Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,993)

Search Parameters:
Keywords = couple simulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 3145 KB  
Article
Backstepping Sliding Mode Control of Quadrotor UAV Trajectory
by Yohannes Lisanewerk Mulualem, Gang Gyoo Jin, Jaesung Kwon and Jongkap Ahn
Mathematics 2025, 13(19), 3205; https://doi.org/10.3390/math13193205 - 6 Oct 2025
Abstract
Unmanned Aerial Vehicles (UAVs), commonly known as drones, have become widely used in many fields, ranging from agriculture to military operations, due to recent advances in technology and decreases in costs. Quadrotors are particularly important UAVs, but their complex, coupled dynamics and sensitivity [...] Read more.
Unmanned Aerial Vehicles (UAVs), commonly known as drones, have become widely used in many fields, ranging from agriculture to military operations, due to recent advances in technology and decreases in costs. Quadrotors are particularly important UAVs, but their complex, coupled dynamics and sensitivity to outside disturbances make them challenging to control. This paper introduces a new control method for quadrotors called Backstepping Sliding Mode Control (BSMC), which combines the strengths of two established techniques: Backstepping Control (BC) and Sliding Mode Control (SMC). Its primary goal is to improve trajectory tracking while also reducing chattering, a common problem with SMC that causes rapid, high-frequency oscillations. The BSMC method achieves this by integrating the SMC switching gain directly into the BC through a process of differential iteration. Herein, a Lyapunov stability analysis confirms the system’s asymptotic stability; a genetic algorithm is used to optimize controller parameters; and the proposed control strategy is evaluated under diverse payload conditions and dynamic wind disturbances. The simulation results demonstrated its capability to handle payload variations ranging from 0.5 kg to 18 kg in normal environments, and up to 12 kg during gusty wind scenarios. Furthermore, the BSMC effectively minimized chattering and achieved a superior performance in tracking accuracy and robustness compared to the traditional SMC and BC. Full article
(This article belongs to the Special Issue Dynamic Modeling and Simulation for Control Systems, 3rd Edition)
23 pages, 6714 KB  
Article
The Climate–Fire–Carbon Nexus in Tropical Asian Forests: Fire Behavior as a Mediator and Forest Type-Specific Responses
by Sisheng Luo, Zhangwen Su, Shujing Wei, Yingxia Zhong, Yimin Chen, Xuemei Li, Yufei Zhou, Yangpeng Liu and Zepeng Wu
Forests 2025, 16(10), 1544; https://doi.org/10.3390/f16101544 - 6 Oct 2025
Abstract
Forest fires significantly impact the global climate through carbon emissions, yet the multi-scale coupling mechanisms among meteorological factors, fire behavior, and emissions remain uncertain. Focusing on tropical Asia, this study integrated satellite-based fire behavior products, meteorological datasets, and emission factors, and employed machine [...] Read more.
Forest fires significantly impact the global climate through carbon emissions, yet the multi-scale coupling mechanisms among meteorological factors, fire behavior, and emissions remain uncertain. Focusing on tropical Asia, this study integrated satellite-based fire behavior products, meteorological datasets, and emission factors, and employed machine learning together with structural equation modeling (SEM) to explore the mediating role of fire behavior in the meteorological regulation of carbon emissions. The results revealed significant differences among vegetation types in both carbon emission intensity and sensitivity to meteorological drivers. For example, average gas emissions (GEs) and particle emissions (PEs) in mixed forests (MF, 323.68 g/m2/year for GE and 0.73 g/m2/year for PE) were approximately 172% and 151% higher, respectively, than those in evergreen broadleaf forests (EBF, 118.92 g/m2/year for GE and 0.29 g/m2/year for PE), which exhibited the lowest emission intensity. Mixed forests and deciduous broadleaf forests exhibited stronger meteorological regulation effects, whereas evergreen broadleaf forests were comparatively stable. Temperature and vapor pressure deficit emerged as the core drivers of fire behavior and carbon emissions, exerting indirect control through fire behavior. Overall, the findings highlight fire behavior as a critical link between meteorological conditions and carbon emissions, with ecosystem-specific differences determining the responsiveness of carbon emissions to meteorological drivers. These insights provide theoretical support for improving the accuracy of wildfire emission simulations in climate models and for developing vegetation-specific fire management and climate adaptation strategies. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

20 pages, 5333 KB  
Article
Shielded Capacitive Power Transmission (S-CPT) System Using Cast Iron
by Eiichi Tateishi, Hao Chen, Naoki Kojo, Yuta Ide, Nobuhiro Kai, Toru Hashimoto, Kota Uchio, Tatsuya Yamaguchi, Reiji Hattori and Haruichi Kanaya
Energies 2025, 18(19), 5288; https://doi.org/10.3390/en18195288 - 6 Oct 2025
Abstract
In this study, we investigate a shielded capacitive power transfer (S-CPT) system that employs cast iron road covers as transmission electrodes for both dynamic and static charging of electric vehicles. Coupling capacitance was evaluated from S-parameters using copper, aluminum, ductile cast iron, structural [...] Read more.
In this study, we investigate a shielded capacitive power transfer (S-CPT) system that employs cast iron road covers as transmission electrodes for both dynamic and static charging of electric vehicles. Coupling capacitance was evaluated from S-parameters using copper, aluminum, ductile cast iron, structural steel, and carbon steel electrodes, with additional comparisons of ductile iron surface conditions (casting, machining, electrocoating). In a four-plate S-CPT system operating at 13.56 MHz, capacitance decreased with electrode spacing, yet ductile cast iron reached ~70 pF at 2 mm, demonstrating a performance comparable to that of copper and aluminum despite having higher resistivity and permeability. Power transmission experiments using a Ø330 mm cast iron cover meeting road load standards achieved 58% efficiency at 100 W, maintained around 40% efficiency at power levels above 200 W, and retained 45% efficiency under 200 mm lateral displacement, confirming robust dynamic performance. Simulations showed that shield electrodes enhance grounding, stabilize potential, and reduce return-path impedance. Finite element analysis confirmed that the ductile cast iron electrodes can withstand a 25-ton design load. The proposed S-CPT concept integrates an existing cast iron infrastructure with thin aluminum receiving plates, enabling high efficiency, mechanical durability, EMI mitigation, and reduced installation costs, offering a cost-effective approach to urban wireless charging. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

18 pages, 4521 KB  
Article
Lightweight Design and Research of Electric Towing Winch Based on Kriging-NSGA-III-TOPSIS Multi-Objective Optimization Technology
by Quanliang Liu, Lu Feng, Ya Wang, Ji Lin and Linsen Zhu
Machines 2025, 13(10), 922; https://doi.org/10.3390/machines13100922 - 6 Oct 2025
Abstract
To address the challenges of weight redundancy, low material utilization, and excessive performance margins in the design of electric cable-hauling machines, this study proposes a novel multi-objective optimization framework. The framework integrates Latin hypercube experimental design, Kriging surrogate modeling, a Non-dominated Sorting Genetic [...] Read more.
To address the challenges of weight redundancy, low material utilization, and excessive performance margins in the design of electric cable-hauling machines, this study proposes a novel multi-objective optimization framework. The framework integrates Latin hypercube experimental design, Kriging surrogate modeling, a Non-dominated Sorting Genetic Algorithm III (NSGA-III), and a coupled TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) approach. A high-fidelity finite element model based on extreme operating conditions was established to simulate the performance of the electric towing winch. The Kriging model was employed to replace time-consuming finite element calculations, significantly improving computational efficiency. The NSGA-III algorithm was then utilized to search for the Pareto front, identifying a set of optimal solutions that balance multiple design objectives. Finally, the TOPSIS method was applied to select the most preferable solution from the Pareto front. The results demonstrate a 7.32% reduction in the overall mass of the towing winch, a 7.34% increase in the safety factor, and a 4.57% reduction in maximum structural deformation under extreme operating conditions. These findings validate the effectiveness of the proposed Kriging-NSGA-III-TOPSIS strategy for lightweight design of ship deck winch machinery. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

26 pages, 11518 KB  
Article
Effects of Air Injection on the Dynamic Characteristics of Sediment Deposition and Erosion Distribution in Pump-Turbine Runners
by Haowen Liu, Xin Yang, Yanjun He, Jiaxing Lu and Liang Jiang
Sensors 2025, 25(19), 6192; https://doi.org/10.3390/s25196192 - 6 Oct 2025
Abstract
As the core equipment of pumped storage power stations, the erosion and wear of pump-turbine runner blades have become critical issues affecting the operational efficiency and service life of units. To mitigate particle impact energy and surface wear of the runner blades, this [...] Read more.
As the core equipment of pumped storage power stations, the erosion and wear of pump-turbine runner blades have become critical issues affecting the operational efficiency and service life of units. To mitigate particle impact energy and surface wear of the runner blades, this study proposes the installation of aeration short pipes with a diameter of 4 mm and a length of 20 mm at the adjustable guide vanes and the main shaft, aiming to investigate the influence of air injection on erosion characteristics. Numerical simulations demonstrate that air injection significantly alters the flow characteristics in the runner region and establishes a coupling relationship between erosion distribution and different aeration concentrations and injection methods. Guide vane aeration effectively reduces sediment-induced erosion on the runner crown and blade working surface, while simultaneously leading to more localized erosion on the crown and band. In contrast, main shaft aeration increases erosion on the crown and blade working surface, and under high aeration concentrations, the erosion region exhibits a significant expansion trend. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

30 pages, 9953 KB  
Article
Study on Carbon Storage Evolution and Scenario Response Under Multi-Pathway Drivers in High-Groundwater-Level Coal Resource-Based Cities: A Case Study of Three Cities in Shandong, China
by Yulong Geng, Zhenqi Hu, Weihua Guo, Anya Zhong and Quanzhi Li
Land 2025, 14(10), 2001; https://doi.org/10.3390/land14102001 - 6 Oct 2025
Abstract
Land use/land cover (LULC) change is a key driving factor influencing the dynamics of terrestrial ecosystem carbon storage. In high-groundwater-level coal resource-based cities (HGCRBCs), the interplay of urban expansion, mining disturbances, and land reclamation makes the carbon storage evolution process more complex. This [...] Read more.
Land use/land cover (LULC) change is a key driving factor influencing the dynamics of terrestrial ecosystem carbon storage. In high-groundwater-level coal resource-based cities (HGCRBCs), the interplay of urban expansion, mining disturbances, and land reclamation makes the carbon storage evolution process more complex. This study takes Jining, Zaozhuang, and Heze cities in Shandong Province as the research area and constructs a coupled analytical framework of “mining–reclamation–carbon storage” by integrating the Patch-generating Land Use Simulation (PLUS), Probability Integral Method (PIM), InVEST, and Grey Multi-Objective Programming (GMOP) models. It systematically evaluates the spatiotemporal characteristics of carbon storage changes from 2000 to 2020 and simulates the carbon storage responses under different development scenarios in 2030. The results show that: (1) From 2000 to 2020, the total carbon storage in the region decreased by 31.53 Tg, with cropland conversion to construction land and water bodies being the primary carbon loss pathways, contributing up to 89.86% of the total carbon loss. (2) Among the 16 major LULC transition paths identified, single-process drivers dominated carbon storage changes. Specifically, urban expansion and mining activities individually accounted for nearly 70% and 8.65% of the carbon loss, respectively. Although the reclamation path contributed to a recovery of 1.72 Tg of carbon storage, it could not fully offset the loss caused by mining. (3) Future scenario simulations indicate that the ecological conservation scenario yields the highest carbon storage, while the economic development scenario results in the lowest. Mining activities generally lead to approximately 3.5 Tg of carbon loss, while post-mining reclamation can restore about 72% of the loss. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

28 pages, 879 KB  
Article
Performance Bounds of Ranging Precision in SPAD-Based dToF LiDAR
by Hao Wu, Yingyu Wang, Shiyi Sun, Lijie Zhao, Limin Tong, Linjie Shen and Jiang Zhu
Sensors 2025, 25(19), 6184; https://doi.org/10.3390/s25196184 - 6 Oct 2025
Abstract
LiDAR with direct time-of-flight (dToF) technology based on single-photon avalanche diode detectors (SPADs) has been widely adopted in various applications. However, a comprehensive theoretical understanding of its fundamental ranging performance bounds—particularly the degradation caused by pile-up effects due to system dead time and [...] Read more.
LiDAR with direct time-of-flight (dToF) technology based on single-photon avalanche diode detectors (SPADs) has been widely adopted in various applications. However, a comprehensive theoretical understanding of its fundamental ranging performance bounds—particularly the degradation caused by pile-up effects due to system dead time and the potential benefits of photon-number-resolving detectors—remains incomplete and has not been systematically established in prior work. In this work, we present the first theoretical derivation of the Cramér–Rao lower bound (CRLB) for dToF systems explicitly accounting for dead time effects, generalize the analysis to SPADs with photon-number-resolving capabilities, and further validate the results through Monte Carlo simulations and maximum likelihood estimation. Our analysis reveals that pile-up not only reduces the information contained within individual ToF but also introduces a previously overlooked statistical coupling between distance and photon flux rate, further degrading ranging precision. The derived CRLB enables the determination of the optimal optical photon flux, laser pulse width (with FWHM of 0.56τ), and ToF quantization resolution that yield the best achievable ranging precision, showing that an optimal precision of approximately 0.53τ/N remains theoretically achievable, where τ is TDC resolution and N is the number of laser pulses. The analysis further quantifies the limited performance improvement enabled by increased photon-number resolution, which exhibits rapidly diminishing returns. Overall, these findings establish a unified theoretical framework for understanding the fundamental limits of SPAD-based dToF LiDAR, filling a gap left by earlier studies and providing concrete design guidelines for the selection of optimal operating points. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

15 pages, 1323 KB  
Article
A Hybrid Ant Colony Optimization and Dynamic Window Method for Real-Time Navigation of USVs
by Yuquan Xue, Liming Wang, Bi He, Shuo Yang, Yonghui Zhao, Xing Xu, Jiaxin Hou and Longmei Li
Sensors 2025, 25(19), 6181; https://doi.org/10.3390/s25196181 - 6 Oct 2025
Abstract
Unmanned surface vehicles (USVs) rely on multi-sensor perception, such as radar, LiDAR, GPS, and vision, to ensure safe and efficient navigation in complex maritime environments. Traditional ant colony optimization (ACO) for path planning, however, suffers from premature convergence, slow adaptation, and poor smoothness [...] Read more.
Unmanned surface vehicles (USVs) rely on multi-sensor perception, such as radar, LiDAR, GPS, and vision, to ensure safe and efficient navigation in complex maritime environments. Traditional ant colony optimization (ACO) for path planning, however, suffers from premature convergence, slow adaptation, and poor smoothness in cluttered waters, while the dynamic window approach (DWA) without global guidance can become trapped in local obstacle configurations. This paper presents a sensor-oriented hybrid method that couples an improved ACO for global route planning with an enhanced DWA for local, real-time obstacle avoidance. In the global stage, the ACO state–transition rule integrates path length, obstacle clearance, and trajectory smoothness heuristics, while a cosine-annealed schedule adaptively balances exploration and exploitation. Pheromone updating combines local and global mechanisms under bounded limits, with a stagnation detector to restore diversity. In the local stage, the DWA cost function is redesigned under USV kinematics to integrate velocity adaptability, trajectory smoothness, and goal-deviation, using obstacle data that would typically originate from onboard sensors. Simulation studies, where obstacle maps emulate sensor-detected environments, show that the proposed method achieves shorter paths, faster convergence, smoother trajectories, larger safety margins, and higher success rates against dynamic obstacles compared with standalone ACO or DWA. These results demonstrate the method’s potential for sensor-based, real-time USV navigation and collision avoidance in complex maritime scenarios. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

19 pages, 9778 KB  
Article
Low Noise Structure Design and Experimental Verification of Ship Based on Flexural Wave Band Gap Characteristics
by Yicheng Lu, Li Tang, Chuanlong Wang, Zilong Peng and Li Xiang
Materials 2025, 18(19), 4615; https://doi.org/10.3390/ma18194615 - 6 Oct 2025
Abstract
To address low-frequency vibration and noise issues in ship grating structures, this study proposes a novel acoustic optimization design method based on modulating flexural wave bandgap characteristics. By establishing an equivalent periodic spring-mass coupled beam model to predict bandgap properties, its effectiveness is [...] Read more.
To address low-frequency vibration and noise issues in ship grating structures, this study proposes a novel acoustic optimization design method based on modulating flexural wave bandgap characteristics. By establishing an equivalent periodic spring-mass coupled beam model to predict bandgap properties, its effectiveness is validated through numerical simulations and experimental testing. By selectively enhancing longitudinal stiffness while weakening transverse components, the bandgap characteristics are effectively tuned to target frequency bands. This approach achieves an 8.2 dB noise reduction at the 31.4 Hz natural frequency. The results demonstrate that bandgap-based design provides a numerically and experimentally validated solution for low-noise ship structures. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

21 pages, 9318 KB  
Article
Investigation on Ground Collapse Due to Exfiltration of Shallowly Buried Water-Supply Pipeline
by Fenghao Bai, Ye Lu and Xiuying Lu
Appl. Sci. 2025, 15(19), 10736; https://doi.org/10.3390/app151910736 - 5 Oct 2025
Abstract
Pipeline exfiltration from damaged water-supply systems frequently causes soil erosion and ground subsidence, which jeopardizes the safety of pedestrians and vehicles and even causes casualties. Despite the severe consequences, it is difficult for engineers to give reliable assessments of pipeline exfiltration hazards. In [...] Read more.
Pipeline exfiltration from damaged water-supply systems frequently causes soil erosion and ground subsidence, which jeopardizes the safety of pedestrians and vehicles and even causes casualties. Despite the severe consequences, it is difficult for engineers to give reliable assessments of pipeline exfiltration hazards. In this study, erosion processes were explored using model tests and coupled computational fluid dynamics–discrete element method (CFD-DEM) simulations. It was discovered that the erosion zone can be divided into two zones—the exfiltration zone and the seepage diffusion zone. When water pressure reached 2.412 × 10−2 MPa, local porosity approached 1.0, indicating there were no soil particles remaining. As pipeline pressure increased from 2.122 × 10−3 MPa to 2.412 × 10−2 MPa, ground failure transitioned from downward settlement to upward bulge, and the ground failure duration of the fractured prototype pipe was reduced by 22–28% (from 125 s to 98 s), with a standard deviation of less than 5. The established exponential decay model (v(t)=v0e(αt),R2>0.89) enabled prediction of erosion duration. Based on the erosion height curve, the erosion duration and erosion area in similar engineering environments can be estimated, providing a reference for evaluating the risk of ground collapse due to pipe exfiltration. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

26 pages, 46021 KB  
Article
Cross-Scale Modeling of CFRP Stacking Sequence in Filament-Wound Composite Pressure Vessels: In-Plane and Inter-Layer Homogenization Analysis
by Ziqi Wang, Ji Shi, Xiaodong Zhao, Hui Li, Huiming Shen, Jianguo Liang and Jun Feng
Materials 2025, 18(19), 4612; https://doi.org/10.3390/ma18194612 - 5 Oct 2025
Abstract
Composite pressure vessels have attracted significant attention in recent years owing to their lightweight characteristics and superior mechanical performance. However, analyzing composite layers remains challenging due to complex filament-winding (FW) pattern structures and the associated high computational costs. This study introduces a homogenization [...] Read more.
Composite pressure vessels have attracted significant attention in recent years owing to their lightweight characteristics and superior mechanical performance. However, analyzing composite layers remains challenging due to complex filament-winding (FW) pattern structures and the associated high computational costs. This study introduces a homogenization method to achieve cross-scale modeling of carbon fiber-reinforced plastic (CFRP) layers, accounting for both lay-up sequence and in-plane FW diamond-shaped form. The stacking sequence in an FW Type IV composite pressure vessel is numerically investigated through ply modeling and cross-scale homogenization. The composite tank structure, featuring a polyamide PA66 liner, is designed for a working pressure of 70 MPa and comprises 12 helical winding layers and 17 hoop winding layers. An FW cross-undulation representative volume element (RVE) is developed based on actual in-plane mesostructures, suggesting an equivalent laminate RVE effective elastic modulus. Furthermore, six different lay-up sequences are numerically compared using ply models and fully and partially homogenized models. The structural displacements in both radial and axial directions are validated across all modeling approaches. The partial homogenization method successfully captures the detailed fiber-direction stress distribution in the innermost two hoop or helical layers. By applying the Hashin tensile failure criterion, the burst pressure of the composite tank is evaluated, revealing 7.56% deviation between the partial homogenization model and the ply model. Fatigue life analysis of the Type IV composite pressure vessel is conducted using ABAQUS® coupled with FE-SAFE, incorporating an S-N curve for polyamide PA66. The results indicate that the fatigue cycles of the liner exhibit only 0.28% variation across different stacking sequences, demonstrating that homogenization has a negligible impact on liner lifecycle predictions. The proposed cross-scale modeling framework offers an effective approach for multiscale simulation of FW composite pressure vessels, balancing computational efficiency with accuracy. Full article
19 pages, 1868 KB  
Article
Improved Deadbeat Predictive Current Predictive Control Based on Low-Complexity State Feedback Controllers and Online Parameter Identification
by Yun Zhang, Mingchen Luan, Zhenyu Tang, Haitao Yan and Long Wang
Machines 2025, 13(10), 917; https://doi.org/10.3390/machines13100917 - 5 Oct 2025
Abstract
To improve the control accuracy and address the parameter disturbance issues of joint-driven permanent magnet synchronous motors in intelligent manufacturing, this paper proposes an improved deadbeat predictive current predictive control (DPCC) scheme that eliminates dead zones. This scheme establishes a multi-parameter identification model [...] Read more.
To improve the control accuracy and address the parameter disturbance issues of joint-driven permanent magnet synchronous motors in intelligent manufacturing, this paper proposes an improved deadbeat predictive current predictive control (DPCC) scheme that eliminates dead zones. This scheme establishes a multi-parameter identification model based on the error equation of the d-q axis predicted current, which improves the problem of not being able to identify all parameters caused by insufficient input signals. It also implements decoupling compensation for the coupling between the d-q axis inductance, stator resistance, and magnetic flux linkage. To meet the anticipated control objectives and account for external disturbances, a low-complexity specified performance tracking controller (LCSPC) based on output target error signals has been designed. This mitigates output delay issues arising from nonlinear components during motor operation. Finally, simulation analysis and experimental testing demonstrate that the proposed control scheme achieves high identification accuracy with minimal delay, thus meeting the transient control performance requirements for motors in intelligent manufacturing processes. Full article
(This article belongs to the Section Electrical Machines and Drives)
23 pages, 9541 KB  
Article
Numerical Investigation of Wet Coke Particles Drying in a Silo Dryer Using CFD-DEM Simulation
by Peng Zhou, Yiliu Wu, Jiaxin Cui and Dianyu E
Processes 2025, 13(10), 3164; https://doi.org/10.3390/pr13103164 - 4 Oct 2025
Abstract
Coke is an essential raw material in the blast furnace (BF) ironmaking process. Its moisture content significantly impacts BF ironmaking production. This study employs a coupled Computational Fluid Dynamics–Discrete Element Method (CFD-DEM) approach to simulate the drying process of wet coke within a [...] Read more.
Coke is an essential raw material in the blast furnace (BF) ironmaking process. Its moisture content significantly impacts BF ironmaking production. This study employs a coupled Computational Fluid Dynamics–Discrete Element Method (CFD-DEM) approach to simulate the drying process of wet coke within a coke silo (CS) dryer. Initially, the model was validated by comparing numerical results with experimental data from the literature. Subsequently, it investigated the gas flow dynamics, heat and mass transfer characteristics, and differences in drying behaviour across distinct dryer zones. Finally, the effects of inlet gas velocity and inlet gas temperature on the drying process were systematically quantified. Simulation results reveal that the bottom of the CS dryer exhibits a low-velocity laminar state, while the middle and upper regions display intense gas flow motion. Consequently, the bottom region exhibits insufficient particle drying in comparison to other zones, with the average particle moisture content decreasing by less than 20%. Under the continuous heat exchange between the hot gas and the particles, the moisture content of the particles decreases rapidly. Based on the drying rate behaviour, the drying process exhibits the following three different stages: the pre-heating period, the constant-rate period, and the falling-rate period. Compared to zones 1 and 3, zone 2 exhibits higher temperatures due to its high heat transfer efficiency, which significantly promotes a reduction in particle moisture content. An increase in inlet gas velocity enhances the particle drying rate and heat flux, accelerates moisture reduction, and raises the temperature. The impact of inlet gas velocity is most pronounced after the constant-rate period, with particle drying uniformity decreasing as the inlet gas velocity increases, consequently leading to a decline in drying quality. Increasing inlet gas temperature significantly increases particle temperature and heat flux throughout the drying period and accelerates the high-rate drying stage. These findings provide fundamental insights for further understanding and studying the coke drying process. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

16 pages, 4460 KB  
Article
Fluidic Response and Sensing Mechanism of Meissner’s Corpuscles to Low-Frequency Mechanical Stimulation
by Si Chen, Tonghe Yuan, Zhiheng Yang, Weimin Ru and Ning Yang
Sensors 2025, 25(19), 6151; https://doi.org/10.3390/s25196151 - 4 Oct 2025
Abstract
Meissner’s corpuscles are essential mechanoreceptors that detect low-frequency vibrations. However, the internal fluid dynamic processes that convert directional mechanical stimuli into neural signals are not yet fully understood. This study aims to clarify the direction-specific sensing mechanism by analyzing internal fluid flow and [...] Read more.
Meissner’s corpuscles are essential mechanoreceptors that detect low-frequency vibrations. However, the internal fluid dynamic processes that convert directional mechanical stimuli into neural signals are not yet fully understood. This study aims to clarify the direction-specific sensing mechanism by analyzing internal fluid flow and shear stress distribution under different vibration modes. A biomimetic microfluidic platform was developed and coupled with a dynamic mesh computational fluid dynamics (CFD) model to simulate the response of the corpuscle to 20 Hz normal and tangential vibrations. The simulation results showed clear differences in fluid behavior. Normal vibration produced localized vortices and peak wall shear stress greater than 0.0054 Pa along the short axis. In contrast, tangential vibration generated stable laminar flow with a lower average shear stress of about 0.0012 Pa along the long axis. These results suggest that the internal structure of the Meissner corpuscle is important for converting mechanical inputs from different directions into specific fluid patterns. This study provides a physical foundation for understanding mechanotransduction and supports the design of biomimetic sensors with improved directional sensitivity for use in smart skin and soft robotic systems. Full article
(This article belongs to the Section Biosensors)
26 pages, 2525 KB  
Article
Diffusive–Mechanical Coupled Phase Field for the Failure Analysis of Reinforced Concrete Under Chloride Erosion
by Jingqiu Yang, Quanjun Zhu, Jianyu Ren and Li Guo
Buildings 2025, 15(19), 3580; https://doi.org/10.3390/buildings15193580 - 4 Oct 2025
Abstract
The construction of large-scale infrastructure, such as power facilities, requires extensive use of reinforced concrete. The durability degradation of reinforced concrete structures in chloride environments involves multi-physics coupling effects, chloride ion diffusion, rebar corrosion, and concrete damage. Existing models neglect the coupling mechanisms [...] Read more.
The construction of large-scale infrastructure, such as power facilities, requires extensive use of reinforced concrete. The durability degradation of reinforced concrete structures in chloride environments involves multi-physics coupling effects, chloride ion diffusion, rebar corrosion, and concrete damage. Existing models neglect the coupling mechanisms among these processes and the influence of mesoscale structural characteristics. Therefore, this study proposes a diffusive–mechanical coupled phase field by integrating the phase field, chloride ion diffusion, and mechanical equivalence for rebar corrosion, establishing a multi-physics coupling analysis framework at the mesoscale. The model incorporates heterogeneous meso-structure of concrete and constructs a dynamic coupling function between the phase field damage variable and chloride diffusion coefficient, enabling full-process simulation of corrosion-induced cracking under chloride erosion. Numerical results demonstrate that mesoscale heterogeneity significantly affects crack propagation paths, with increased aggregate content delaying the initiation of rebar corrosion. Moreover, the case with corner-positioned rebar exhibits earlier cracking compared to the case with centrally located rebar. Furthermore, larger clear spacing delays delamination failure. Comparisons with the damage mechanics model and experimental data confirm that the proposed model more accurately captures tortuous crack propagation behavior, especially suitable for evaluating the durability of reinforced concrete components in facilities such as transmission tower foundations, substation structures, and marine power facilities. This research provides a highly accurate numerical tool for predicting the service life of reinforced concrete power infrastructure in chloride environments. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Back to TopTop