Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (440)

Search Parameters:
Keywords = corn fertilizer fertilization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 5344 KB  
Article
Research on Water and Fertilizer Use Strategies for Silage Corn Under Different Irrigation Methods to Mitigate Abiotic Stress
by Delong Tian, Yuchao Chen, Bing Xu, Guoshuai Wang and Lingyun Xu
Plants 2026, 15(2), 228; https://doi.org/10.3390/plants15020228 - 11 Jan 2026
Viewed by 43
Abstract
To reconcile the intensifying trade-off between chronic water scarcity and escalating forage demand in the Yellow River Basin, this study optimized integrated irrigation and fertilization regimes for silage maize. Leveraging the AquaCrop model, validated by 2023–2024 field experiments and a 35-year (1990–2024) meteorological [...] Read more.
To reconcile the intensifying trade-off between chronic water scarcity and escalating forage demand in the Yellow River Basin, this study optimized integrated irrigation and fertilization regimes for silage maize. Leveraging the AquaCrop model, validated by 2023–2024 field experiments and a 35-year (1990–2024) meteorological dataset, we systematically quantified the impacts of multi-factorial water–fertilizer–heat stress under drip irrigation with mulch (DIM) and shallow-buried drip irrigation (SBDI). Model performance was robust, yielding high simulation accuracy for soil moisture (RMSE < 3.3%), canopy cover (RMSE < 3.95%), and aboveground biomass (RMSE < 4.5 t·ha−1), with EF > 0.7 and R2 ≥ 0.85. Results revealed distinct stress dynamics across hydrological scenarios: mild temperature stress predominated in wet years, whereas severe water and fertilizer stresses emerged as the primary constraints during dry years. To mitigate these stresses, a medium fertilizer rate (555 kg·ha−1) was identified as the stable optimum, while dynamic irrigation requirements were determined as 90, 135, and 180 mm for wet, normal, and dry years, respectively. Comparative evaluation indicated that DIM achieved maximum productivity in wet years (aboveground biomass yield 70.4 t·ha−1), whereas SBDI exhibited superior “stable yield–water saving” performance in normal and dry years. The established “hydrological year–irrigation method–threshold” framework provides a robust decision-making tool for precision management, offering critical scientific support for the sustainable, high-quality development of livestock farming in arid regions. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

23 pages, 4022 KB  
Article
Machine Learning—Driven Analysis of Agricultural Nonpoint Source Pollution Losses Under Variable Meteorological Conditions: Insights from 5 Year Site-Specific Tracking
by Ran Jing, Yinghui Xie, Zheng Hu, Xingjian Yang, Xueming Lin, Wenbin Duan, Feifan Zeng, Tianyi Chen, Xin Wu, Xiaoming He and Zhen Zhang
Sustainability 2026, 18(2), 590; https://doi.org/10.3390/su18020590 - 7 Jan 2026
Viewed by 148
Abstract
Agricultural nonpoint source pollution is emerging as one of the increasingly serious environmental concerns all over the world. This study conducted field experiments in Zengcheng District, Guangzhou City, from 2019 to 2023 to explore the mechanisms by which different crop types, fertilization modes, [...] Read more.
Agricultural nonpoint source pollution is emerging as one of the increasingly serious environmental concerns all over the world. This study conducted field experiments in Zengcheng District, Guangzhou City, from 2019 to 2023 to explore the mechanisms by which different crop types, fertilization modes, and meteorological conditions affect the loss of nitrogen and phosphorus in agricultural nonpoint source pollution. In rice and corn, the CK and PK treatment groups showed significant fitting advantages, such as the R2 of rice-CK reaching 0.309. MAE was 0.395, and the R2 of corn-PK was as high as 0.415. For compound fertilization groups such as NPK and OF, the model fitting ability decreased, such as the R2 of rice-NPK dropping to 0.193 and the R2 of corn-OF being only 0.168. In addition, the overall performance of the model was limited in the modeling of total phosphorus. A relatively good fit was achieved in corn (such as NPK group R2 = 0.272) and in vegetables and citrus. R2 was mostly below 0.25. The results indicated that fertilization management, crop types, and meteorological conditions affected nitrogen and phosphorus losses in agricultural runoff. Cornfields under conventional nitrogen, phosphorus, and potassium fertilizer (NPK) and conventional nitrogen and potassium fertilizer treatment without phosphorus fertilizer (NK) treatments exhibited the highest nitrogen losses, while citrus fields showed elevated phosphorus concentrations under NPK and PK treatments. Organic fertilizer treatments led to moderate nutrient losses but greater variability. Organic fertilizer treatments resulted in moderate nutrient losses but showed greater interannual variability. Meteorological drivers differed among crop types. Nitrogen enrichment was mainly associated with high temperature and precipitation, whereas phosphorus loss was primarily triggered by short-term extreme weather events. Linear regression models performed well under simple fertilization scenarios but struggled with complex nutrient dynamics. Crop-specific traits such as flooding in rice fields, irrigation in corn, and canopy coverage in citrus significantly influenced nutrient migration. The findings of this study highlight that nutrient losses are jointly regulated by crop systems, fertilization practices, and meteorological variability, particularly under extreme weather conditions. These findings underscore the necessity of crop-specific and climate-adaptive nutrient management strategies to reduce agricultural nonpoint source pollution. By integrating long-term field observations with machine learning–based analysis, this study provides scientific evidence to support sustainable fertilizer management, protection of water resources, and environmentally responsible agricultural development in subtropical regions. The proposed approaches contribute to sustainable land and water resource utilization and climate-resilient agricultural systems, aligning with the goals of sustainable development in rapidly urbanizing river basins. Full article
Show Figures

Figure 1

20 pages, 1079 KB  
Article
Response of Maize Varieties with Different Nitrogen Efficiencies to Nitrogen Fertilizer
by Yulong Yang, Tao Wen, Huifeng Wang, Junfeng Ma, Xinlong Shi, Shufeng Yan, Xinyuan Mu, Chunmiao Li, Haoying Zheng, Dian Liu and Xia Zhao
Agronomy 2026, 16(1), 109; https://doi.org/10.3390/agronomy16010109 - 1 Jan 2026
Viewed by 273
Abstract
While pursuing high yields, China’s maize industry is facing a series of complex challenges that not only affect production efficiency but also relate to the sustainable development of the industry. Maize varieties with different nitrogen use efficiencies (NUEs) significantly influence yield. Therefore, investigating [...] Read more.
While pursuing high yields, China’s maize industry is facing a series of complex challenges that not only affect production efficiency but also relate to the sustainable development of the industry. Maize varieties with different nitrogen use efficiencies (NUEs) significantly influence yield. Therefore, investigating the response mechanisms of maize varieties with varying NUEs to nitrogen fertilization can provide theoretical foundations and technical support for achieving high and stable yields, as well as for the breeding of new varieties. Based on previous research findings, this experiment selected three maize varieties with different NUE levels. A field trial was conducted with eight nitrogen fertilization gradient levels to analyze their responses to varying nitrogen inputs, thereby further evaluating the performance of maize varieties with different nitrogen use efficiencies. The results indicated that increasing nitrogen application significantly enhanced maize yield; however, with continued nitrogen application, the yield exhibited a trend of initial increase followed by a decrease or stabilization. The highest yields for Jingpin 450 (JP450), Xianyu 335 (XY335), and Qiule 368 (QL368) were achieved under the N250, N300, and N250 treatments, respectively, reaching 8.9 t·ha−1, 9.2 t·ha−1, and 10.1 t·ha−1. Across all nitrogen treatments, QL368 > XY335 > JP450. Maize varieties with high nitrogen efficiency maintained higher post-anthesis nitrogen accumulation throughout the growth period, thereby promoting the translocation of post-anthesis nitrogen to the grains, increasing grain nitrogen content at maturity, and ultimately improving yield. The dual-high-efficiency maize variety QL 368 (QiuLe 368) achieved high yields under both low- and high-nitrogen conditions, primarily due to its high pre-anthesis nitrogen translocation rate and substantial post-anthesis nitrogen accumulation. This enhanced nitrogen translocation to the grains, improved nitrogen use efficiency, further strengthened the plant’s dry matter production capacity, and ultimately led to high yield and efficiency in maize production. Full article
Show Figures

Figure 1

19 pages, 913 KB  
Article
Effect of a Long-Term Integrated Multi-Crop Rotation and Cattle Grazing on No-Till Hard Red Spring Wheat (Triticum aestivum L.) Production, Soil Health, and Economics
by Songul Senturklu, Douglas Landblom and Larry J. Cihacek
Agriculture 2026, 16(1), 73; https://doi.org/10.3390/agriculture16010073 - 29 Dec 2025
Viewed by 227
Abstract
Integrated crop grazing systems can improve farm profitability due to enterprise complementarity. Utilizing the supply of N from legumes, livestock manure, and plant residues will result in improving grain yield and quality. A long-term 12-year integrated systems study evaluated continuous spring wheat (HRSW-CTRL) [...] Read more.
Integrated crop grazing systems can improve farm profitability due to enterprise complementarity. Utilizing the supply of N from legumes, livestock manure, and plant residues will result in improving grain yield and quality. A long-term 12-year integrated systems study evaluated continuous spring wheat (HRSW-CTRL) with spring wheat (HRSW-ROT) grown in a five-crop rotation: (1) spring wheat, (2) seven-species cover crop, (3) forage corn, (4) field pea/forage barley mix, and (5) sunflower. Yearling beef cattle steers grazed the field pea/forage barley mix, unharvested corn, and a seven-species cover crop. Spring wheat was marketed as a cash crop. Contrary to expectations, HRSW-ROT did not significantly increase grain yield or improve quality over HRSW-CTRL. Improved soil fertility was observed in the HRSW-ROT plots throughout the study relative to SOM, N, P, and K. However, the rotation with grazing management significantly reduced input costs but resulted in negligible gross and net returns over the 12-year period. Year-to-year weather variability was the cause of the differences between the two production management methods. Full article
Show Figures

Figure 1

16 pages, 2662 KB  
Article
Effects of Silage Inoculants on the Quality and Microbial Community of Whole-Plant Corn Silage Under Different Fertilization Treatments
by Deli Dong, Gulinigeer Ainizirehong, Maierhaba Aihemaiti, Xin Huang, Yang Li, Huaibing Yao, Yuanyuan Yan, Min Hou and Weidong Cui
Microorganisms 2026, 14(1), 65; https://doi.org/10.3390/microorganisms14010065 - 27 Dec 2025
Viewed by 307
Abstract
The purpose of this study is to investigate the effects of silage inoculants (FJ) and natural fermentation (CK) on the quality and microbial community of whole-plant corn silage under different fertilization treatments, including conventional fertilization (CK), liquid microbial inoculant and conventional fertilization (JJ), [...] Read more.
The purpose of this study is to investigate the effects of silage inoculants (FJ) and natural fermentation (CK) on the quality and microbial community of whole-plant corn silage under different fertilization treatments, including conventional fertilization (CK), liquid microbial inoculant and conventional fertilization (JJ), and microbial organic fertilizer and conventional fertilization (YJ). After 30 days of room-temperature fermentation, parameters including pH, LA, CP, starch, ADF, NDF, and the microbial community were determined. The results showed that after 30 days of ensiling, silage inoculants significantly affected the nutritional components and fermentation parameters of whole-plant corn silage under different fertilization treatments. Furthermore, the two factors (silage inoculants and different fertilization treatments) exhibited a significant interaction effect. Simple effects analysis revealed that the significant interaction was mainly driven by a more pronounced differential effect of fertilization treatments on the nutritional indicators (starch, CP, ADF, and NDF) under silage inoculant (FJ) addition than under natural fermentation (CK) (p < 0.05). Among all silage treatments, the silage inoculants + microbial solution drip irrigation and conventional fertilization (FJJJ) group exhibited relatively superior silage quality. Specifically, the FJJJ group had the lowest contents of pH, ADF, and NDF, along with the highest contents of lactic acid (LA) and ether extract (EE). The addition of silage inoculants under different fertilization treatments consistently increased the abundance and reinforced the dominance of Lactobacillus in the microbial community. This effect was most pronounced in the FJJJ group, which showed the highest relative abundance. In contrast, the relative abundance of genera such as Pantoea, Acinetobacter, Klebsiella, and Pseudomonas decreased significantly. In summary, appropriate fertilization treatments combined with the addition of silage inoculants contribute to enhancing the quality of whole-plant corn silage and improve the fermentation microbial community of the silage. These findings provide a theoretical basis for producing high-quality corn silage. Full article
(This article belongs to the Special Issue Resource Utilization of Microorganisms: Fermentation and Biosynthesis)
Show Figures

Figure 1

30 pages, 7345 KB  
Article
Interaction of Bacillus amyloliquefaciens BV03 and Phosphorus Sources on Corn Physiology, Nutrition, and Yield
by Lusiane de Sousa Ferreira, Hariane Luiz Santos, Gustavo Ferreira da Silva, Melina Rodrigues Alves Carnietto, Carlos Henrique de Castro Nogueira and Marcelo de Almeida Silva
Agriculture 2026, 16(1), 44; https://doi.org/10.3390/agriculture16010044 - 24 Dec 2025
Viewed by 432
Abstract
The use of Bacillus spp. in combination with mineral fertilizers represents a sustainable alternative to conventional agricultural practices. This study evaluated the effects of inoculation with Bacillus amyloliquefaciens BV03 (Ba) on corn fertilized with phosphorus (P) sources of different solubilities. Two [...] Read more.
The use of Bacillus spp. in combination with mineral fertilizers represents a sustainable alternative to conventional agricultural practices. This study evaluated the effects of inoculation with Bacillus amyloliquefaciens BV03 (Ba) on corn fertilized with phosphorus (P) sources of different solubilities. Two experiments were conducted under greenhouse conditions in a completely randomized design, following a 2 (without and with Ba) × 4 [control (without P, –P), triple superphosphate (TSP), Bayóvar natural phosphate (BNP), and Pratápolis natural phosphate (PNP)] factorial arrangement. Plant growth parameters, chlorophyll a fluorescence, gas exchange, photosynthetic pigments, nutritional status, biomass accumulation, and grain yield were assessed. Corn responses to Ba inoculation varied with P source and season. Inoculation with Ba, Ba + TSP, and Ba + BNP at sowing enhanced biometric traits (height, stem diameter, and leaf area); physiological parameters (Fv’/Fm’, ΦPSII, ETR, E, gs, WUE); biochemical variables (Chl a, Chl b, and carotenoids); nutritional contents (N, P, K, Ca, and Mg); and yield traits. Overall, our results highlight the potential of Bacillus amyloliquefaciens BV03, alone or in combination with triple superphosphate or Bayóvar natural phosphate, as a sustainable alternative for phosphorus fertilization to improve corn growth and development. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

16 pages, 4127 KB  
Article
The Water Efficiency and Productivity of Forage Maize (Zea mays L.) in a Semi-Arid Region Under Different Humidity, Nitrogen, and Substrate Levels
by Antonio Anaya-Salgado, Abel Quevedo-Nolasco, Martín Alejandro Bolaños-González, Jorge Flores-Velázquez, Arturo Reyes-González, Saúl Santana-Espinoza, Jorge Maltos-Buendía, Juan Isidro Sánchez-Duarte and Jorge Alonso Maldonado-Jaquez
Crops 2026, 6(1), 1; https://doi.org/10.3390/crops6010001 - 22 Dec 2025
Viewed by 222
Abstract
The Lagunera Region, located in northern Mexico, is home to the country’s most important dairy basin, situated in a semi-arid environment. In this region, forage corn (Zea mays L.) is the main input in dairy cattle feed. In this context, optimizing water [...] Read more.
The Lagunera Region, located in northern Mexico, is home to the country’s most important dairy basin, situated in a semi-arid environment. In this region, forage corn (Zea mays L.) is the main input in dairy cattle feed. In this context, optimizing water use and nitrogen nutrition is a priority to ensure the sustainability of this activity. The main objective of this study was to evaluate the productivity and water use efficiency of forage corn under different humidity, nitrogen, and substrate type levels. A randomized block design with sub-subdivided plots was used. The larger plot contained two usable moisture levels (80 and 50%); the subplots were assigned according to three nitrogen levels: 13.6 (N1), 6.8 (N2), and control 0.35 (N3) NO3 mmol·L−1; the sub-subplots were assigned based on two substrates: sand and a mixture (MI) of sand, perlite, and peat moss. The results showed significant triple interactions (p < 0.05) in the root volume traits, where nitrogen played a determining role, as well as double interactions (Nutrition*Substrate) for all vegetative and radicle production variables and water use efficiency. Principal components analysis explained 91.4% of the total observed variation, where basal diameter had the vector with the highest load value. Cluster analysis identified that the main discriminant factor was nutrition. It is concluded that usable moisture levels up to 50% with 6.8 mmol·L−1 of NO3 show acceptable levels of vegetative production and root volume in forage corn. These results suggest the possibility of reducing water and nitrogen fertilizer consumption without compromising yield, with significant economic and environmental benefits for agriculture in arid and semi-arid regions. Full article
Show Figures

Figure 1

16 pages, 969 KB  
Article
Effect of Maize Residual Nitrogen on Grain Yield and Composition of Subsequent Wheat Crops
by Piotr Szulc, Robert Idziak, Katarzyna Ambroży-Deręgowska, Przemysław Strażyński, Roman Wąsala and Krzysztof Górecki
Appl. Sci. 2026, 16(1), 113; https://doi.org/10.3390/app16010113 - 22 Dec 2025
Viewed by 184
Abstract
Common wheat (Triticum aestivum ssp. vulgare) is one of the three basic cereal crops worldwide that plays a key role in global food security. A key factor affecting the yield and traits of common wheat is an adequate nitrogen supply. Improving [...] Read more.
Common wheat (Triticum aestivum ssp. vulgare) is one of the three basic cereal crops worldwide that plays a key role in global food security. A key factor affecting the yield and traits of common wheat is an adequate nitrogen supply. Improving the efficiency of soil nitrogen use can be achieved through the application of appropriate mineral fertilizers and the proper selection of cultivars. The aim of this study was to determine the impact of residual nitrogen (Nres) after maize cultivation (the preceding crop) on the yield and chemical composition of winter and spring wheat grain. It was shown that both the variety selection and the type of nitrogen carrier had a significant impact on the characteristics related to wheat yield and grain quality. The most stable effect of the type of nitrogen, regardless of the type of corn variety, was recorded for ammonium nitrate with N-Lock. The average yield was approximately 6.1 t ha−1. With the exception of the variant with N-Lock, the most progressive reaction to the type of fertilizer occurred in the stand with a three-line corn hybrid (TC, stay green). The advantage of this corn variety as a winter wheat forecrop results from the value of the site in a site without nitrogen. In the nitrogen control, the increase in yield compared to the single corn hybrid (SC) was 14%. However, in the U + N-Lock variant, it was 17%, and SG Stabilo as much as 32%. The increase in the weight of 1000 wheat grains in the stands after the SC and TC hybrid compared to stay green + roots power indicates a compensatory mechanism that became visible in the grain filling phase. Current challenges in agriculture caused by population growth and the need to ensure sufficient food production require greater awareness and knowledge regarding improved nitrogen management, including recognizing the role of residual nitrogen remaining in the soil after the preceding crop. A major advantage of slow-release fertilizers is that the nutrient (N) is released in response to the dynamic demand of the crop. This, on the one hand, increases grain yield and, on the other, does not negatively impact the agrosystem (eutrophication). Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

19 pages, 3241 KB  
Article
Application of Organic Fertilization and Chemical Fertilization Enhances the Coupled and Coordinated Degree of Soil Fertility and Economic Benefits in Corn Farmland
by Fang Yang, Xiaoqiang Song, Ruda Yang and Xufeng Li
Agriculture 2026, 16(1), 9; https://doi.org/10.3390/agriculture16010009 - 19 Dec 2025
Viewed by 295
Abstract
Combined application of organic (M) and chemical fertilizer (C) is a significant measure to enhance soil fertility and ensure food security. In 2023 and 2024, we established six treatments: T1 (no fertilization), T2 (100% C), T3 (75% C + 25% M), T4 (50% [...] Read more.
Combined application of organic (M) and chemical fertilizer (C) is a significant measure to enhance soil fertility and ensure food security. In 2023 and 2024, we established six treatments: T1 (no fertilization), T2 (100% C), T3 (75% C + 25% M), T4 (50% C + 50% M), T5 (25% C +75% M), and T6 (100% M), with three replicates for each treatment. The total amount of nitrogen applied to the soil for T2–T6 was the same, and the organic fertilizer was compost sourced from cow dung. The aims of this study were to explore the effects of organic fertilizer combined with chemical fertilizer on soil fertility, and apparent nutrient balance, to investigate its possible economic benefits. We also analyzed the influence of the combined application of organic and chemical fertilizers on the degree of coupling and coordination (D) between soil fertility and economic benefits. The total phosphorus, total potassium, available phosphorus, available potassium, and organic matter in the soil all showed an increasing trend with an increase in the proportion of organic fertilizer applied. T2 reduced the soil pH by 7.41–8.94% compared with T1, while applying organic fertilizers (T3–T6) increased the soil pH by 0.72–8.62% compared with T2. T4 is conducive to the balance of income and expenditure of nitrogen, phosphorus, and potassium elements. The corn yield, net income, and input–output ratio all showed an initial increase followed by a decrease with an increase in the proportion of organic fertilizer applied, and their values all reached the maximum under T4. Based on the CRITIC-TOPSIS method and the coupling coordination degree model, it was determined that the fertilization strategy with the highest comprehensive score and D under the conditions of this experiment was 50% C +50% M (T4), which not only improved soil fertility but also achieved the highest economic benefit. The research results were of great significance for promoting sustainable agricultural development. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

22 pages, 2884 KB  
Article
Organic Amendments Drive Soil Organic Carbon Sequestration and Crop Growth via Microorganisms and Aggregates
by Donglin Zong, Ying Quan, Petri Penttinen, Ling Qi, Jiangtao Wang, Xiaoyan Tang, Kaiwei Xu and Yuanxue Chen
Agronomy 2025, 15(12), 2919; https://doi.org/10.3390/agronomy15122919 - 18 Dec 2025
Viewed by 458
Abstract
Exogenous carbon addition is widely regarded as an effective soil management strategy for rapidly increasing soil organic carbon, improving soil structure and function. However, a systematic comparison of the effects of diverse organic amendments on key soil attributes and processes is needed to [...] Read more.
Exogenous carbon addition is widely regarded as an effective soil management strategy for rapidly increasing soil organic carbon, improving soil structure and function. However, a systematic comparison of the effects of diverse organic amendments on key soil attributes and processes is needed to inform their targeted application. We evaluated the impacts of seven organic amendments (biochar, organic fertilizer, corn straw, soybean straw, rapeseed straw, green manure, and carbon material) on a purple soil (Luvic Xerosols) in a pot experiment. The results showed that organic fertilizer and carbon material performed best in enhancing soil nutrient availability and promoting soil organic carbon content. Straw amendments promoted the formation of macro-aggregates. Green manure and straws enhanced carbon transformation-related β-glucosidase and cellobiohydrolase activities. Random Forest and structural equation modeling indicated that the organic amendments enhanced maize carbon sequestration capacity and biomass by improving aggregate stability and regulating the fungal community and by increasing nutrients and enhancing active carbon fractions. Green manure and organic fertilizer demonstrated the most significant agronomic effects. These findings provide guidelines for targeted organic amendment selection in purple soil regions. Full article
Show Figures

Figure 1

27 pages, 2192 KB  
Systematic Review
Agricultural Biomass as a Resource for Biomaterials, Biofertilizers, and Bioproducts: A Systematic Review
by Bruna Pereira Almeida, Luiz Felipe Silveira Pavão, Marcelo Silveira de Farias, Nidgia Maria Nicolodi, Mirta Teresinha Petry, Marisa Menezes Leal, Paulo Carteri Coradi, Victória Lumertz de Souza, Mayara de Souza Queirós, Guilherme de Figueiredo Furtado, Marcus Vinicíus Tres and Giovani Leone Zabot
Agrochemicals 2025, 4(4), 23; https://doi.org/10.3390/agrochemicals4040023 - 11 Dec 2025
Viewed by 565
Abstract
This systematic review aimed to examine recent advances (2021–2025) in the conversion of agricultural biomass into biomaterials, biofertilizers, and bioproducts. Studies were included when addressing biomass types, pretreatment methods, conversion technologies, or resulting applications. Non-agricultural biomass, non-original research, and works outside the defined [...] Read more.
This systematic review aimed to examine recent advances (2021–2025) in the conversion of agricultural biomass into biomaterials, biofertilizers, and bioproducts. Studies were included when addressing biomass types, pretreatment methods, conversion technologies, or resulting applications. Non-agricultural biomass, non-original research, and works outside the defined timeframe were excluded. Literature was identified in Scopus and Web of Science, complemented by Espacenet, Google Scholar, and institutional databases (USDA, FAO, IRRI, ABARES, UNICA, and CONAB, among others), totaling 108 documents referenced in this work. Risk of bias was minimized through predefined eligibility criteria and full-text assessment. Results were narratively synthesized, supported by figures and tables highlighting technological trends. Studies involving a wide range of agricultural biomasses (e.g., rice straw, corn stover, wheat straw, and sugarcane bagasse) were evaluated. Main outcomes included the development of bioplastics, biofoams, composites, hydrogels, bioceramics, biochar-based fertilizers, organic acids, enzymes, and green solvents. Evidence consistently indicated that pretreatment strongly influences conversion efficiency and that enzymatic and thermochemical routes show the highest potential for integrated biorefineries. Limitations included heterogeneity in biomass composition, variability in methodological quality, and scarcity of large-scale studies. Overall, findings underscore agricultural biomass as a strategic feedstock for circular bioeconomy models, with implications for sustainable materials, renewable energy, and low-carbon agriculture. Continued innovation, supportive policies, and improved logistics are essential for scaling biomass-based technologies. Full article
(This article belongs to the Section Fertilizers and Soil Improvement Agents)
Show Figures

Figure 1

16 pages, 2265 KB  
Article
Urea Coated with Iron and Zinc Oxide Nanoparticles Reduces Nitrogen Leaching in Sandy Soil and Improves the Performance of Young Corn Plants
by Cleiton Farias de Oliveira, Romildo da Silva Neves, Thiago Filipe de Lima Arruda, Sabrina dos Santos Costa, Railene Hérica Carlos Rocha Araújo, Ronaldo do Nascimento, Alexandre Paiva da Silva, Francisco Vaniés da Silva Sá and Josinaldo Lopes Araujo Rocha
Nitrogen 2025, 6(4), 112; https://doi.org/10.3390/nitrogen6040112 - 10 Dec 2025
Viewed by 408
Abstract
Nitrogen (N) is the most widely used nutrient in agriculture in the form of urea, yet it is one of the least efficient in terms of application due to losses through volatilization and leaching. The combination of urea with micronutrient sources, especially in [...] Read more.
Nitrogen (N) is the most widely used nutrient in agriculture in the form of urea, yet it is one of the least efficient in terms of application due to losses through volatilization and leaching. The combination of urea with micronutrient sources, especially in the form of nanoparticles, is a promising technology for reducing these losses. Two greenhouse experiments were conducted with the objective of evaluating the influence of coating urea with zinc oxide nanoparticles (NPZnO) and iron oxide nanoparticles (NPFe2O3), associated with elemental sulfur (S°), on the leaching of mineral nitrogen and the production of dry mass and accumulation of N in young corn plants. The coating (0.26% w/w) of urea with elemental sulfur (S°) and NPZnO and NPFe2O3 reduced N losses through leaching (−21.3%) and delayed the nitrification process of N in the soil (−71.8%). This coating increased the efficiency of nitrogen fertilization in young corn plants, boosting the production of dry mass in leaves (+39.4%), stems (+68.8%), and roots (+61.6%), as well as the absorption of N in the above-ground biomass (+64.1%), compared to conventional urea. The use of urea coated with NPZnO and NPFe2O3 associated with S° is an environmentally sound solution for supplying N and micronutrients such as Fe and Zn in a more efficient and sustainable manner, especially in sandy soils with low organic matter content, which are common in the semi-arid region of Brazil. Full article
Show Figures

Figure 1

24 pages, 8229 KB  
Article
Effect of Biochar and Well-Rotted Manure on Maize Yield in Intercropping Systems Based on High-Throughput Sequencing Technology
by Hui Liu, Wenlong Zhang, Wanyu Dou, Yutao Li, Guoxin Shi and Wei Pei
Plants 2025, 14(24), 3696; https://doi.org/10.3390/plants14243696 - 5 Dec 2025
Viewed by 435
Abstract
Biochar and well-rotted manure are commonly employed materials for sustainable agricultural development, possessing the potential to consistently enhance the yield of monoculture crops. However, their impact on the stability of crop yields in intercropping systems, as well as the microenvironment of the border-row [...] Read more.
Biochar and well-rotted manure are commonly employed materials for sustainable agricultural development, possessing the potential to consistently enhance the yield of monoculture crops. However, their impact on the stability of crop yields in intercropping systems, as well as the microenvironment of the border-row rhizosphere, remains inadequately understood. Consequently, this study utilized corn stover biochar and well-rotted pig manure while minimizing the application of chemical fertilizers to investigate the synergistic effects of biochar and composted manure in augmenting maize yield within a soybean–maize intercropping system and regulating the nitrogen cycle in the border-row rhizosphere under reduced fertilization conditions. In comparison to traditional fertilization, the combination of biochar and manure under reduced fertilization conditions significantly increased the contents of ammonium nitrogen (55%), dissolved organic nitrogen (523%), and particulate organic nitrogen (833%) while simultaneously decreasing the content of mineral-associated organic nitrogen (60%). Additionally, this combination synergistically reduced urease activity (22%) while enhancing the activities of nitrogenase (11%), nitrate reductase (297%), and hydroxylamine reductase (20%). This study establishes a theoretical foundation for elucidating how organically amended materials consistently enhance productivity in intercropping systems and alter nitrogen ecology in border-row rhizospheres, offering new perspectives on sustainable fertilization strategies and crop patterns. Full article
(This article belongs to the Special Issue Biochar–Soil–Plant Interactions)
Show Figures

Graphical abstract

17 pages, 1306 KB  
Article
Evaluation of the Effects of Different In-Situ Passivation Materials on Heavy Metal Remediation in Corn Fields in Arid Regions of Northwest China
by Ke Yang, Dongbo Zhang, Tiantian Ma, Yilong Yu, Yifan Li, Ziheng Zhang, Yunpeng Guo and Rongguang Shi
Agronomy 2025, 15(12), 2796; https://doi.org/10.3390/agronomy15122796 - 4 Dec 2025
Viewed by 351
Abstract
The research on cadmium (Cd) pollution remediation technologies in farmland is of great significance for ensuring food security. However, there is currently a lack of empirical research on the passivation effects of the related repair materials on alkaline farmland in arid regions. This [...] Read more.
The research on cadmium (Cd) pollution remediation technologies in farmland is of great significance for ensuring food security. However, there is currently a lack of empirical research on the passivation effects of the related repair materials on alkaline farmland in arid regions. This study selected a typical experimental area in a dryland corn farmland in Ningxia, Northwest China. Field experiments were conducted on four typical remediation materials: mercapto clay minerals, sepiolite remediation materials, microbial inoculants, and bio-organic fertilizers. The effects of these four materials on the available cadmium in the soil, cadmium content in corn stems and leaves, and enrichment coefficients were analyzed. The results show that the four types of remediation fertilizers have significant differences in their effects on the available Cd content in the soil, with a reduction range of 3.33–60.94%. The order of the inhibitory effect from strong to weak is as follows: mercapto clay mineral passivation material, bio-organic fertilizer, sepiolite, and microbial inoculant. The cumulative distribution pattern of Cd in the organs of corn plants is leaf > stem > grain. It reduces the cadmium content in corn stems by 7.01–37.16% and reduces the cadmium content in corn leaves by 1.45–26.56%. Under the four types of remediation fertilizer treatments, the enrichment coefficients of corn stems and leaves all decreased. The enrichment coefficient of stems decreased by 3.78% to 29.42%, and the enrichment coefficient of leaves decreased by 3.41% to 31.92%. The mercapto clay minerals passivation material has the best effect on reducing the available cadmium in the soil of dryland corn in the arid areas of Northwest China and also has the best effect on inhibiting the absorption of cadmium by various organs of corn. It can be further verified in the field and promoted for application, providing support for the restoration of heavy metal pollution in farmland based on local conditions and differentiated measures. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

25 pages, 2364 KB  
Article
Urea-N Activated Biochar Effectively Suppresses CO2 and N2O Emissions from Farmland Soil
by Xiao Wang, Yudong Zheng, Xuetong Liu, Dan Liu, Caiyun Cao, Kejiang Li, Ping Lu, Peiling Yang, Huiguang Wang, Chunlian Zheng and Hongkai Dang
Agronomy 2025, 15(11), 2655; https://doi.org/10.3390/agronomy15112655 - 19 Nov 2025
Viewed by 483
Abstract
The inconsistent efficacy of biochar in mitigating agricultural greenhouse gas emissions remains a major barrier to its widespread adoption and the realization of its environmental benefits. This study aimed to develop a stable and efficient mitigation strategy by optimizing biochar physicochemical properties through [...] Read more.
The inconsistent efficacy of biochar in mitigating agricultural greenhouse gas emissions remains a major barrier to its widespread adoption and the realization of its environmental benefits. This study aimed to develop a stable and efficient mitigation strategy by optimizing biochar physicochemical properties through urea-N activation (corn stover: urea mass ratios of 5:1 and 15:1). Five treatments were established: CK (control), GC (fertilization), GB (fertilization + raw biochar), GAB5 (fertilization + low-N activated biochar), and GAB15 (fertilization + high-N activated biochar). Mechanisms were elucidated by monitoring soil profile (0–20 cm) gas concentrations and surface fluxes, combined with a comprehensive analysis of soil physicochemical properties, enzyme activities, and microbial biomass. Results demonstrated that activated biochar, particularly GAB15, significantly reduced cumulative CO2 (9.4%, p < 0.05) and N2O (45.2%, p < 0.05) emissions and their concentrations in the 0–10 cm layer. This superior efficacy was linked to profound improvements in key soil properties: GAB15 significantly enhanced soil cation exchange capacity (CEC, increased by 17.3%, p < 0.05), NH4+-N content (increased by 88.2%, p < 0.05), Mean Weight Diameter (MWD, increased by 13.0%), the content of water-stable aggregates > 0.25 mm (R>0.25mm, increased by 57.3%) (p < 0.05), dissolved organic carbon (DOC), and the MBC (microbial biomass carbon)/MBN (soil microbial biomass nitrogen) ratio. Redundancy analysis (RDA) and structural equation modeling (SEM) revealed core mechanisms: CO2 mitigation primarily stemmed from the physical protection of organic carbon within macroaggregates and a negative priming effect induced by an elevated MBC/MBN ratio; N2O mitigation was attributed to weakened nitrogen mineralization due to enhanced aggregate stability and reduced substrate (inorganic N) availability for nitrification/denitrification via strong adsorption at the biochar–soil interface. This study confirms that urea-activated biochar produced at a 15:1 corn stover-to-urea mass ratio (GAB15) effectively overcomes the inconsistent efficacy of conventional biochar by targeted physicochemical optimization, offering a promising and technically feasible approach for mitigating agricultural greenhouse gas emissions. Full article
(This article belongs to the Special Issue Crop Management in Water-Limited Cropping Systems)
Show Figures

Figure 1

Back to TopTop