Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (224)

Search Parameters:
Keywords = copper oxide electrode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3882 KiB  
Article
Performance of Low-Cost Energy Dense Mixed Material MnO2-Cu2O Cathodes for Commercially Scalable Aqueous Zinc Batteries
by Gautam G. Yadav, Malesa Sammy, Jungsang Cho, Megan N. Booth, Michael Nyce, Jinchao Huang, Timothy N. Lambert, Damon E. Turney, Xia Wei and Sanjoy Banerjee
Batteries 2025, 11(8), 291; https://doi.org/10.3390/batteries11080291 - 1 Aug 2025
Viewed by 175
Abstract
Zinc (Zn)-based batteries have attracted significant interest for applications ranging from electric bikes to grid storage because of its advantageous properties like high abundance, non-toxicity and low-cost. Zn offers a high theoretical capacity of two electrons per atom, resulting in 820 mAh/g, making [...] Read more.
Zinc (Zn)-based batteries have attracted significant interest for applications ranging from electric bikes to grid storage because of its advantageous properties like high abundance, non-toxicity and low-cost. Zn offers a high theoretical capacity of two electrons per atom, resulting in 820 mAh/g, making it a promising anode material for the development of highly energy dense batteries. However, the advancement of Zn-based battery systems is hindered by the limited availability of cathode materials that simultaneously offer high theoretical capacity, long-term cycling stability, and affordability. In this work, we present a new mixed material cathode system, comprising of a mixture of manganese dioxide (MnO2) and copper oxide (Cu2O) as active materials, that delivers a high theoretical capacity of ~280 mAh/g (MnO2 + Cu2O active material) (based on the combined mass of MnO2 and Cu2O) and supports stable cycling for >200 cycles at 1C. We further demonstrate the scalability of this novel cathode system by increasing the electrode size and capacity, highlighting its potential for practical and commercial applications. Full article
Show Figures

Figure 1

13 pages, 1750 KiB  
Article
Mineral-Based Synthesis of CuFe2O4 Nanoparticles via Co-Precipitation and Microwave Techniques Using Leached Copper Solutions from Mined Minerals
by Carolina Venegas Abarzúa, Mauricio J. Morel, Gabriela Sandoval-Hevia, Thangavel Kavinkumar, Natarajan Chidhambaram, Sathish Kumar Kamaraj, Nagarajan Dineshbabu and Arun Thirumurugan
Minerals 2025, 15(8), 819; https://doi.org/10.3390/min15080819 (registering DOI) - 1 Aug 2025
Viewed by 139
Abstract
Environmental sustainability and responsible resource utilization are critical global challenges. In this work, we present a sustainable and circular-economy-based approach for synthesizing CuFe2O4 nanoparticles by directly utilizing copper oxide minerals sourced from Chilean mining operations. Copper sulfate (CuSO4) [...] Read more.
Environmental sustainability and responsible resource utilization are critical global challenges. In this work, we present a sustainable and circular-economy-based approach for synthesizing CuFe2O4 nanoparticles by directly utilizing copper oxide minerals sourced from Chilean mining operations. Copper sulfate (CuSO4) was extracted from these minerals through acid leaching and used as a precursor for nanoparticle synthesis via both chemical co-precipitation and microwave-assisted methods. The influence of different precipitating agents—NaOH, Na2CO3, and NaF—was systematically evaluated. XRD and FESEM analyses revealed that NaOH produced the most phase-pure and well-dispersed nanoparticles, while NaF resulted in secondary phase formation. The microwave-assisted method further improved particle uniformity and reduced agglomeration due to rapid and homogeneous heating. Electrochemical characterization was conducted to assess the suitability of the synthesized CuFe2O4 for supercapacitor applications. Cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) measurements confirmed pseudocapacitive behavior, with a specific capacitance of up to 1000 F/g at 2 A/g. These findings highlight the potential of CuFe2O4 as a low-cost, high-performance electrode material for energy storage. This study underscores the feasibility of converting primary mined minerals into functional nanomaterials while promoting sustainable mineral valorization. The approach can be extended to other critical metals and mineral residues, including tailings, supporting the broader goals of a circular economy and environmental remediation. Full article
Show Figures

Figure 1

14 pages, 2179 KiB  
Article
One-Pot Anodic Electrodeposition of Dual-Cation-Crosslinked Sodium Alginate/Carboxymethyl Chitosan Interpenetrating Hydrogel with Vessel-Mimetic Heterostructures
by Xuli Li, Yuqing Qu, Yong Zhang, Pei Chen, Siyu Ding, Miaomiao Nie, Kun Yan and Shefeng Li
J. Funct. Biomater. 2025, 16(7), 235; https://doi.org/10.3390/jfb16070235 - 26 Jun 2025
Viewed by 664
Abstract
This study develops a one-pot anodic templating electrodeposition strategy using dual-cation-crosslinking and interpenetrating networks, coupled with pulsed electrical signals, to fabricate a vessel-mimetic multilayered tubular hydrogel. Typically, the anodic electrodeposition is performed in a mixture of sodium alginate (SA) and carboxymethyl chitosan (CMC), [...] Read more.
This study develops a one-pot anodic templating electrodeposition strategy using dual-cation-crosslinking and interpenetrating networks, coupled with pulsed electrical signals, to fabricate a vessel-mimetic multilayered tubular hydrogel. Typically, the anodic electrodeposition is performed in a mixture of sodium alginate (SA) and carboxymethyl chitosan (CMC), with the ethylenediaminetetraacetic acid calcium disodium salt hydrate (EDTA·Na2Ca) incorporated to provide a secondary ionic crosslinker (i.e., Ca2+) and modulate the cascade reaction diffusion process. The copper wire electrodes serve as templates for electrochemical oxidation and enable a copper ion (i.e., Cu2+)-induced tubular hydrogel coating formation, while pulsed electric fields regulate layer-by-layer deposition. The dual-cation-crosslinked interpenetrating hydrogels (CMC/SA-Cu/Ca) exhibit rapid growth rates and tailored mechanical strength, along with excellent antibacterial performance. By integrating the unique pulsed electro-fabrication with biomimetic self-assembly, this study addresses challenges in vessel-mimicking structural complexity and mechanical compatibility. The approach enables scalable production of customizable multilayered hydrogels for artificial vessel grafts, smart wound dressings, and bioengineered organ interfaces, demonstrating broad biomedical potential. Full article
Show Figures

Figure 1

15 pages, 11303 KiB  
Article
Hierarchical Manganese-Doped Nickel–Cobalt Oxide Electrodes with Graphene for Use as High-Energy-Density Supercapacitors
by Kuan-Ching Lee, Guan-Ting Pan, Thomas Chung-Kuang Yang, Po-Cheng Shen, Kuan Lun Pan, Timm Joyce Tiong, Aleksandar N. Nikoloski and Chao-Ming Huang
Surfaces 2025, 8(3), 43; https://doi.org/10.3390/surfaces8030043 - 25 Jun 2025
Viewed by 394
Abstract
Thin films of manganese–nickel–cobalt oxide with graphene (G@MNCO) were deposited on copper foam using electrochemical deposition. NiCo2O4 is the main phase in these films. As the proportion of graphene in the precursor solution increases, the oxygen vacancies in the samples [...] Read more.
Thin films of manganese–nickel–cobalt oxide with graphene (G@MNCO) were deposited on copper foam using electrochemical deposition. NiCo2O4 is the main phase in these films. As the proportion of graphene in the precursor solution increases, the oxygen vacancies in the samples also increase. The microstructure of these samples evolves into hierarchical vertical flake structures. Cyclic voltammetry measurements conducted within the potential range of 0–1.2 V reveal that the electrode with the highest graphene content achieves the highest specific capacitance, approximately 475 F/g. Furthermore, it exhibits excellent cycling durability, maintaining 95.0% of its initial capacitance after 10,000 cycles. The superior electrochemical performance of the graphene-enhanced, manganese-doped nickel–cobalt oxide electrode is attributed to the synergistic contributions of the hierarchical G@MNCO structure, the three-dimensional Cu foam current collector, and the binder-free fabrication process. These features promote quicker electrolyte ion diffusion into the electrode material and ensure robust adhesion of the active materials to the current collector. Full article
(This article belongs to the Special Issue Surface Science in Electrochemical Energy Storage)
Show Figures

Figure 1

15 pages, 2784 KiB  
Article
The Effect of Spark Current Tuning on the Formation of Cu Nanoparticles Synthesized by Spark Ablation in Nitrogen Atmosphere
by Maria Assunta Signore, Antonio Della Torre, Antonio Serra, Daniela Manno, Rosaria Rinaldi, Marco Mazzeo, Luca Nunzio Francioso and Luciano Velardi
Crystals 2025, 15(7), 587; https://doi.org/10.3390/cryst15070587 - 21 Jun 2025
Viewed by 335
Abstract
The demand for a “green” approach to the synthesis of nanomaterials is becoming increasingly pressing. In response to this need, we present, for the first time, the use of spark ablation as an environmentally friendly deposition technique to obtain nanoparticles of copper nitride, [...] Read more.
The demand for a “green” approach to the synthesis of nanomaterials is becoming increasingly pressing. In response to this need, we present, for the first time, the use of spark ablation as an environmentally friendly deposition technique to obtain nanoparticles of copper nitride, a material that is gaining increasing attention in the field of photovoltaic advanced technologies. This method involves the ablation of pure copper electrodes in nitrogen atmosphere while a spark current is tuned. The overall result is the co-presence of nitride and oxide nanoparticle agglomerates with different sizes according to the spark current, as confirmed by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and energy-dispersive spectroscopy techniques. Scanning probe microscopy and scanning electron microscopy show an increase in the number and size of nanoparticle agglomerates with an increasing current, while the nanoparticle size is always about sub-10 nm. The findings of this work promote spark ablation as a simple, versatile, cost-effective, environmentally friendly deposition method to obtain nitride-based nanoparticles. Furthermore, it is compatible with many types of materials and substrates, increasing the possible combinations of metals/semiconductors and carrier gas types to obtain completely innovative materials with unique compositions and properties. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

18 pages, 1995 KiB  
Article
Enhancing Electrokinetic Remediation of Cu- and Pb-Contaminated Loess Using Irregular Electrode Configurations: A Numerical Investigation of Transport and Remediation Mechanisms
by Xinwen Wang and Wenle Hu
Processes 2025, 13(7), 1948; https://doi.org/10.3390/pr13071948 - 20 Jun 2025
Viewed by 359
Abstract
The strong adsorption capacity of loess poses a significant limitation to the electrokinetic (EK) remediation process. Modified EK technologies, such as graphene oxide-alginate composite hydrogel (GOCH) electrodes, are increasingly employed for the remediation of heavy metal-contaminated loess. However, the complex interactions among multiple [...] Read more.
The strong adsorption capacity of loess poses a significant limitation to the electrokinetic (EK) remediation process. Modified EK technologies, such as graphene oxide-alginate composite hydrogel (GOCH) electrodes, are increasingly employed for the remediation of heavy metal-contaminated loess. However, the complex interactions among multiple physical fields within these modified systems remain poorly understood. This study utilizes COMSOL Multiphysics version 6.0 to simulate diffusion, electromigration, electroosmotic flow, adsorption, and chemical reactions in loess contaminated with copper (Cu) and lead (Pb). A chemical precipitation and ion transport model, governed by the Nernst–Planck equation, was validated through a comparison of simulation results with experimental data. The investigation examines the effects of electrode placement and size on EK efficiency, revealing that diagonally placed irregular electrodes optimize the electric field, minimize ineffective regions, and enhance ion migration. Larger electrodes enhance current density, whereas smaller electrodes mitigate edge shielding effects. This research offers strategic insights into electrode configuration for improved EK remediation of Cu-Pb-contaminated loess, achieving greater efficiency than traditional systems. Full article
Show Figures

Figure 1

12 pages, 1202 KiB  
Article
Electrocatalytical Nitrite Oxidation via Manganese and Copper Oxides on Carbon Screen-Printed Electrode
by Roberta Farina, Silvia Scalese, Alessandra Alberti, Stefania Maria Serena Privitera, Giuseppe Emanuele Capuano, Domenico Corso, Giuseppe Andrea Screpis, Serena Concetta Rita Reina, Guglielmo Guido Condorelli, Maria Anna Coniglio and Sebania Libertino
Sensors 2025, 25(12), 3764; https://doi.org/10.3390/s25123764 - 16 Jun 2025
Viewed by 488
Abstract
Nitrite (NO2) has long been recognized as a contaminant of concern due to its detrimental effects on both human health and the environment. As a result, there is a continuing need to develop sensitive, real-time, low-cost, and portable systems for [...] Read more.
Nitrite (NO2) has long been recognized as a contaminant of concern due to its detrimental effects on both human health and the environment. As a result, there is a continuing need to develop sensitive, real-time, low-cost, and portable systems for the accurate detection of trace levels of NO2 in drinking water. We present a novel, low-cost, and easy-to-fabricate amperometric sensor designed for detecting low concentrations of NO2 in drinking water. The fabrication technique involves the electrodeposition of manganese and copper oxides onto a carbon working electrode. CuO and MnO2 act synergistically as efficient catalysts for the electrooxidation of nitrite to nitrate (NO3) thanks to their complementary redox properties. The resulting sensor exhibits high catalytic activity toward the electrooxidation of NO2, with a sensitivity of 10.83 μA/µM, a limit of detection (LOD) of 0.071 µM, and a good linear dynamic concentration range (0.2–60 µM). The sensor’s performance was evaluated against potential interfering analytes (NO3, Cl, NH4+, and NH2Cl), all of which showed negligible interference. Reproducibility (maximum standard deviation 2.91%) and repeatability (usable up to three times) were also evaluated. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

20 pages, 7474 KiB  
Article
Utilization of Flotation Wastewater for Metal Xanthate Gel Synthesis and Its Role in Polyaniline-Based Supercapacitor Electrode Fabrication
by Atanas Garbev, Elitsa Petkucheva, Galia Ivanova, Mariela Dimitrova, Antonia Stoyanova and Evelina Slavcheva
Gels 2025, 11(6), 446; https://doi.org/10.3390/gels11060446 - 10 Jun 2025
Viewed by 1228
Abstract
The aim of this study is to explore the feasibility of using flotation wastewater from copper–porphyry ore processing to synthesize a gel that serves as a precursor for a polymer nanocomposite used in supercapacitor electrode fabrication. These wastewaters—characterized by high acidity and elevated [...] Read more.
The aim of this study is to explore the feasibility of using flotation wastewater from copper–porphyry ore processing to synthesize a gel that serves as a precursor for a polymer nanocomposite used in supercapacitor electrode fabrication. These wastewaters—characterized by high acidity and elevated concentrations of metal cations (Cu, Ni, Zn, Fe), sulfates, and organic reagents such as xanthates, oil (20 g/t ore), flotation frother (methyl isobutyl carbinol), and pyrite depressant (CaO, 500–1000 g/t), along with residues from molybdenum flotation (sulfuric acid, sodium hydrosulfide, and kerosene)—are byproducts of copper–porphyry gold-bearing ore beneficiation. The reduction of Ni powder in the wastewater induces the degradation and formation of a gel that captures both residual metal ions and organic compounds—particularly xanthates—which play a crucial role in the subsequent steps. The resulting gel is incorporated during the oxidative polymerization of aniline, forming a nanocomposite with a polyaniline matrix and embedded xanthate-based compounds. An asymmetric supercapacitor was assembled using the synthesized material as the cathodic electrode. Electrochemical tests revealed remarkable capacitance and cycling stability, demonstrating the potential of this novel approach both for the valorization of industrial waste streams and for enhancing the performance of energy storage devices. Full article
Show Figures

Graphical abstract

19 pages, 3834 KiB  
Article
A Sensitive and Selective Sensor Based on Orthorhombic Copper Molybdate Decorated on Reduced Graphene Oxide for the Detection of Promethazine Hydrochloride
by Venkatachalam Vinothkumar, Yellatur Chandra Sekhar, Shen-Ming Chen, Natesan Manjula and Tae Hyun Kim
Sensors 2025, 25(11), 3569; https://doi.org/10.3390/s25113569 - 5 Jun 2025
Viewed by 511
Abstract
Promethazine hydrochloride (PMH) is a first-generation antipsychotic drug created from phenothiazine derivatives that is widely employed to treat psychiatric disorders in human healthcare systems. However, an overdose or long-term intake of PMH can lead to severe health issues in humans. Hence, establishing a [...] Read more.
Promethazine hydrochloride (PMH) is a first-generation antipsychotic drug created from phenothiazine derivatives that is widely employed to treat psychiatric disorders in human healthcare systems. However, an overdose or long-term intake of PMH can lead to severe health issues in humans. Hence, establishing a sensitive, accurate, and efficient detection approach to detect PMH in human samples is imperative. In this study, we designed orthorhombic copper molybdate microspheres decorated on reduced graphene oxide (Cu3Mo2O9/RGO) composite via the effective one-pot hydrothermal method. The structural and morphological features of the designed hybrid were studied using various spectroscopic methods. Subsequently, the electrochemical activity of the composite-modified screen-printed carbon electrode (Cu3Mo2O9/RGO/SPCE) was assessed by employing voltammetric methods for PMH sensing. Owing to the uniform composition and structural benefits, the combination of Cu3Mo2O9 and RGO has not only improved electrochemical properties but also enhanced the electron transport between PMH and Cu3Mo2O9/RGO. As a result, the Cu3Mo2O9/RGO/SPCE exhibited a broad linear range of 0.4–420.8 µM with a low limit of detection (LoD) of 0.015 µM, highlighting excellent electrocatalytic performance to PMH. It also demonstrated good cyclic stability, reproducibility, and selectivity in the presence of chlorpromazine and biological and metal compounds. Furthermore, the Cu3Mo2O9/RGO/SPCE sensor displayed satisfactory recoveries for real-time monitoring of PMH in human urine and serum samples. This study delivers a promising electrochemical sensor for the efficient analysis of antipsychotic drug molecules. Full article
Show Figures

Graphical abstract

18 pages, 2959 KiB  
Article
Evaluating Performance of Metal-Organic Complexes as Electrodes in Hydrogen Peroxide Fuel Cells
by Faraz Alderson, Raveen Appuhamy and Stephen Andrew Gadsden
Energies 2025, 18(10), 2598; https://doi.org/10.3390/en18102598 - 17 May 2025
Viewed by 348
Abstract
With increasing energy demands, fuel cells are a popular avenue for portability and low waste emissions. Hydrogen fuel cells are popular due to their potential output power and clean waste. However, due to storage and transport concerns, hydrogen peroxide fuel cells are a [...] Read more.
With increasing energy demands, fuel cells are a popular avenue for portability and low waste emissions. Hydrogen fuel cells are popular due to their potential output power and clean waste. However, due to storage and transport concerns, hydrogen peroxide fuel cells are a promising alternative. Although they have a lower output potential compared to hydrogen fuel cells, peroxide can act as both the oxidizing and reducing agent, simplifying the structure of the cell. In addition to reducing the complexity, hydrogen peroxide is stable in liquid form and can be stored in less demanding methods. This paper investigates chelated metals as electrode material for hydrogen peroxide fuel cells. Chelated metal complexes are ring-like structures that form from binding organic or inorganic compounds with metal ions. They are used in medical imaging, water treatment, and as catalysts for reactions. Copper(II) phthalocyanine, phthalocyanine green, poly(copper phthalocyanine), bis(ethylenediamine)copper(II) hydroxide, iron(III) ferrocyanine, graphene oxide decorated with Fe3O4, zinc phthalocyanine, magnesium phthalocyanine, manganese(II) phthalocyanine, cobalt(II) phthalocyanine are investigated as electrode materials for peroxide fuel cells. In this study, the performance of these materials is evaluated using cyclic voltammetry. The voltammograms are compared, as well as observations are made during the materials’ use to measure their effectiveness as electrode material. There has been limited research comparing the use of these chelated metals in the context of hydrogen peroxide fuel cells. Through this research, the goal is to further the viability of hydrogen peroxide fuel cells. Poly(copper phthalocyanine) and graphene oxide doped with iron oxides had strong redox catalytic activity for use in acidic peroxide single-compartment fuel cells, where the poly(copper phthalocyanine) electrode compound generated the highest peak power density of 7.92 mW/cm2 and cell output potential of 0.634 V. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

15 pages, 5517 KiB  
Article
Cellulose Valorization via Electrochemical Oxidation: Efficient Formate Generation for Green Energy Storage
by Shuhan Xiao and Yang Yang
Biomass 2025, 5(2), 27; https://doi.org/10.3390/biomass5020027 - 16 May 2025
Viewed by 764
Abstract
Achieving efficient electrocatalytic oxidation of cellulose-derived biomass is a pivotal strategy for advancing bioenergy utilization and achieving carbon neutrality. This study addresses the challenges of low conversion efficiency caused by cellulose’s high crystallinity and excessive energy consumption in conventional processes by proposing a [...] Read more.
Achieving efficient electrocatalytic oxidation of cellulose-derived biomass is a pivotal strategy for advancing bioenergy utilization and achieving carbon neutrality. This study addresses the challenges of low conversion efficiency caused by cellulose’s high crystallinity and excessive energy consumption in conventional processes by proposing a novel integrated system combining solid heteropoly acid catalytic pretreatment and electrocatalytic oxidation. By preparing the (C16TA)H2PW solid acid catalyst, we successfully achieved hydrolysis of microcrystalline cellulose under 180 °C for 60 min, attaining a glucose yield of 40.1%. Furthermore, a non-noble metal electrocatalyst system based on foam copper (CuF) was developed, with the Co3O4/CuF electrode material demonstrating a Faradaic efficiency of 85.3% for formate production at 1.66 V (vs. RHE) in 1 mol L−1 KOH electrolyte containing the pretreated cellulose mixture, accompanied by a partial current density of 153.2 mA cm−2. The mechanism study indicates that hydroxyl radical-mediated C-C bond selective cleavage dominates the formate generation. This integrated system overcomes the limitations of poor catalyst stability and low product selectivity in biomass conversion, offering a sustainable strategy for green manufacturing of high-value chemicals from cellulose. Full article
Show Figures

Figure 1

15 pages, 4061 KiB  
Article
Investigation of Halogenated Metallic Phthalocyanine (InPcCl and F16CuPc)-Based Electrodes and Palm Substrate for Organic Solid-State Supercapacitor Fabrication
by María Elena Sánchez Vergara, Héctor Iván Sánchez Moore and Luis Alberto Cantera-Cantera
Micromachines 2025, 16(4), 455; https://doi.org/10.3390/mi16040455 - 11 Apr 2025
Viewed by 658
Abstract
In this work, we report on the fabrication of a novel Organic Double-Layer Supercapacitor (ODLSC) using recycled palm as the substrate and electrodes based on halogenated indium and copper phthalocyanines. The electrodes were characterized using Reflectance, the Kulbeka–Munk function, and Fluorescence. Finally, their [...] Read more.
In this work, we report on the fabrication of a novel Organic Double-Layer Supercapacitor (ODLSC) using recycled palm as the substrate and electrodes based on halogenated indium and copper phthalocyanines. The electrodes were characterized using Reflectance, the Kulbeka–Munk function, and Fluorescence. Finally, their electrical behavior was evaluated, and the results were compared with those obtained for a more conventional supercapacitor fabricated on polyethylene terephthalate substrate and using indium tin oxide film for electrodes. Based on the experimental measurements of the fabricated ODLSC, the parameter identification of the classical equivalent circuit model was carried out using the Least Squares of Orthogonal Distances (LSOD) algorithm. The results indicated that the palm supercapacitor exhibited behavior more like that of traditional supercapacitors, as the root square mean error (RMSE) values in the model approximation of the experimental data were in the order of 107. Furthermore, the models obtained allowed a determination of the device’s Electrical Impedance Spectroscopy (EIS), revealing that the Palm SC-T1 exhibited capacitive behavior. In contrast, the manufactured Palm SC-T2, PET SC-T1, and PET SC-T2 devices exhibited inductive behavior. All the materials used in this work, such as the substrates, electrodes, separator membranes, and electrolytes, have a high potential to be used in organic supercapacitors. Full article
(This article belongs to the Special Issue Energy Conversion Materials/Devices and Their Applications)
Show Figures

Figure 1

18 pages, 18008 KiB  
Article
Insights into the Electrochemical Synthesis and Supercapacitive Behaviour of 3D Copper Oxide-Based Nanostructures
by Gintautas Jonkus, Ramunas Levinas, Natalia Tsyntsaru and Henrikas Cesiulis
Solids 2025, 6(2), 15; https://doi.org/10.3390/solids6020015 - 1 Apr 2025
Viewed by 1725
Abstract
In this study, nanostructured copper oxide-based films with crystallite size below 10 nm were electrochemically synthesized on copper foil and foam electrodes and investigated for their supercapacitive behaviour. The synthesis was carried out via cyclic voltammetry (CV) for up to 1000 cycles in [...] Read more.
In this study, nanostructured copper oxide-based films with crystallite size below 10 nm were electrochemically synthesized on copper foil and foam electrodes and investigated for their supercapacitive behaviour. The synthesis was carried out via cyclic voltammetry (CV) for up to 1000 cycles in an alkaline electrolyte. By tuning the upper vertex potential (−0.3 V to 0.65 V vs. Ag/AgCl), both phase composition (Cu2O, Cu(OH)2, CuO) and morphology (grains, nanoneedles, nanoplatelets) were precisely controlled, demonstrating the versatility of this approach. The kinetics of oxide/hydroxide film formation on foil and foam electrodes were analysed based on EIS data that were interpreted in the frame of equivalent electric circuits and their changes with potential. The capacitive properties of the synthesized films were evaluated using CV in the potential range of 0 V–0.65 V, and the optimized CuO film synthesized on Cu foam exhibited a high specific capacitance of 1380 mF cm⁻2. An energy density of 0.061 mWh cm−2 and power density of 1.28 mW cm−2 were obtained at 10 mA cm−2 discharge current. Charge–discharge cycling at 100 mV s−1 for 1000 cycles indicated an initial capacitance increase followed by stable retention, highlighting the structural integrity and electrochemical stability of the films obtained on 3D foam. These findings provide valuable insights into the controlled electrochemical synthesis of copper oxide nanostructures and their potential for high-performance capacitor applications. Full article
Show Figures

Graphical abstract

12 pages, 6450 KiB  
Article
An Electrochemical Nickel–Cobalt (Ni–Co)/Graphene Oxide-Polyvinyl Alcohol (GO-PVA) Sensor for Glucose Detection
by Shu-Hui Yeh, Yaw-Jen Chang and Chun-Yi Hsieh
Sensors 2025, 25(7), 2050; https://doi.org/10.3390/s25072050 - 25 Mar 2025
Viewed by 668
Abstract
This paper presents a non-enzymatic sensor for glucose detection in an environment where glucose and insulin coexist. The sensor is based on a three-electrode chip fabricated by etching the copper foil of a printed circuit board. The working electrode is coated with a [...] Read more.
This paper presents a non-enzymatic sensor for glucose detection in an environment where glucose and insulin coexist. The sensor is based on a three-electrode chip fabricated by etching the copper foil of a printed circuit board. The working electrode is coated with a graphene oxide-polyvinyl alcohol composite film, followed by the electroplating of a nickel–cobalt layer and an additional surface treatment using O2 plasma. The experimental results indicate that within a glucose concentration of 2 mM to 10 mM and an insulin concentration of 0.1 mM to 1 mM, the measured current exhibits a linear relationship with the concentration of glucose or insulin, regardless of whether cyclic voltammetry or linear sweep voltammetry is used. However, the detection limit for insulin is 0.01 mM, ensuring that glucose detection remains unaffected by insulin interference. In this sensor, nickel–cobalt serves as a catalyst for glucose and insulin detection, while the graphene oxide-polyvinyl alcohol composite enhances sensing performance. Full article
Show Figures

Figure 1

12 pages, 4047 KiB  
Article
Multilayer Core-Sheath Structured Nickel Wire/Copper Oxide/Cobalt Oxide Composite for Highly Sensitive Non-Enzymatic Glucose Sensor
by Yuxin Wu, Zhengwei Zhu, Xinjuan Liu and Yuhua Xue
Nanomaterials 2025, 15(6), 411; https://doi.org/10.3390/nano15060411 - 7 Mar 2025
Viewed by 707
Abstract
The development of micro glucose sensors plays a vital role in the management and monitoring of diabetes, facilitating real-time tracking of blood glucose levels. In this paper, we developed a three-layer core-sheath microwire (NW@CuO@Co3O4) with nickel wire as the [...] Read more.
The development of micro glucose sensors plays a vital role in the management and monitoring of diabetes, facilitating real-time tracking of blood glucose levels. In this paper, we developed a three-layer core-sheath microwire (NW@CuO@Co3O4) with nickel wire as the core and copper oxide and cobalt oxide nanowires as the sheath. The unique core-sheath structure of microwire enables it to have both good conductivity and excellent electrochemical catalytic activity when used as an electrode for glucose detecting. The non-enzymatic glucose sensor base on a NW@CuO@Co3O4 core-sheath wire exhibits a high sensitivity of 4053.1 μA mM−1 cm−2, a low detection limit 0.89 μM, and a short response time of less than 2 s. Full article
Show Figures

Graphical abstract

Back to TopTop