Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,632)

Search Parameters:
Keywords = coral

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4615 KiB  
Article
Daily Variation in the Feeding Activity of Pacific Crown-of-Thorns Starfish (Acanthaster cf. solaris)
by Josie F. Chandler, Deborah Burn, Will F. Figueira, Peter C. Doll, Abby Johandes, Agustina Piccaluga and Morgan S. Pratchett
Biology 2025, 14(8), 1001; https://doi.org/10.3390/biology14081001 - 5 Aug 2025
Abstract
The ecological impact of crown-of-thorns starfish (CoTS; Acanthaster spp.) on coral reefs is intrinsically linked to their feeding behaviour. Management thresholds designed to mitigate coral loss driven by elevated densities of crown-of-thorns starfish rely on accurate estimates of individual feeding rates. In this [...] Read more.
The ecological impact of crown-of-thorns starfish (CoTS; Acanthaster spp.) on coral reefs is intrinsically linked to their feeding behaviour. Management thresholds designed to mitigate coral loss driven by elevated densities of crown-of-thorns starfish rely on accurate estimates of individual feeding rates. In this study, structure-from-motion photogrammetry and intensive tracking of adult Pacific CoTS over an extended survey period were used to generate three-dimensional, high-resolution estimates of daily feeding rates. Our findings revealed substantial variation in the areal extent of coral consumed, both across consecutive days and among individuals. Notably, CoTS did not feed consistently; feeding occurred on 65% of observation days, with 2–3 days periods of inactivity common. Despite this variability, mean daily feeding rates aligned with previous studies (1.35 coral colonies d−1; 198.4 cm2 day−1 planar area, and 998.83 cm2 day−1 three-dimensional surface area). Across all tracked individuals (n = 8), feeding was recorded on 17 coral genera; however, Acropora alone accounted for 51% of colonies consumed and contributed 82% of the total three-dimensional surface area ingested during the survey period. This highlights the disproportionately large feeding yield derived from Acropora-dominated diets and raises important questions about how future declines in Acropora cover may impact CoTS feeding success and energetic intake. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

20 pages, 4784 KiB  
Article
Resilient by Design: Environmental Stress Promotes Biofilm Formation and Multi-Resistance in Poultry-Associated Salmonella
by Gabriel I. Krüger, Francisca Urbina, Coral Pardo-Esté, Valentina Salinas, Javiera Álvarez, Nicolás Avilés, Ana Oviedo, Catalina Kusch, Valentina Pavez, Rolando Vernal, Mario Tello, Luis Alvarez-Thon, Juan Castro-Severyn, Francisco Remonsellez, Alejandro Hidalgo and Claudia P. Saavedra
Microorganisms 2025, 13(8), 1812; https://doi.org/10.3390/microorganisms13081812 - 3 Aug 2025
Viewed by 59
Abstract
Salmonella is one of the main causes of food-borne illness worldwide. In most cases, Salmonella contamination can be traced back to food processing plants and/or to cross-contamination during food preparation. To avoid food-borne diseases, food processing plants use sanitizers and biocidal to reduce [...] Read more.
Salmonella is one of the main causes of food-borne illness worldwide. In most cases, Salmonella contamination can be traced back to food processing plants and/or to cross-contamination during food preparation. To avoid food-borne diseases, food processing plants use sanitizers and biocidal to reduce bacterial contaminants below acceptable levels. Despite these preventive actions, Salmonella can survive and consequently affect human health. This study investigates the adaptive capacity of the main Salmonella enterica serotypes isolated from the poultry production line, focusing on their replication, antimicrobial resistance, and biofilm formation under stressors such as acidic conditions, oxidative environment, and high osmolarity. Using growth curve analysis, crystal violet staining, and microscopy, we assessed replication, biofilm formation, and antimicrobial resistance under acidic, oxidative, and osmotic stress conditions. Disinfectant tolerance was evaluated by determining the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of sodium hypochlorite. The antibiotic resistance was assessed using the Kirby–Bauer method. The results indicate that, in general, acidic and osmotic stress reduce the growth of Salmonella. However, no significant differences were observed specifically for serotypes Infantis, Heidelberg, and Corvallis. The S. Infantis isolates were the strongest biofilm producers and showed the highest prevalence of multidrug resistance (71%). Interestingly, S. Infantis forming biofilms required up to 8-fold higher concentrations of sodium hypochlorite for eradication. Furthermore, osmotic and oxidative stress significantly induced biofilm production in industrial S. Infantis isolates compared to a reference strain. Understanding how Salmonella responds to industrial stressors is vital for designing strategies to control the proliferation of these highly adapted, multi-resistant pathogens. Full article
(This article belongs to the Section Biofilm)
Show Figures

Figure 1

18 pages, 2864 KiB  
Article
Physiological and Chemical Response of Urochloa brizantha to Edaphic and Microclimatic Variations Along an Altitudinal Gradient in the Amazon
by Hipolito Murga-Orrillo, Luis Alberto Arévalo López, Marco Antonio Mathios-Flores, Jorge Cáceres Coral, Melissa Rojas García, Jorge Saavedra-Ramírez, Adriana Carolina Alvarez-Cardenas, Christopher Iván Paredes Sánchez, Aldi Alida Guerra-Teixeira and Nilton Luis Murga Valderrama
Agronomy 2025, 15(8), 1870; https://doi.org/10.3390/agronomy15081870 - 1 Aug 2025
Viewed by 146
Abstract
Urochloa brizantha (Brizantha) is cultivated under varying altitudinal and management conditions. Twelve full-sun (monoculture) plots and twelve shaded (silvopastoral) plots were established, proportionally distributed at 170, 503, 661, and 1110 masl. Evaluations were conducted 15, 30, 45, 60, and 75 days [...] Read more.
Urochloa brizantha (Brizantha) is cultivated under varying altitudinal and management conditions. Twelve full-sun (monoculture) plots and twelve shaded (silvopastoral) plots were established, proportionally distributed at 170, 503, 661, and 1110 masl. Evaluations were conducted 15, 30, 45, 60, and 75 days after establishment. The conservation and integration of trees in silvopastoral systems reflected a clear anthropogenic influence, evidenced by the preference for species of the Fabaceae family, likely due to their multipurpose nature. Although the altitudinal gradient did not show direct effects on soil properties, intermediate altitudes revealed a significant role of CaCO3 in enhancing soil fertility. These edaphic conditions at mid-altitudes favored the leaf area development of Brizantha, particularly during the early growth stages, as indicated by significantly larger values (p < 0.05). However, at the harvest stage, no significant differences were observed in physiological or productive traits, nor in foliar chemical components, underscoring the species’ high hardiness and broad adaptation to both soil and altitude conditions. In Brizantha, a significant reduction (p < 0.05) in stomatal size and density was observed under shade in silvopastoral areas, where solar radiation and air temperature decreased, while relative humidity increased. Nonetheless, these microclimatic variations did not lead to significant changes in foliar chemistry, growth variables, or biomass production, suggesting a high degree of adaptive plasticity to microclimatic fluctuations. Foliar ash content exhibited an increasing trend with altitude, indicating greater efficiency of Brizantha in absorbing calcium, phosphorus, and potassium at higher altitudes, possibly linked to more favorable edaphoclimatic conditions for nutrient uptake. Finally, forage quality declined with plant age, as evidenced by reductions in protein, ash, and In Vitro Dry Matter Digestibility (IVDMD), alongside increases in fiber, Neutral Detergent Fiber (NDF), and Acid Detergent Fiber (ADF). These findings support the recommendation of cutting intervals between 30 and 45 days, during which Brizantha displays a more favorable nutritional profile, higher digestibility, and consequently, greater value for animal feeding. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

13 pages, 647 KiB  
Article
Reference Values for Liver Stiffness in Newborns by Gestational Age, Sex, and Weight Using Three Different Elastography Methods
by Ángel Lancharro Zapata, Alejandra Aguado del Hoyo, María del Carmen Sánchez Gómez de Orgaz, Maria del Pilar Pintado Recarte, Pablo González Navarro, Perceval Velosillo González, Carlos Marín Rodríguez, Yolanda Ruíz Martín, Manuel Sanchez-Luna, Miguel A. Ortega, Coral Bravo Arribas and Juan Antonio León Luís
J. Clin. Med. 2025, 14(15), 5418; https://doi.org/10.3390/jcm14155418 - 1 Aug 2025
Viewed by 154
Abstract
Objective: To determine reference values of liver stiffness during the first week of extrauterine life in healthy newborns, according to gestational age, sex, and birth weight, using three elastography techniques: point shear wave elastography (pSWE) and two-dimensional shear wave elastography (2D-SWE) with convex [...] Read more.
Objective: To determine reference values of liver stiffness during the first week of extrauterine life in healthy newborns, according to gestational age, sex, and birth weight, using three elastography techniques: point shear wave elastography (pSWE) and two-dimensional shear wave elastography (2D-SWE) with convex and linear probes. Materials and Methods: This was a cross-sectional observational study conducted at a single center on a hospital-based cohort of 287 newborns between 24 and 42 weeks of gestation, admitted between January 2023 and May 2024. Cases with liver disease, significant neonatal morbidity, or technically invalid studies were excluded. Hepatic elastography was performed during the first week of life using pSWE and 2D-SWE with both convex and linear probes. Clinical and technical neonatal variables were recorded. Liver stiffness values were analyzed in relation to gestational age, birth weight, and sex. Linear regression models were applied to assess associations, considering p-values < 0.05 as statistically significant. Results: After applying exclusion criteria, valid liver stiffness measurements were obtained in 208 cases with pSWE, 224 with 2D-SWE (convex probe), and 222 with 2D-SWE (linear probe). A statistically significant inverse association between liver stiffness and gestational age (p < 0.03) was observed across all techniques except for 2D-SWE with the linear probe. Only 2D-SWE with the convex probe showed a significant association with birth weight. No significant differences were observed based on neonatal sex. The 2D-SWE technique with the convex probe demonstrated significantly shorter examination times compared to pSWE (p < 0.001). Conclusions: Neonatal liver stiffness measured by pSWE and 2D-SWE with a convex probe shows an inverse correlation with gestational age, potentially reflecting the structural and functional maturation of the liver. These techniques are safe, reliable, and provide useful information for distinguishing normal findings in preterm neonates from early hepatic pathology. The values obtained represent a valuable reference for clinical hepatic assessment in the neonatal period. Full article
(This article belongs to the Special Issue Multiparametric Ultrasound Techniques for Liver Disease Assessments)
Show Figures

Figure 1

14 pages, 892 KiB  
Article
Medication Adherence in Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation
by Hermioni L. Amonoo, Emma D. Wolfe, Emma P. Keane, Isabella S. Larizza, Annabella C. Boardman, Brian C. Healy, Lara N. Traeger, Corey Cutler, Stephanie J. Lee, Joseph A. Greer and Areej El-Jawahri
Cancers 2025, 17(15), 2546; https://doi.org/10.3390/cancers17152546 - 1 Aug 2025
Viewed by 129
Abstract
Introduction: Medication adherence is essential for treatment and recovery following hematopoietic stem cell transplantation (HSCT). However, limited data exist on the most effective methods to measure adherence and the factors influencing it in HSCT patients. Materials and Methods: A prospective longitudinal [...] Read more.
Introduction: Medication adherence is essential for treatment and recovery following hematopoietic stem cell transplantation (HSCT). However, limited data exist on the most effective methods to measure adherence and the factors influencing it in HSCT patients. Materials and Methods: A prospective longitudinal study assessed immunosuppressant medication adherence in 150 patients with hematologic malignancies undergoing allogeneic HSCT. Adherence was assessed using pill counts, immunosuppressant medication levels, patient-reported medication logs, and the Medication Adherence Response Scale-5 (MARS-5) at 30, 100, and 180 days post-HSCT. We evaluated adherence rates, agreement between methods, and sociodemographic and clinical predictors. From patient-reported logs, we calculated dose adherence (comparing reported doses to expected doses) and timing adherence (comparing medication intake within ±3 h of the prescribed time). Kappa analysis assessed agreement among methods. Results: Of 190 eligible patients, 150 (78.9%) enrolled. The mean age was 57.5 years (SD = 13.5); 41.3% (n = 62) were female, 85.3% (n = 128) were non-Hispanic White, and 73.3% (n = 110) were married or living with a partner. Medication adherence varied across the three timepoints and by measurement type: 52–64% (pill counts), 18–24% (medication levels), 96–98% (medication log dose adherence), 83–84% (medication log timing adherence), and 97–98% (MARS−5). There was minimal agreement between measures (Kappa range: 0.008–0.12). Conclusions: Despite the feasibility of leveraging objective and patient-reported measures to assess medication adherence in HSCT patients, there was little agreement between these measures. Patient-reported measures showed high adherence, while objective measures like pill counts and medication levels revealed more modest adherence. The complexity of medication regimens likely contributes to this discrepancy. A rigorous approach to understanding medication adherence in the HSCT population may entail both objective and subjective measures of medication adherence. Full article
(This article belongs to the Section Clinical Research of Cancer)
Show Figures

Figure 1

5 pages, 6475 KiB  
Interesting Images
Retractile Polyps of Soft Coral Gersemia rubiformis (Octocorallia: Alcyoniidae) Offer Protection to Developing Basket Stars (Gorgonocephalus sp.)
by Kathryn Murray, Bárbara de Moura Neves, Emmeline Broad and Vonda E. Hayes
Diversity 2025, 17(8), 543; https://doi.org/10.3390/d17080543 - 1 Aug 2025
Viewed by 114
Abstract
Cold-water soft corals are a known habitat for juvenile basket stars (Gorgonocephalus sp.), but the role of this relationship in the earliest life stages of basket stars warrants further investigation. Here, basket stars and colonies of the soft coral Gersemia rubiformis were [...] Read more.
Cold-water soft corals are a known habitat for juvenile basket stars (Gorgonocephalus sp.), but the role of this relationship in the earliest life stages of basket stars warrants further investigation. Here, basket stars and colonies of the soft coral Gersemia rubiformis were collected together from the Funk Island Deep Marine Refuge (NW Atlantic) and maintained in a laboratory setting for observation. During this time, two developing (<1 mm disc diameter) basket stars were discovered on coral colonies and could be seen retracting with the coral polyp into the colony. The basket stars were recorded unharmed once the polyps were expanded again and continued to retract within the colony over the period of observation. The results of this study show that developing basket stars can spend time inside the coral colony, which could be a form of protection. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

18 pages, 6409 KiB  
Article
MICP-Treated Coral Aggregate and Its Application in Marine Concrete
by Rui Xu, Baiyu Li, Xiaokang Liu, Ben Peng, Guanghua Lu, Changsheng Yue and Lei Zhang
Materials 2025, 18(15), 3619; https://doi.org/10.3390/ma18153619 - 1 Aug 2025
Viewed by 205
Abstract
In marine engineering applications, substituting conventional crushed stone coarse aggregates with coral aggregates offers dual advantages: reduced terrestrial quarrying operations and minimized construction material transportation costs. However, the inherent characteristics of coral aggregates—low bulk density, high porosity, and elevated water absorption capacity—adversely influence [...] Read more.
In marine engineering applications, substituting conventional crushed stone coarse aggregates with coral aggregates offers dual advantages: reduced terrestrial quarrying operations and minimized construction material transportation costs. However, the inherent characteristics of coral aggregates—low bulk density, high porosity, and elevated water absorption capacity—adversely influence concrete workability and mechanical performance. To address these limitations, this investigation employed microbial-induced carbonate precipitation (MICP) for aggregate modification. The experimental design systematically evaluated the impacts of substrate concentration (1 mol/L) and mineralization period (14 days) on three critical parameters, mass gain percentage, water absorption reduction, and apparent density enhancement, across distinct particle size fractions (4.75–9.5 mm, 9.5–20 mm) and density classifications. Subsequent application trials assessed the performance of MICP-treated aggregates in marine concrete formulations. Results indicated that under a substrate concentration of 1 mol/L and mineralization period of 14 days, lightweight coral aggregates and coral aggregates within the 4.75–9.5 mm size fraction exhibited favorable modification effects. Specifically, their mass gain rates reached 11.75% and 11.22%, respectively, while their water absorption rates decreased by 32.22% and 34.75%, respectively. Apparent density increased from initial values of 1764 kg/m3 and 1930 kg/m3 to 2050 kg/m3 and 2207 kg/m3. Concrete mixtures incorporating modified aggregates exhibited enhanced workability and strength improvement at all curing ages. The 28-day compressive strengths reached 62.1 MPa (11.69% increment), 46.2 MPa (6.94% increment), and 60.1 MPa (14.91% increment) for the 4.75–9.5 mm, 9.5–20 mm, and continuous grading groups, respectively, compared to untreated counterparts. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

9 pages, 7006 KiB  
Interesting Images
Coral Bleaching and Recovery on Urban Reefs off Jakarta, Indonesia, During the 2023–2024 Thermal Stress Event
by Tries B. Razak, Muhammad Irhas, Laura Nikita, Rindah Talitha Vida, Sera Maserati and Cut Aja Gita Alisa
Diversity 2025, 17(8), 540; https://doi.org/10.3390/d17080540 - 1 Aug 2025
Viewed by 191
Abstract
Urban coral reefs in Jakarta Bay and the Thousand Islands, Indonesia, are chronically exposed to land-based pollution and increasing thermal stress. These reefs—including the site of Indonesia’s first recorded coral bleaching event in 1983—remain highly vulnerable to climate-induced disturbances. During the fourth global [...] Read more.
Urban coral reefs in Jakarta Bay and the Thousand Islands, Indonesia, are chronically exposed to land-based pollution and increasing thermal stress. These reefs—including the site of Indonesia’s first recorded coral bleaching event in 1983—remain highly vulnerable to climate-induced disturbances. During the fourth global coral bleaching event (GCBE), we recorded selective bleaching in the region, associated with a Degree Heating Weeks (DHW) value of 4.8 °C-weeks. Surveys conducted in January 2024 across a shelf gradient at four representative islands revealed patchy bleaching, affecting various taxa at depths ranging from 3 to 13 m. A follow-up survey in May 2024, which tracked the fate of 42 tagged bleached colonies, found that 36% had fully recovered, 26% showed partial recovery, and 38% had died. Bleaching responses varied across taxa, depths, and microhabitats, often occurring in close proximity to unaffected colonies. While some corals demonstrated resilience, the overall findings underscore the continued vulnerability of urban reefs to escalating thermal stress. This highlights the urgent need for a comprehensive and coordinated national strategy—not only to monitor bleaching and assess reef responses, but also to strengthen protection measures and implement best-practice restoration. Such efforts are increasingly critical in the face of more frequent and severe bleaching events projected under future climate scenarios. Full article
(This article belongs to the Collection Interesting Images from the Sea)
Show Figures

Figure 1

52 pages, 9728 KiB  
Review
Hydrogel Network Architecture Design Space: Impact on Mechanical and Viscoelastic Properties
by Andres F. Roca-Arroyo, Jhonatan A. Gutierrez-Rivera, Logan D. Morton and David A. Castilla-Casadiego
Gels 2025, 11(8), 588; https://doi.org/10.3390/gels11080588 - 30 Jul 2025
Viewed by 294
Abstract
This comprehensive review explores the expansive design space of network architectures and their significant impact on the mechanical and viscoelastic properties of hydrogel systems. By examining the intricate relationships between molecular structure, network connectivity, and resulting bulk properties, we provide critical insights into [...] Read more.
This comprehensive review explores the expansive design space of network architectures and their significant impact on the mechanical and viscoelastic properties of hydrogel systems. By examining the intricate relationships between molecular structure, network connectivity, and resulting bulk properties, we provide critical insights into rational design strategies for tailoring hydrogel mechanics for specific applications. Recent advances in sequence-defined crosslinkers, dynamic covalent chemistries, and biomimetic approaches have significantly expanded the toolbox for creating hydrogels with precisely controlled viscoelasticity, stiffness, and stress relaxation behavior—properties that are crucial for biomedical applications, particularly in tissue engineering and regenerative medicine. Full article
(This article belongs to the Special Issue State-of-the Art Gel Research in USA)
Show Figures

Graphical abstract

12 pages, 1849 KiB  
Article
Dolabellane Diterpenoids from Soft Coral Clavularia viridis with Anti-Inflammatory Activities
by Chufan Gu, Hongli Jia, Kang Zhou, Bin Wang, Wenhan Lin and Wei Cheng
Mar. Drugs 2025, 23(8), 312; https://doi.org/10.3390/md23080312 - 30 Jul 2025
Viewed by 156
Abstract
A chemical investigation of the EtOAc fraction from soft coral Clavularia viridis resulted in the isolation of 12 undescribed dolabellane-type diterpenoids, namely clavirolides W–Z (14), clavularols A–H (512), and three known analogs (13 [...] Read more.
A chemical investigation of the EtOAc fraction from soft coral Clavularia viridis resulted in the isolation of 12 undescribed dolabellane-type diterpenoids, namely clavirolides W–Z (14), clavularols A–H (512), and three known analogs (1315). Their structures were characterized by an extensive analysis of spectroscopic data, including X-ray diffraction and ECD calculations for the assignment of absolute configurations. The structures of 2 and 46 are feathered as peroxyl-substituted derivatives, while compounds 712 possess additional oxidative cyclization, including epoxide or furan that are rare in the dolabellane family. All these compounds were evaluated for activities on cytotoxic and anti-inflammatory models. Compound 10 exhibited most potential against NO production in the BV2 cell induced by LPS with an IC50 value of 18.3 μM. Full article
(This article belongs to the Section Structural Studies on Marine Natural Products)
Show Figures

Figure 1

14 pages, 3346 KiB  
Article
DES-Mediated Mild Synthesis of Synergistically Engineered 3D FeOOH-Co2(OH)3Cl/NF for Enhanced Oxygen Evolution Reaction
by Bingxian Zhu, Yachao Liu, Yue Yan, Hui Wang, Yu Zhang, Ying Xin, Weijuan Xu and Qingshan Zhao
Catalysts 2025, 15(8), 725; https://doi.org/10.3390/catal15080725 - 30 Jul 2025
Viewed by 192
Abstract
Hydrogen energy is a pivotal carrier for achieving carbon neutrality, requiring green and efficient production via water electrolysis. However, the anodic oxygen evolution reaction (OER) involves a sluggish four-electron transfer process, resulting in high overpotentials, while the prohibitive cost and complex preparation of [...] Read more.
Hydrogen energy is a pivotal carrier for achieving carbon neutrality, requiring green and efficient production via water electrolysis. However, the anodic oxygen evolution reaction (OER) involves a sluggish four-electron transfer process, resulting in high overpotentials, while the prohibitive cost and complex preparation of precious metal catalysts impede large-scale commercialization. In this study, we develop a FeCo-based bimetallic deep eutectic solvent (FeCo-DES) as a multifunctional reaction medium for engineering a three-dimensional (3D) coral-like FeOOH-Co2(OH)3Cl/NF composite via a mild one-step impregnation approach (70 °C, ambient pressure). The FeCo-DES simultaneously serves as the solvent, metal source, and redox agent, driving the controlled in situ assembly of FeOOH-Co2(OH)3Cl hybrids on Ni(OH)2/NiOOH-coated nickel foam (NF). This hierarchical architecture induces synergistic enhancement through geometric structural effects combined with multi-component electronic interactions. Consequently, the FeOOH-Co2(OH)3Cl/NF catalyst achieves a remarkably low overpotential of 197 mV at 100 mA cm−2 and a Tafel slope of 65.9 mV dec−1, along with 98% current retention over 24 h chronopotentiometry. This study pioneers a DES-mediated strategy for designing robust composite catalysts, establishing a scalable blueprint for high-performance and low-cost OER systems. Full article
Show Figures

Graphical abstract

25 pages, 1301 KiB  
Review
Going with the Flow: Sensorimotor Integration Along the Zebrafish GI Tract
by Millie E. Rogers, Lidia Garcia-Pradas, Simone A. Thom, Roberto A. Vazquez and Julia E. Dallman
Cells 2025, 14(15), 1170; https://doi.org/10.3390/cells14151170 - 30 Jul 2025
Viewed by 455
Abstract
Sensorimotor integration along the gastrointestinal (GI) tract is crucial for normal gut function yet remains poorly understood in the context of neurodevelopmental disorders (NDDs) such as autism spectrum disorder (ASD). The genetic tractability of zebrafish allows investigators to generate molecularly defined models that [...] Read more.
Sensorimotor integration along the gastrointestinal (GI) tract is crucial for normal gut function yet remains poorly understood in the context of neurodevelopmental disorders (NDDs) such as autism spectrum disorder (ASD). The genetic tractability of zebrafish allows investigators to generate molecularly defined models that provide a means of studying the functional circuits of digestion in vivo. Optical transparency during development allows for the use of optogenetics and calcium imaging to elucidate the mechanisms underlying GI-related symptoms associated with ASD. The array of commonly reported symptoms implicates altered sensorimotor integration at various points along the GI tract, from the pharynx to the anus. We will examine the reflex arcs that facilitate swallowing, nutrient-sensing, absorption, peristalsis, and evacuation. The high level of conservation of these processes across vertebrates also enables us to explore potential therapeutic avenues to mitigate GI distress in ASD and other NDDs. Full article
(This article belongs to the Special Issue Modeling Developmental Processes and Disorders in Zebrafish)
Show Figures

Figure 1

17 pages, 7301 KiB  
Article
Environmental Analysis for the Implementation of Underwater Paths on Sepultura Beach, Southern Brazil: The Case of Palythoa caribaeorum Bleaching Events at the Global Southern Limit of Species Distribution
by Rafael Schroeder, Lucas Gavazzoni, Carlos E. N. de Oliveira, Pedro H. M. L. Marques and Ewerton Wegner
Coasts 2025, 5(3), 26; https://doi.org/10.3390/coasts5030026 - 28 Jul 2025
Viewed by 184
Abstract
Recreational diving depends on healthy marine ecosystems, yet it can harm biodiversity through species displacement and habitat damage. Bombinhas, a biodiverse diving hotspot in southern Brazil, faces growing threats from human activity and climate change. This study assessed the ecological structure of Sepultura [...] Read more.
Recreational diving depends on healthy marine ecosystems, yet it can harm biodiversity through species displacement and habitat damage. Bombinhas, a biodiverse diving hotspot in southern Brazil, faces growing threats from human activity and climate change. This study assessed the ecological structure of Sepultura Beach (2018) for potential diving trails, comparing it with historical data from Porto Belo Island. Using visual censuses, transects, and photo-quadrats across six sampling campaigns, researchers documented 2419 organisms from five zoological groups, identifying 14 dominant species, including Haemulon aurolineatum and Diplodus argenteus. Cluster analysis revealed three ecological zones, with higher biodiversity at the site’s edges (Groups 1 and 3), but these areas also hosted endangered species like Epinephelus marginatus, complicating trail planning. A major concern was the widespread bleaching of the zoanthid Palythoa caribaeorum, a key ecosystem engineer, likely due to rising sea temperatures (+1.68 °C from 1961–2018) and declining chlorophyll-a levels post-2015. Comparisons with past data showed a 0.33 °C increase in species’ thermal preferences over 17 years, alongside lower trophic levels and greater ecological vulnerability, indicating tropicalization from the expanding Brazil Current. While Sepultura Beach’s biodiversity supports diving tourism, conservation efforts must address coral bleaching and endangered species protection. Long-term monitoring is crucial to track warming impacts, and adaptive management is needed for sustainable trail development. The study highlights the urgent need to balance ecotourism with climate resilience in subtropical marine ecosystems. Full article
Show Figures

Figure 1

13 pages, 2073 KiB  
Article
Isolation and Identification of Inter-Correlated Genes from the Invasive Sun Corals Tubastraea Coccinea and Tubastraea Tagusensis (Scleractinia, Cnidaria)
by Maria Costantini, Fulvia Guida, Carolina G. Amorim, Lucas B. da Nóbrega, Roberta Esposito, Valerio Zupo and Beatriz G. Fleury
Int. J. Mol. Sci. 2025, 26(15), 7235; https://doi.org/10.3390/ijms26157235 - 26 Jul 2025
Viewed by 339
Abstract
Tubastraea coccinea and T. tagusensis, commonly known as sun corals, are two species of stony corals (Scleractinia, Dendrophylliidae) native to the Indo-Pacific region (T. coccinea) and the Galapagos Islands (T. tagusensis), respectively. They are considered highly invasive species, [...] Read more.
Tubastraea coccinea and T. tagusensis, commonly known as sun corals, are two species of stony corals (Scleractinia, Dendrophylliidae) native to the Indo-Pacific region (T. coccinea) and the Galapagos Islands (T. tagusensis), respectively. They are considered highly invasive species, particularly in the Western Atlantic Ocean, due to high adaptability to various ecological conditions and notable resilience. Given their demonstrated invasiveness, it is important to delve into their physiology and the molecular bases supporting their resilience. However, to date, only a few molecular tools are available for the study of these organisms. The primary objective of the present study was the development of an efficient RNA extraction protocol for Tubastraea coccinea and T.a tagusensis samples collected off Ilha Grande Bay, Rio de Janeiro (Brazil). The quantity of isolated RNA was evaluated using NanoDrop, while its purity and quality were determined by evaluating the A260/A280 and A260/230 ratios. Subsequently, based on genes known for T. coccinea, two housekeeping genes and seven stress response-related genes were isolated and characterized, for the first time for both species, using a molecular approach. An interactomic analysis was also conducted, which revealed functional interactions among these genes. This study represents the first report on gene networks in Tubastraea spp., opening new perspectives for understanding the chemical ecology and the cellular mechanisms underlying the invasiveness of these species. The results obtained will be useful for ecological conservation purposes, contributing to the formulation of strategies to limit their further expansion. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

22 pages, 11051 KiB  
Article
Exploring the Anti-Alzheimer’s Disease Potential of Aspergillus terreus C23-3 Through Genomic Insights, Metabolomic Analysis, and Molecular Docking
by Zeyuan Ma, Longjian Zhou, Zhiyou Yang, Yayue Liu and Yi Zhang
J. Fungi 2025, 11(8), 546; https://doi.org/10.3390/jof11080546 - 23 Jul 2025
Viewed by 429
Abstract
Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder with a pressing need for novel therapeutics. However, current medications only offer symptomatic relief, without tackling the underlying pathology. To explore the bioactive potential of marine-derived fungi, this study focused on Aspergillus terreus C23-3, a [...] Read more.
Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder with a pressing need for novel therapeutics. However, current medications only offer symptomatic relief, without tackling the underlying pathology. To explore the bioactive potential of marine-derived fungi, this study focused on Aspergillus terreus C23-3, a strain isolated from the coral Pavona cactus in Xuwen County, China, which showed a richer metabolite fingerprint among the three deposited A. terreus strains. AntiSMASH analysis based on complete genome sequencing predicted 68 biosynthetic gene clusters (BGCs) with 7 BGCs synthesizing compounds reported to have anti-AD potential, including benzodiazepines, benzaldehydes, butenolides, and lovastatin. Liquid chromatography coupled with mass spectrometry (LC-MS)-based combinational metabolomic annotation verified most of the compounds predicted by BGCs with the acetylcholinesterase (AChE) inhibitor territrem B characterized from its fermentation extract. Subsequently, molecular docking showed that these compounds, especially aspulvione B1, possessed strong interactions with AD-related targets including AChE, cyclin-dependent kinase 5-p25 complex (CDK5/p25), glycogen synthase kinase-3β (GSK-3β), and monoamine oxidase-B (MAO-B). In conclusion, the genomic–metabolomic analyses and molecular docking indicated that C23-3 is a high-value source strain for anti-AD natural compounds. Full article
(This article belongs to the Special Issue Fungal Metabolomics and Genomics)
Show Figures

Figure 1

Back to TopTop