into account factors such as material strength, strain rate sensitivity, and temperature effects. The steels studied include AISI 1040, AISI 4340, and AISI 304, which are commonly used in construction, with attention given to how their mechanical properties, such as strength and hardness, affect the cutting forces. While this study acknowledges the steels’ manufacturing conditions, the primary focus remains on the cutting process and its impact on force predictions. The model’s calculated horizontal cutting force is compared to numerical simulations, showing a maximum absolute error of 33.85% and an average error of 14.23%. The vertical cutting force calculations are less accurate, with a maximum error of 64.2% and an average error of 14.06%. The analysis further reveals that chip accumulation significantly impacts the horizontal cutting force, while the variation in average stress along the slip line has a smaller effect. This study also examines how factors like material properties, initial temperature, low friction coefficients, and steel bar radius contribute to the model’s accuracy and reliability. Full article
Show Figures

Figure 1

20 pages, 6345 KiB  
Article
Application of a Coupled Eulerian-Lagrangian Approach to the Shape and Force of Scientific Balloons
by Lingsen Kong, Yanchu Yang, Rong Cai, Hangyue Zhang and Weihao Lyu
Appl. Sci. 2025, 15(3), 1517; https://doi.org/10.3390/app15031517 - 2 Feb 2025
Cited by 2 | Viewed by 979
Abstract
Scientific balloons provide an inexpensive and reliable platform for near-space scientific experiments. The analysis of the balloon geometry and forces has always been a major concern for balloon designers. Most previous studies have focused solely on the fully inflated shapes and forces of [...] Read more.
Scientific balloons provide an inexpensive and reliable platform for near-space scientific experiments. The analysis of the balloon geometry and forces has always been a major concern for balloon designers. Most previous studies have focused solely on the fully inflated shapes and forces of balloons, analyzing only the membrane structure and simplifying the effects of internal and external gases into a gradient pressure difference. This approach lacks consideration of the fluid–structure interaction (FSI) of scientific balloons. This paper utilizes the Coupled Eulerian–Lagrangian (CEL) method in the Abaqus/Explicit simulation environment to analyze the FSI effects of scientific balloons under the influence of internal helium and external air. Three typical working conditions of scientific balloons are selected for simulation analysis. First, a three-dimensional spherical balloon is simulated during the ascent process to verify the correctness of the CEL simulation framework. This also demonstrates the membrane folding characteristics during balloon ascent, which could not be calculated in previous two-dimensional axisymmetric simulations. Next, the study explores balloon shapes that deviate from quasi-static pressure distributions due to the motion of internal helium. These include the “mushroom” shape observed during the dynamic launching of the balloon on the ground and the “sail” shape caused by lateral airflow. The mushroom shape arises from the sudden loss of the bottom constraint, causing the internal helium to move upward while being resisted by the air at the balloon’s top. The simulation successfully replicates the rapid waist transition and the downward concavity at the top due to air resistance, while also providing the corresponding force distribution. For the sail-shaped condition, the simulation analyzes the balloon’s tilt angle and the characteristic upturn of its windward surface. By a comparison with no-wind conditions, this study quantifies the impact of wind on the forces acting on the balloon, offering practical guidance for balloon launching. The CEL simulation framework established in this study not only provides a new tool for the FSI analysis of scientific balloons but also enriches the mechanical analysis results of these balloons. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

17 pages, 4466 KiB  
Article
Simulation of Load–Sinkage Relationship and Parameter Inversion of Snow Based on Coupled Eulerian–Lagrangian Method
by Ming Zhu, Pengyu Li, Dongqing Li, Wei Wei, Jianfeng Liu, Xixing Long, Qingkai Meng, Yongjie Shu and Qingdong Yan
Machines 2025, 13(1), 8; https://doi.org/10.3390/machines13010008 - 25 Dec 2024
Viewed by 756
Abstract
The accurate calibration of snow parameters is necessary to establish an accurate simulation model of snow, which is generally used to study tire–snow interaction. In this paper, an innovative parameter inversion method based on in situ test results is proposed to calibrate the [...] Read more.
The accurate calibration of snow parameters is necessary to establish an accurate simulation model of snow, which is generally used to study tire–snow interaction. In this paper, an innovative parameter inversion method based on in situ test results is proposed to calibrate the snow parameters, which avoids the damage to the mechanical properties of snow when making test samples using traditional test methods. A coupled Eulerian–Lagrangian (CEL) model of plate loading in snow was established; the sensitivity of snow parameters to the macroscopic load–sinkage relationship was studied; a plate-loading experiment was carried out; and the parameters of snow at the experimental site were inverted. The parameter inversion results from the snow model were verified by the experimental test results of different snow depths and different plate sizes. The results show the following: (1) The material cohesive, angle of friction, and hardening law of snow have great influence on the load–sinkage relationship of snow, the elastic modulus has a great influence on the unloading/reloading stiffness of snow, and the influence of density and Poisson’s ratio on the load–sinkage relationship can be ignored. (2) The correlation coefficient between the inversion result and the matching test data is 0.979, which is 0.304 higher than that of the initial inversion curve. (3) The load–sinkage relationship of snow with different snow depths and plate diameters was simulated by using the model parameter of inversion, and the results were compared with the experimental results. The minimum correlation coefficient was 0.87, indicating that the snow parameter inversion method in this paper can calibrate the snow parameters of the test site accurately. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

33 pages, 11936 KiB  
Article
Evaluating the Performance of Protective Barriers against Debris Flows Using Coupled Eulerian Lagrangian and Finite Element Analyses
by Shiyin Sha, Ashley P. Dyson, Gholamreza Kefayati and Ali Tolooiyan
Sustainability 2024, 16(17), 7332; https://doi.org/10.3390/su16177332 - 26 Aug 2024
Viewed by 1342
Abstract
Protective structures are critical in mitigating the dangers posed by debris flows. However, evaluating their performance remains a challenge, especially considering boulder transport in complex 3D terrains. This study introduces a comprehensive methodology to appraise the effectiveness of protective structures under the impact [...] Read more.
Protective structures are critical in mitigating the dangers posed by debris flows. However, evaluating their performance remains a challenge, especially considering boulder transport in complex 3D terrains. This study introduces a comprehensive methodology to appraise the effectiveness of protective structures under the impact of debris flows for real-world conditions along the Hobart Rivulet in Tasmania, Australia. The validation of the Coupled Eulerian-Lagrangian (CEL) model against experimental data demonstrates its high accuracy in predicting flow dynamics and impact forces, whereby flow velocities are estimated for subsequent Finite Element (FE) analyses. By simulating boulder-barrier interactions, weak points in I-beam post barriers are identified, with a broad investigation of the effects on the barrier performance under various conditions. The establishment of a 3D CEL model to assess the interactions between debris flow, boulders, and I-beam post barriers in a complex rivulet terrain is of particular significance. Through CEL and FE analyses, various aspects of debris flow-structure interactions are presented, including structural failure, impact force, and boulder velocity. The findings provide insights into the suitability of various numerical methods to assess the performance of protective measures in real-world scenarios. Full article
(This article belongs to the Special Issue Innovative Technologies and Strategies in Disaster Management)
Show Figures

Figure 1

18 pages, 6413 KiB  
Article
Numerical Study of Tangential Traction Mechanism between Pattern Blocks of Agricultural Radial Tires and Soft Soil
by Sheng Li, Jian Wu, Yang Wan, Benlong Su and Youshan Wang
Materials 2024, 17(16), 3906; https://doi.org/10.3390/ma17163906 - 7 Aug 2024
Viewed by 1082
Abstract
With the increasing requirements of agricultural machinery, the study of the contact relationship between the tire–soil interface and the improvement of traction efficiency has gradually become a main concern. In this study, the pattern on the agricultural tire was simplified into single-pitch pattern [...] Read more.
With the increasing requirements of agricultural machinery, the study of the contact relationship between the tire–soil interface and the improvement of traction efficiency has gradually become a main concern. In this study, the pattern on the agricultural tire was simplified into single-pitch pattern blocks. The pattern blocks were made of rubber material that was highly resistant to abrasion and bending. The experiment was carried out by pressing the three types of patterned block construction into the soil and the pure sliding under the soil. The simulation used the Coupled Eulerian–Lagrangian Method (CEL) to verify the experimental results. We found that the herringbone pattern block was subjected to the highest stress for the same depth of downward pressure. The horizontal force generated by the pure sliding was also the highest. The results showed that the numerically simulated and experimentally measured data exhibited similar trends and average values. In addition, the increase in the contact area between the tire and the soil reduced the compaction and sinking of the soil. The herringbone pattern structure not only had a large contact area but also produced the most significant shear force on the soil. Thus, it may generate greater traction in actual operations. Full article
Show Figures

Figure 1

31 pages, 13800 KiB  
Article
Analysis of Debris Flow Protective Barriers Using the Coupled Eulerian Lagrangian Method
by Shiyin Sha, Ashley P. Dyson, Gholamreza Kefayati and Ali Tolooiyan
Geosciences 2024, 14(8), 198; https://doi.org/10.3390/geosciences14080198 - 26 Jul 2024
Cited by 2 | Viewed by 1382
Abstract
Protective structures play a vital role in mitigating the risks associated with debris flows, yet assessing their performance poses crucial challenges for their real-world effectiveness. This study proposes a comprehensive procedure for evaluating the performance of protective structures exposed to impacts from media [...] Read more.
Protective structures play a vital role in mitigating the risks associated with debris flows, yet assessing their performance poses crucial challenges for their real-world effectiveness. This study proposes a comprehensive procedure for evaluating the performance of protective structures exposed to impacts from media transported by large debris flow events. The method combines numerical modelling with site conditions for existing structures along the Hobart Rivulet in Tasmania, Australia. The Coupled Eulerian Lagrangian (CEL) model was validated by comparing simulation results with experimental data, demonstrating high agreement. Utilising three-dimensional modelling of debris flow–boulder interactions over the Hobart Rivulet terrain, boulder velocities were estimated for subsequent finite element analyses. Importantly, a model of interaction between boulders and I-beam posts was established, facilitating a comparative assessment of five distinct I-beam barrier systems defined as Type A to E, which are currently in use at the site. Simulation results reveal larger boulders display a slower increase in their velocities over the 3D terrain. Introducing a key metric, the failure ratio, enable a mechanism for comparative assessments of these barrier systems. Notably, the Type E barriers demonstrate superior performance due to fewer weak points within the structure. The combined CEL and FE assessments allow for multiple aspects of the interactions between debris flows, boulders, and structures to be considered, including structural failure and deformability, to enhance the understanding of debris flow risk mitigation in Tasmania. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

20 pages, 7287 KiB  
Article
A Study of Drilling Parameter Optimization of Functionally Graded Material Steel–Aluminum Alloy Using 3D Finite Element Analysis
by Ahmed M. Galal, Abdallah. A. Elsherbiny and Mona A. AbouEleaz
J. Manuf. Mater. Process. 2024, 8(4), 155; https://doi.org/10.3390/jmmp8040155 - 23 Jul 2024
Cited by 2 | Viewed by 1635
Abstract
Composite materials, such as aluminum alloy FGMs, provide advantageous weight reduction properties compared to homogenous pure structures while still preserving sufficient stiffness for diverse applications. Despite various research on drilling simulation concepts and ideas for these materials, there still needs to be an [...] Read more.
Composite materials, such as aluminum alloy FGMs, provide advantageous weight reduction properties compared to homogenous pure structures while still preserving sufficient stiffness for diverse applications. Despite various research on drilling simulation concepts and ideas for these materials, there still needs to be an agreement on the process modeling. Researchers have looked into a lot of different numerical methods, including Lagrangian, Eulerian, arbitrary Lagrangian–Eulerian (ALE), and coupled Eulerian–Lagrangian (CEL), to find solutions to problems like divergence issues and too much mesh distribution, which become more of a problem at higher speeds. This research provides a global analysis of bottom-up meshing for eleven 1 mm layers using ABAQUS® software. It combines the internal surface contact approach with the Lagrangian domain’s kinematic framework. The model uses the Johnson–Cook constitutive equation to precisely predict cutting forces, stress, and strain distributions, optimizing cutting parameters to improve drilling performance. According to Taguchi analysis, the most favorable parameters for reducing cutting force and improving performance are a rotational speed of 700 rpm, a feed rate of 1 mm/s, and a depth of cut of 3 mm. The findings suggest that increasing the feed rate and depth of cut substantially affects the cutting force, while the rotational speed has a comparatively little effect. These ideal settings serve as a foundation for improving FGM drilling efficiency. Full article
Show Figures

Figure 1

27 pages, 17626 KiB  
Article
A Decoupled Buckling Failure Analysis of Buried Steel Pipeline Subjected to the Strike-Slip Fault
by Mozhgan Asgarihajifirouz, Xiaoyu Dong and Hodjat Shiri
J. Mar. Sci. Eng. 2024, 12(8), 1243; https://doi.org/10.3390/jmse12081243 - 23 Jul 2024
Viewed by 1031
Abstract
Over the past few years, there has been an increased focus on offshore pipeline safety due to the development of offshore oil and gas resources. Both onshore and offshore pipelines may face significant geological hazards resulting from active faults. Pre-excavated soil can be [...] Read more.
Over the past few years, there has been an increased focus on offshore pipeline safety due to the development of offshore oil and gas resources. Both onshore and offshore pipelines may face significant geological hazards resulting from active faults. Pre-excavated soil can be used as backfill for trenches to prevent major pipeline deformations. Since these backfill materials have been heavily remolded, they are softer than the native soil. Therefore, the difference in shear strength between the backfill and native ground may have an effect on the interaction between the pipeline and the backfill. In this paper, the pipeline–backfill–trench interaction is investigated using a hybrid beam–spring model. The P-Y curves obtained from CEL analysis are incorporated into a 3D beam–spring model to analyze the pipeline’s response to lateral strike-slip faults. Additionally, the nonlinearity of pipeline materials is considered to study pipeline failure modes under strike-slip fault movements. A series of parametric studies were conducted to explore the effects of fault intersection angle, pipe diameter, buried depth of the pipe, and soil conditions on the failure modes of buckling pipelines. The developed method can be used to analyze and assess pipeline–backfill–trench interaction when subjected to strike-slip fault displacements. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Geomechanics and Geotechnics)
Show Figures

Figure 1

18 pages, 5919 KiB  
Article
Dynamic Response of a Warship’s Metal-Jet-Damaged Double-Layer Plates Subjected to the Subsequent Underwater Explosion
by Xiao Huang, Jia-Wei Mao, Xiao Luo, Peng Du and Abdellatif Ouahsine
J. Mar. Sci. Eng. 2024, 12(6), 854; https://doi.org/10.3390/jmse12060854 - 22 May 2024
Cited by 3 | Viewed by 1150
Abstract
This paper examines the response characteristics of a warship’s double-layer plates under a secondary near-field explosion after the ship’s outer plate has been perforated by shaped metal jets. First, the effectiveness of the Coupled Eulerian–Lagrangian (CEL) method was validated, showing numerical simulations to [...] Read more.
This paper examines the response characteristics of a warship’s double-layer plates under a secondary near-field explosion after the ship’s outer plate has been perforated by shaped metal jets. First, the effectiveness of the Coupled Eulerian–Lagrangian (CEL) method was validated, showing numerical simulations to be well aligned with experimental results. Subsequently, the damage inflicted on the outer plate by metal jets was simplified to a prefabricated orifice, further studying the explosive impact response of double-layer plates under different inter-compartmental water levels and charge distances. Our findings indicated the following: (1) shockwave and bubble pulsation loads are the main causes of deformation in the outer plate; (2) the driving of the outer plate and the flooding water between compartments are the main causes of deformation in the inner plate; and (3) deformation in the outer plate will decrease as the water level in the compartment increases, while deformation in the inner plate will increase with the increasing water level. Consequently, under certain specific damage, the ingress of water into a compartment effectively enhances the explosion resistance of the double-layer plates. Full article
Show Figures

Figure 1

17 pages, 4159 KiB  
Article
Numerical Simulation of a Submerged Floating Tunnel: Validation and Analysis
by Hao Li, Xiaohui Cheng and Hua Pan
Appl. Sci. 2024, 14(9), 3589; https://doi.org/10.3390/app14093589 - 24 Apr 2024
Cited by 1 | Viewed by 1318
Abstract
The dynamic response analysis of submerged floating tunnels (SFTs) under seismic action is a complex two-way fluid–structure coupling problem that requires expertise in structural dynamics, fluid mechanics, and advanced computational methods. The coupled Eulerian–Lagrangian (CEL) method is a promising method for solving fluid–structure [...] Read more.
The dynamic response analysis of submerged floating tunnels (SFTs) under seismic action is a complex two-way fluid–structure coupling problem that requires expertise in structural dynamics, fluid mechanics, and advanced computational methods. The coupled Eulerian–Lagrangian (CEL) method is a promising method for solving fluid–structure interaction problems, but its application to SFTs is not well established. Therefore, it is crucial to verify the accuracy and reliability of the CEL method in fluid–structure coupling simulations. This study verified the applicability of the CEL method for simulating one-way and two-way fluid–structure coupling cylindrical flow problems, and then applied the CEL method for the analysis of a shaking table test of a model SFT. A comparison of results obtained with the CEL method with those obtained in a previous indoor model test of an SFT demonstrates the agreement between the results of the CEL method and the overall trend of the experimental results, indicating the reliability of the method for the seismic analysis of SFTs. Moreover, the analysis of the dynamic response characteristics of SFTs under seismic conditions provides data support and a technological means for the seismic design of SFTs. Full article
(This article belongs to the Special Issue Seismic Analysis and Design of Ocean and Underground Structures)
Show Figures

Figure 1

14 pages, 5559 KiB  
Article
A Method for Predicting the Load Interaction between Reinforced Thermoplastic Pipe and Sandy Soil Based on Model Testing
by Chuan Wang, Lianghai Liu, Ya Zhang and Min Lou
J. Mar. Sci. Eng. 2023, 11(12), 2353; https://doi.org/10.3390/jmse11122353 - 13 Dec 2023
Cited by 2 | Viewed by 1535
Abstract
This study aims to investigate the interaction between reinforced thermoplastic pipes (RTPs) and sandy soil. The mechanical properties of sandy soil in the South China Sea region were determined through shear tests to obtain fundamental data. Subsequently, a specialized experimental setup was designed [...] Read more.
This study aims to investigate the interaction between reinforced thermoplastic pipes (RTPs) and sandy soil. The mechanical properties of sandy soil in the South China Sea region were determined through shear tests to obtain fundamental data. Subsequently, a specialized experimental setup was designed and assembled to study the pipe–soil interaction, specifically measuring the lateral soil resistance of flexible pipes at varying burial depths. Data analysis revealed the relationship between soil resistance, lateral displacement, and initial burial depth. To simulate the mechanical behavior of the pipe–soil interaction, the coupled Eulerian–Lagrangian (CEL) method was employed for numerical simulations. The research findings indicate that the lateral soil resistance is influenced by the uplift height and accumulation width of the soil ahead of the pipe. Within a lateral displacement range of 0.5 times the pipe diameter (0.5D), the lateral soil resistance rapidly increases, resulting in a soil uplift along the circumferential direction of the pipe. This process not only enhances the load-bearing capacity of the pipe but also increases the accumulated soil resistance, consequently expanding the soil failure zone. Furthermore, the ultimate soil resistance exhibits an increasing trend with an increasing burial depth. Once the pipe reaches a certain burial depth, the uplift height of the soil reaches a critical state. To address the grid distortion caused by soil deformation, numerical simulations based on the CEL method effectively modeled the pipe–soil interaction forces under significant lateral displacements, exhibiting good agreement with the experimental results. This study provides a solution for investigating soil resistance in submarine pipelines, thereby contributing significantly to the design and performance prediction of underwater pipelines. Full article
(This article belongs to the Special Issue Advances in Marine Mechanical and Structural Engineering)
Show Figures

Figure 1

Back to TopTop