Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,317)

Search Parameters:
Keywords = cost of manufacturing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3574 KiB  
Article
Optimizing Sunflower Husk Pellet Combustion for B2B Bioenergy Commercialization
by Penka Zlateva, Nevena Mileva, Mariana Murzova, Kalin Krumov and Angel Terziev
Energies 2025, 18(15), 4189; https://doi.org/10.3390/en18154189 (registering DOI) - 7 Aug 2025
Abstract
This study analyses the potential of using sunflower husks as an energy source by producing bio-pellets and evaluating their combustion process in residential settings. As one of the leading sunflower producers in the European Union, Bulgaria generates significant agricultural residues with high, yet [...] Read more.
This study analyses the potential of using sunflower husks as an energy source by producing bio-pellets and evaluating their combustion process in residential settings. As one of the leading sunflower producers in the European Union, Bulgaria generates significant agricultural residues with high, yet underutilized, energy potential. This study employs a combination of experimental data and numerical modelling aided by ANSYS 2024 R1 to analyse the combustion of sunflower husk pellets in a hot water boiler. The importance of balanced air distribution for achieving optimal combustion, reduced emissions, and enhanced thermal efficiency is emphasized by the results of a comparison of two air supply regimes. It was found that a secondary air-dominated air supply regime results in a more uniform temperature field and a higher degree of oxidation of combustible components. These findings not only confirm the technical feasibility of sunflower husk pellets but also highlight their commercial potential as a sustainable, low-cost energy solution for agricultural enterprises and rural heating providers. The research indicates that there are business-to-business (B2B) market opportunities for biomass producers, boiler manufacturers, and energy distributors who wish to align themselves with EU green energy policies and the growing demand for solutions that support the circular economy. Full article
Show Figures

Figure 1

15 pages, 4886 KiB  
Article
Fabrication of Diffractive Optical Elements to Generate Square Focal Spots via Direct Laser Lithography and Machine Learning
by Hieu Tran Doan Trung, Young-Sik Ghim and Hyug-Gyo Rhee
Photonics 2025, 12(8), 794; https://doi.org/10.3390/photonics12080794 - 6 Aug 2025
Abstract
Recently, diffractive optics systems have garnered increasing attention due to their myriad benefits in various applications, such as creating vortex beams, Bessel beams, or optical traps, while refractive optics systems still exhibit some disadvantages related to materials, substrates, and intensity shapes. The manufacturing [...] Read more.
Recently, diffractive optics systems have garnered increasing attention due to their myriad benefits in various applications, such as creating vortex beams, Bessel beams, or optical traps, while refractive optics systems still exhibit some disadvantages related to materials, substrates, and intensity shapes. The manufacturing of diffractive optical elements has become easier due to the development of lithography techniques such as direct laser writing, photo lithography, and electron beam lithography. In this paper, we improve the results from previous research and propose a new methodology to design and fabricate advanced binary diffractive optical elements that achieve a square focal spot independently, reducing reliance on additional components. By integrating a binary square zone plate with an axicon zone plate of the same scale, we employ machine learning for laser path optimization and direct laser lithography for manufacturing. This streamlined approach enhances simplicity, accuracy, efficiency, and cost effectiveness. Our upgraded binary diffractive optical elements are ready for real-world applications, marking a significant improvement in optical capabilities. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

18 pages, 5831 KiB  
Article
Cure Kinetics-Driven Compression Molding of CFRP for Fast and Low-Cost Manufacturing
by Xintong Wu, Ming Zhang, Zhongling Liu, Xin Fu, Haonan Liu, Yuchen Zhang and Xiaobo Yang
Polymers 2025, 17(15), 2154; https://doi.org/10.3390/polym17152154 - 6 Aug 2025
Abstract
Carbon fiber-reinforced polymer (CFRP) composites are widely used in aerospace due to their excellent strength-to-weight ratio and tailorable properties. However, these properties critically depend on the CFRP curing cycle. The commonly adopted manufacturer-recommended curing cycle (MRCC), designed to accommodate the most conservative conditions, [...] Read more.
Carbon fiber-reinforced polymer (CFRP) composites are widely used in aerospace due to their excellent strength-to-weight ratio and tailorable properties. However, these properties critically depend on the CFRP curing cycle. The commonly adopted manufacturer-recommended curing cycle (MRCC), designed to accommodate the most conservative conditions, involves prolonged curing times and high energy consumption. To overcome these limitations, this study proposes an efficient and adaptable method to determine the optimal curing cycle. The effects of varying heating rates on resin dynamic and isothermal–exothermic behavior were characterized via reaction kinetics analysis using differential scanning calorimetry (DSC) and rheological measurements. The activation energy of the reaction system was substituted into the modified Sun–Gang model, and the parameters were estimated using a particle swarm optimization algorithm. Based on the curing kinetic behavior of the resin, CFRP compression molding process orthogonal experiments were conducted. A weighted scoring system incorporating strength, energy consumption, and cycle time enabled multidimensional evaluation of optimized solutions. Applying this curing cycle optimization method to a commercial epoxy resin increased efficiency by 247.22% and reduced energy consumption by 35.7% while meeting general product performance requirements. These results confirm the method’s reliability and its significance for improving production efficiency. Full article
(This article belongs to the Special Issue Advances in High-Performance Polymer Materials, 2nd Edition)
Show Figures

Figure 1

21 pages, 5215 KiB  
Article
A Cyber-Physical Integrated Framework for Developing Smart Operations in Robotic Applications
by Tien-Lun Liu, Po-Chun Chen, Yi-Hsiang Chao and Kuan-Chun Huang
Electronics 2025, 14(15), 3130; https://doi.org/10.3390/electronics14153130 - 6 Aug 2025
Abstract
The traditional manufacturing industry is facing the challenge of digital transformation, which involves the enhancement of intelligence and production efficiency. Many robotic applications have been discussed to enable collaborative robots to perform operations smartly rather than just automatically. This article tackles the issues [...] Read more.
The traditional manufacturing industry is facing the challenge of digital transformation, which involves the enhancement of intelligence and production efficiency. Many robotic applications have been discussed to enable collaborative robots to perform operations smartly rather than just automatically. This article tackles the issues of intelligent robots with cognitive and coordination capability by introducing cyber-physical integration technology. The authors propose a system architecture with open-source software and low-cost hardware based on the 5C hierarchy and then conduct experiments to verify the proposed framework. These experiments involve the collection of real-time data using a depth camera, object detection to recognize obstacles, simulation of collision avoidance for a robotic arm, and cyber-physical integration to perform a robotic task. The proposed framework realizes the scheme of the 5C architecture of Industry 4.0 and establishes a digital twin in cyberspace. By utilizing connection, conversion, calculation, simulation, verification, and operation, the robotic arm is capable of making independent judgments and appropriate decisions to successfully complete the assigned task, thereby verifying the proposed framework. Such a cyber-physical integration system is characterized by low cost but good effectiveness. Full article
(This article belongs to the Topic Innovation, Communication and Engineering)
Show Figures

Figure 1

34 pages, 1294 KiB  
Perspective
Electromagnetic Radiation Shielding Using Carbon Nanotube and Nanoparticle Composites
by Bianca Crank, Brayden Fricker, Andrew Hubbard, Hussain Hitawala, Farhana Islam Muna, Olalekan Samuel Okunlola, Alexandra Doherty, Alex Hulteen, Logan Powers, Gabriel Purtell, Prakash Giri, Henry Spitz and Mark Schulz
Appl. Sci. 2025, 15(15), 8696; https://doi.org/10.3390/app15158696 (registering DOI) - 6 Aug 2025
Abstract
This paper showcases current developments in the use of carbon nanotube (CNT) and nanoparticle-based materials for electromagnetic radiation shielding. Electromagnetic radiation involves different types of radiation covering a wide spectrum of frequencies. Due to their good electrical conductivity, small diameter, and light weight, [...] Read more.
This paper showcases current developments in the use of carbon nanotube (CNT) and nanoparticle-based materials for electromagnetic radiation shielding. Electromagnetic radiation involves different types of radiation covering a wide spectrum of frequencies. Due to their good electrical conductivity, small diameter, and light weight, individual CNTs are good candidates for shielding radio and microwaves. CNTs can be organized into macroscale forms by dispersing them in polymers or by wrapping CNT strands into fabrics or yarn. Magnetic nanoparticles can also be incorporated into the CNT fabric to provide excellent shielding of electromagnetic waves. However, for shielding higher-frequency X-ray and gamma ray radiation, the situation is reversed. Carbon’s low atomic number means that CNTs alone are less effective than metals. Thus, different nanoparticles such as tungsten are added to the CNT materials to provide improved shielding of photons. The goal is to achieve a desired combination of light weight, flexibility, safety, and multifunctionality for use in shielding spacecraft, satellites, nuclear reactors, and medical garments and to support lunar colonization. Future research should investigate the effect of the size, shape, and configuration of nanoparticles on radiation shielding. Developing large-scale low-cost methods for the continuous manufacturing of lightweight multifunctional nanoparticle-based materials is also needed. Full article
(This article belongs to the Section Nanotechnology and Applied Nanosciences)
Show Figures

Figure 1

20 pages, 640 KiB  
Article
Digital Innovation and Cost Stickiness in Manufacturing Enterprises: A Perspective Based on Manufacturing Servitization and Human Capital Structure
by Wei Sun and Xinlei Zhang
Sustainability 2025, 17(15), 7115; https://doi.org/10.3390/su17157115 - 6 Aug 2025
Abstract
This paper examines the effect of digital innovation on cost stickiness in manufacturing firms, focusing on the underlying mechanisms and contextual factors. Using data from Chinese A-share listed manufacturing firms from 2012 to 2023, we find that, first, for each one-unit increase in [...] Read more.
This paper examines the effect of digital innovation on cost stickiness in manufacturing firms, focusing on the underlying mechanisms and contextual factors. Using data from Chinese A-share listed manufacturing firms from 2012 to 2023, we find that, first, for each one-unit increase in the level of digital technology, the cost stickiness index of enterprises decreases by an average of 0.4315 units, primarily through digital process innovation and digital business model innovation, whereas digital product innovation does not exhibit a statistically significant impact. Second, manufacturing servitization and the optimization of human capital structure are identified as key mediating mechanisms. Digital innovation promotes servitization by transitioning firms from product-centric to service-oriented business models, thereby reducing fixed costs and improving resource flexibility. It also optimizes human capital by increasing the proportion of high-skilled employees and reducing labor adjustment costs. Third, the effect of digital innovation on cost stickiness is found to be heterogeneous. Firms with high financing constraints benefit more from the cost-reducing effects of digital innovation due to improved resource allocation efficiency. Additionally, mid-tenure executives are more effective in leveraging digital innovation to mitigate cost stickiness, as they balance short-term performance pressures with long-term strategic investments. These findings contribute to the understanding of how digital transformation reshapes cost behavior in manufacturing and provide insights for policymakers and firms seeking to achieve sustainable development through digital innovation. Full article
Show Figures

Figure 1

16 pages, 2029 KiB  
Article
Multi-Objective Optimization of Biodegradable and Recyclable Composite PLA/PHA Parts
by Burak Kisin, Mehmet Kivanc Turan and Fatih Karpat
Polymers 2025, 17(15), 2147; https://doi.org/10.3390/polym17152147 - 6 Aug 2025
Abstract
Additive manufacturing (AM) techniques, especially fused deposition modeling (FDM), offer significant advantages in terms of cost, material efficiency, and design flexibility. In this study, the mechanical performance of biodegradable PLA/PHA composite samples produced via FDM was optimized by evaluating the influence of key [...] Read more.
Additive manufacturing (AM) techniques, especially fused deposition modeling (FDM), offer significant advantages in terms of cost, material efficiency, and design flexibility. In this study, the mechanical performance of biodegradable PLA/PHA composite samples produced via FDM was optimized by evaluating the influence of key printing parameters—layer height, printing orientation, and printing speed—on both the tensile and compressive strength. A full factorial design (3 × 3 × 3) was employed, and all of the samples were triplicated to ensure the consistency of the results. Grey relational analysis (GRA) was used as a multi-objective optimization method to determine the optimal parameter combinations. An analysis of variance (ANOVA) was also conducted to assess the statistical significance of each parameter. The ANOVA results revealed that printing orientation is the most significant parameter for both tensile and compression strength. The optimal parameter combination for maximizing mechanical properties was a layer height of 0.1 mm, an X printing orientation, and a printing speed of 50 mm/s. This study demonstrates the effectiveness of GRA in optimizing the mechanical properties of biodegradable composites and provides practical guidelines to produce environmentally sustainable polymer parts. Full article
(This article belongs to the Special Issue Sustainable Bio-Based and Circular Polymers and Composites)
Show Figures

Figure 1

15 pages, 1241 KiB  
Article
Triplet Spatial Reconstruction Attention-Based Lightweight Ship Component Detection for Intelligent Manufacturing
by Bocheng Feng, Zhenqiu Yao and Chuanpu Feng
Appl. Sci. 2025, 15(15), 8676; https://doi.org/10.3390/app15158676 (registering DOI) - 5 Aug 2025
Abstract
Automatic component recognition plays a crucial role in intelligent ship manufacturing, but existing methods suffer from low recognition accuracy and high computational cost in industrial scenarios involving small samples, component stacking, and diverse categories. To address the requirements of shipbuilding industrial applications, a [...] Read more.
Automatic component recognition plays a crucial role in intelligent ship manufacturing, but existing methods suffer from low recognition accuracy and high computational cost in industrial scenarios involving small samples, component stacking, and diverse categories. To address the requirements of shipbuilding industrial applications, a Triplet Spatial Reconstruction Attention (TSA) mechanism that combines threshold-based feature separation with triplet parallel processing is proposed, and a lightweight You Only Look Once Ship (YOLO-Ship) detection network is constructed. Unlike existing attention mechanisms that focus on either spatial reconstruction or channel attention independently, the proposed TSA integrates triplet parallel processing with spatial feature separation–reconstruction techniques to achieve enhanced target feature representation while significantly reducing parameter count and computational overhead. Experimental validation on a small-scale actual ship component dataset demonstrates that the improved network achieves 88.7% mean Average Precision (mAP), 84.2% precision, and 87.1% recall, representing improvements of 3.5%, 2.2%, and 3.8%, respectively, compared to the original YOLOv8n algorithm, requiring only 2.6 M parameters and 7.5 Giga Floating-point Operations per Second (GFLOPs) computational cost, achieving a good balance between detection accuracy and lightweight model design. Future research directions include developing adaptive threshold learning mechanisms for varying industrial conditions and integration with surface defect detection capabilities to enhance comprehensive quality control in intelligent manufacturing systems. Full article
(This article belongs to the Special Issue Artificial Intelligence on the Edge for Industry 4.0)
Show Figures

Figure 1

19 pages, 1869 KiB  
Article
Optimization of Stresses near Reinforced Holes in Relation to Sustainable Design of Composite Structural Elements
by Bartosz Miller, Marta Maksymovych, Olesia Maksymovych and Fedir Gagauz
Sustainability 2025, 17(15), 7103; https://doi.org/10.3390/su17157103 - 5 Aug 2025
Abstract
A method for selecting mechanical properties and geometry of reinforcing overlays to increase the strength of composite structural elements with holes has been developed. The method is based on the developed algorithm for calculating stress concentration near holes reinforced with inserted rings or [...] Read more.
A method for selecting mechanical properties and geometry of reinforcing overlays to increase the strength of composite structural elements with holes has been developed. The method is based on the developed algorithm for calculating stress concentration near holes reinforced with inserted rings or glued composite reinforcing overlays. The determination of stresses near holes and overlays is reduced to solving a system of singular integral equations. The kernels of these equations are constructed using Green’s solution, which allows a reduction in the number of equations to four. It is shown that the stress concentration near holes can be significantly reduced by optimizing the thickness, elastic properties, and shape of the overlays. The stress calculations performed based on the three-dimensional theory of elasticity confirmed the reliability of the results obtained within the framework of the plane problem of an anisotropic body. The results obtained, in accordance with the concept of sustainable development, enable the develop simple methods for increasing reliability, reducing material consumption, and reducing the manufacturing and operating costs of composite structures in the aerospace and mechanical engineering industries. Full article
Show Figures

Figure 1

27 pages, 5228 KiB  
Article
Detection of Surface Defects in Steel Based on Dual-Backbone Network: MBDNet-Attention-YOLO
by Xinyu Wang, Shuhui Ma, Shiting Wu, Zhaoye Li, Jinrong Cao and Peiquan Xu
Sensors 2025, 25(15), 4817; https://doi.org/10.3390/s25154817 - 5 Aug 2025
Abstract
Automated surface defect detection in steel manufacturing is pivotal for ensuring product quality, yet it remains an open challenge owing to the extreme heterogeneity of defect morphologies—ranging from hairline cracks and microscopic pores to elongated scratches and shallow dents. Existing approaches, whether classical [...] Read more.
Automated surface defect detection in steel manufacturing is pivotal for ensuring product quality, yet it remains an open challenge owing to the extreme heterogeneity of defect morphologies—ranging from hairline cracks and microscopic pores to elongated scratches and shallow dents. Existing approaches, whether classical vision pipelines or recent deep-learning paradigms, struggle to simultaneously satisfy the stringent demands of industrial scenarios: high accuracy on sub-millimeter flaws, insensitivity to texture-rich backgrounds, and real-time throughput on resource-constrained hardware. Although contemporary detectors have narrowed the gap, they still exhibit pronounced sensitivity–robustness trade-offs, particularly in the presence of scale-varying defects and cluttered surfaces. To address these limitations, we introduce MBY (MBDNet-Attention-YOLO), a lightweight yet powerful framework that synergistically couples the MBDNet backbone with the YOLO detection head. Specifically, the backbone embeds three novel components: (1) HGStem, a hierarchical stem block that enriches low-level representations while suppressing redundant activations; (2) Dynamic Align Fusion (DAF), an adaptive cross-scale fusion mechanism that dynamically re-weights feature contributions according to defect saliency; and (3) C2f-DWR, a depth-wise residual variant that progressively expands receptive fields without incurring prohibitive computational costs. Building upon this enriched feature hierarchy, the neck employs our proposed MultiSEAM module—a cascaded squeeze-and-excitation attention mechanism operating at multiple granularities—to harmonize fine-grained and semantic cues, thereby amplifying weak defect signals against complex textures. Finally, we integrate the Inner-SIoU loss, which refines the geometric alignment between predicted and ground-truth boxes by jointly optimizing center distance, aspect ratio consistency, and IoU overlap, leading to faster convergence and tighter localization. Extensive experiments on two publicly available steel-defect benchmarks—NEU-DET and PVEL-AD—demonstrate the superiority of MBY. Without bells and whistles, our model achieves 85.8% mAP@0.5 on NEU-DET and 75.9% mAP@0.5 on PVEL-AD, surpassing the best-reported results by significant margins while maintaining real-time inference on an NVIDIA Jetson Xavier. Ablation studies corroborate the complementary roles of each component, underscoring MBY’s robustness across defect scales and surface conditions. These results suggest that MBY strikes an appealing balance between accuracy, efficiency, and deployability, offering a pragmatic solution for next-generation industrial quality-control systems. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

34 pages, 1960 KiB  
Article
Parallel Export and Differentiated Production in the Supply Chain of New Energy Vehicles
by Lingzhi Shao, Ziqing Zhu, Haiqun Li and Xiaoxue Ding
Systems 2025, 13(8), 662; https://doi.org/10.3390/systems13080662 - 5 Aug 2025
Abstract
Considering the supply chain of new energy vehicles composed of a local manufacturer, an authorized distributor in the domestic market, and a competitive manufacturer in the export market, this paper studies three different cases of parallel export as well as their decisions about [...] Read more.
Considering the supply chain of new energy vehicles composed of a local manufacturer, an authorized distributor in the domestic market, and a competitive manufacturer in the export market, this paper studies three different cases of parallel export as well as their decisions about prices, sales scale, and the degree of production differentiation. Three game models are constructed and solved under the cases of no parallel exports (CN), authorized distributors’ parallel exports (CR), and third-party parallel exports (CT), respectively, and the equilibrium analysis is carried out, and finally, the influence of relevant parameters is explored through numerical simulation. It is found that (1) the manufacturer’s decisions on production and sales are influenced by the characteristics of consumer preferences in local and export markets, the cost of differentiated production, and the consumer recognition of parallel exports; (2) the manufacturers’ profits will always be damaged by parallel exports; (3) differentiated production can reduce the negative impact of parallel exports under certain conditions, and then improve the profits of manufacturers; (4) manufacturers can increase their profits by improving the purchase intention of consumers in the local market, improve the level of production differentiation in the export market, or reducing the cost of differentiation. Full article
(This article belongs to the Section Supply Chain Management)
Show Figures

Figure 1

15 pages, 630 KiB  
Article
Application of a Low-Cost Electronic Nose to Differentiate Between Soils Polluted by Standard and Biodegradable Hydraulic Oils
by Piotr Borowik, Przemysław Pluta, Miłosz Tkaczyk, Krzysztof Sztabkowski, Rafał Tarakowski and Tomasz Oszako
Chemosensors 2025, 13(8), 290; https://doi.org/10.3390/chemosensors13080290 - 5 Aug 2025
Abstract
Detection of soil pollution by petroleum products is necessary to remedy threats to economic and human health. Pollution by hydraulic oil often occurs through leaks from forestry machinery such as harvesters. Electronic noses equipped with gas sensor arrays are promising tools for applications [...] Read more.
Detection of soil pollution by petroleum products is necessary to remedy threats to economic and human health. Pollution by hydraulic oil often occurs through leaks from forestry machinery such as harvesters. Electronic noses equipped with gas sensor arrays are promising tools for applications of pollution detection and monitoring. A self-made, low-cost electronic nose was used for differentiation between clean and polluted samples, with two types of oils and three levels of pollution severity. An electronic nose uses the TGS series of gas sensors, manufactured by Figaro Inc. Sensor responses to changes in environmental conditions from clean air to measured odor, as well as responses to changes in sensor operation temperature, were used for analysis. Statistically significant response results allowed for the detection of pollution by biodegradable oil, while standard mineral oil was difficult to detect. It was demonstrated that the TGS 2602 gas sensor is most suitable for the studied application. LDA analysis demonstrated multidimensional data patterns allowing differentiation between sample categories and pollution severity levels. Full article
(This article belongs to the Special Issue Electronic Nose and Electronic Tongue for Substance Analysis)
Show Figures

Figure 1

21 pages, 5391 KiB  
Article
Application of Computer Simulation to Evaluate Performance Parameters of the Selective Soldering Process
by Maciej Dominik and Marek Kęsek
Appl. Sci. 2025, 15(15), 8649; https://doi.org/10.3390/app15158649 (registering DOI) - 5 Aug 2025
Viewed by 44
Abstract
The growing complexity of production systems in the technology sector demands advanced tools to ensure efficiency, flexibility, and cost-effectiveness. This study presents the development of a simulation model for a selective soldering line at a technology manufacturing company in Poland, created during an [...] Read more.
The growing complexity of production systems in the technology sector demands advanced tools to ensure efficiency, flexibility, and cost-effectiveness. This study presents the development of a simulation model for a selective soldering line at a technology manufacturing company in Poland, created during an engineering internship. Using FlexSim 24.2 software, the real production process was replicated, including input/output queues, manual insertion (MI) stations, soldering machines, and quality control points. Special emphasis was placed on implementing dynamic process logic via ProcessFlow, enabling detailed modeling of token flow and system behavior. Through experimentation, various configurations were tested to optimize process time and the number of soldering pallets in circulation. The results revealed that reducing pallets from 12 to 8 maintains process continuity while offering cost savings without impacting performance. An intuitive operator panel was also developed, allowing users to adjust parameters and monitor outcomes in real time. The project demonstrates that simulation not only supports operational decision-making and resource planning but also enhances interdisciplinary communication by visually conveying complex workflows. Ultimately, the study confirms that simulation modeling is a powerful and adaptable approach to production optimization, contributing to long-term strategic improvements and innovation in technologically advanced manufacturing environments. Full article
(This article belongs to the Special Issue Integration of Digital Simulation Models in Smart Manufacturing)
Show Figures

Figure 1

20 pages, 2267 KiB  
Article
Mechanical Properties of Collagen Implant Used in Neurosurgery Towards Industry 4.0/5.0 Reflected in ML Model
by Marek Andryszczyk, Izabela Rojek and Dariusz Mikołajewski
Appl. Sci. 2025, 15(15), 8630; https://doi.org/10.3390/app15158630 (registering DOI) - 4 Aug 2025
Viewed by 123
Abstract
Collagen implants in neurosurgery are widely used due to their biocompatibility, biodegradability, and ability to support tissue regeneration, but their mechanical properties, such as low tensile strength and susceptibility to enzymatic degradation, remain challenging. Current technologies are improving these implants through cross-linking, synthetic [...] Read more.
Collagen implants in neurosurgery are widely used due to their biocompatibility, biodegradability, and ability to support tissue regeneration, but their mechanical properties, such as low tensile strength and susceptibility to enzymatic degradation, remain challenging. Current technologies are improving these implants through cross-linking, synthetic reinforcements, and advanced manufacturing techniques such as 3D bioprinting to improve durability and predictability. Industry 4.0 is contributing to this by automating production, using data analytics and machine learning to optimize implant properties and ensure quality control. In Industry 5.0, the focus is shifting to personalization, enabling the creation of patient-specific implants through human–machine collaboration and advanced biofabrication. eHealth integrates digital monitoring systems, enabling real-time tracking of implant healing and performance to inform personalized care. Despite progress, challenges such as cost, material property variability, and scalability for mass production remain. The future lies in smart biomaterials, AI-driven design, and precision biofabrication, which could mean the possibility of creating more effective, accessible, and patient-specific collagen implants. The aim of this article is to examine the current state and determine the prospects for the development of mechanical properties of collagen implant used in neurosurgery towards Industry 4.0/5.0, including ML model. Full article
Show Figures

Figure 1

32 pages, 944 KiB  
Review
Continuous Manufacturing of Recombinant Drugs: Comprehensive Analysis of Cost Reduction Strategies, Regulatory Pathways, and Global Implementation
by Sarfaraz K. Niazi
Pharmaceuticals 2025, 18(8), 1157; https://doi.org/10.3390/ph18081157 - 4 Aug 2025
Viewed by 517
Abstract
The biopharmaceutical industry is undergoing a fundamental transformation from traditional batch manufacturing to continuous manufacturing (CM) for recombinant drugs and biosimilars, driven by regulatory support through the International Council for Harmonization (ICH) Q13 guidance and compelling economic advantages. This comprehensive review examines the [...] Read more.
The biopharmaceutical industry is undergoing a fundamental transformation from traditional batch manufacturing to continuous manufacturing (CM) for recombinant drugs and biosimilars, driven by regulatory support through the International Council for Harmonization (ICH) Q13 guidance and compelling economic advantages. This comprehensive review examines the technical, economic, and regulatory aspects of implementing continuous manufacturing specifically for recombinant protein production and biosimilar development, synthesizing validated data from peer-reviewed research, regulatory sources, and global implementation case studies. The analysis demonstrates that continuous manufacturing offers substantial benefits, including a reduced equipment footprint of up to 70%, a 3- to 5-fold increase in volumetric productivity, enhanced product quality consistency, and facility cost reductions of 30–50% compared to traditional batch processes. Leading biomanufacturers across North America, Europe, and the Asia–Pacific region are successfully integrating perfusion upstream processes with connected downstream bioprocesses, enabling the fully end-to-end continuous manufacture of biopharmaceuticals with demonstrated commercial viability. The regulatory framework has been comprehensively established through ICH Q13 guidance and region-specific implementations across the FDA, EMA, PMDA, and emerging market authorities. This review provides a critical analysis of advanced technologies, including single-use perfusion bioreactors, continuous chromatography systems, real-time process analytical technology, and Industry 4.0 integration strategies. The economic modeling presents favorable return-on-investment profiles, accompanied by a detailed analysis of global market dynamics, regional implementation patterns, and supply chain integration opportunities. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

Back to TopTop