Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (521)

Search Parameters:
Keywords = convertible bond

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1924 KB  
Article
Thermal–Electrical Fusion for Real-Time Condition Monitoring of IGBT Modules in Transportation Systems
by Man Cui, Yun Liu, Zhen Hu and Tao Shi
Micromachines 2026, 17(2), 154; https://doi.org/10.3390/mi17020154 - 25 Jan 2026
Abstract
The operational reliability of Insulated Gate Bipolar Transistor (IGBT) modules in demanding transportation applications, such as traction systems, is critically challenged by solder layer and bond wire failures under cyclic thermal stress. To address this, this paper proposes a novel health monitoring framework [...] Read more.
The operational reliability of Insulated Gate Bipolar Transistor (IGBT) modules in demanding transportation applications, such as traction systems, is critically challenged by solder layer and bond wire failures under cyclic thermal stress. To address this, this paper proposes a novel health monitoring framework that innovatively synergizes micro-scale spatial thermal analysis with microsecond electrical dynamics inversion. The method requires only non-invasive temperature measurements on the module baseplate and utilizes standard electrical signals (load current, duty cycle, switching frequency, DC-link voltage) readily available from the converter’s controller, enabling simultaneous diagnosis without dedicated voltage or high-bandwidth current sensors. First, a non-invasive assessment of solder layer fatigue is achieved by correlating the normalized thermal gradient (TP) on the baseplate with the underlying thermal impedance (ZJC). Second, for bond wire aging, a cost-effective inversion algorithm estimates the on-state voltage (Vce,on) by calculating the total power loss from temperature, isolating the conduction loss (Pcond) with the aid of a Foster-model-based junction temperature (TJ) estimate, and finally computing Vce,on at a unique current inflection point (IC,inf) to nullify TJ dependency. Third, the health states from both failure modes are fused for comprehensive condition evaluation. Experimental validation confirms the method’s accuracy in tracking both degradation modes. This work provides a practical and economical solution for online IGBT condition monitoring, enhancing the predictive maintenance and operational safety of transportation electrification systems. Full article
(This article belongs to the Special Issue Insulated Gate Bipolar Transistor (IGBT) Modules, 2nd Edition)
30 pages, 8192 KB  
Article
Structural Insights into the Receptor-Binding Domain of Bat Coronavirus HKU5-CoV-2: Implications for Zoonotic Transmission via ACE2
by Manal A. Babaker, Nariman Sindi, Othman Yahya Alyahyawy, Ehssan Moglad, Mohieldin Elsayid, Thamir M. Eid, Mohamed Eltaib Elmobark and Hisham N. Altayb
Animals 2026, 16(2), 237; https://doi.org/10.3390/ani16020237 - 13 Jan 2026
Viewed by 208
Abstract
The zoonotic potential of bat coronaviruses, especially HKU5, is a significant issue because of their capacity to utilize human angiotensin-converting enzyme 2 (ACE2) as a receptor for cellular entry. This study offers structural insights into the binding kinetics of HKU5 (Bat Merbecovirus HKU5) [...] Read more.
The zoonotic potential of bat coronaviruses, especially HKU5, is a significant issue because of their capacity to utilize human angiotensin-converting enzyme 2 (ACE2) as a receptor for cellular entry. This study offers structural insights into the binding kinetics of HKU5 (Bat Merbecovirus HKU5) receptor-binding domain (RBD) spike protein with human ACE2 through a multiscale computational method. This study employed structural modeling, 300-nanosecond (ns) molecular dynamics (MD) simulations, alanine-scanning mutagenesis, and computational peptide design to investigate ACE2 recognition by the HKU5 RBD and its interactions with peptides. The root mean square deviation (RMSD) investigation of HKU5–ACE2 complexes indicated that HKU5 exhibited greater flexibility than SARS-CoV-2, with RMSD values reaching a maximum of 1.2 nm. Free energy analysis, Molecular Mechanics/Generalized Born Surface Area (MM/GBSA), indicated a more robust binding affinity of HKU5 to ACE2 (ΔGTotal = −21.61 kcal/mol) in contrast to SARS-CoV-2 (ΔGTotal = −5.82 kcal/mol), implying that HKU5 binding with ACE2 had higher efficiency. Additionally, a peptide was designed from the ACE2 interface, resulting in the development of 380 single-site mutants by mutational alterations. The four most promising mutant peptides were selected for 300-nanosecond (ns) MD simulations, subsequently undergoing quantum chemical calculations (DFT) to evaluate their electronic characteristics. MM/GBSA of −37.83 kcal/mol indicated that mutant-1 exhibits the most favorable binding with HKU5, hence potentially inhibiting ACE2 interaction. Mutant-1 formed hydrogen bonds involving Glu74, Ser202, Ser204, and Asn152 residues of HKU5. Finally, QM/MM calculations on the peptide–HKU5 complexes showed the most favorable ΔE_interaction of −170.47 (Hartree) for mutant-1 peptide. These findings offer a thorough comprehension of receptor-binding dynamics and are crucial for evaluating the zoonotic risk associated with HKU5-CoV and guiding the design of receptor-targeted antiviral treatments. Full article
Show Figures

Figure 1

20 pages, 1157 KB  
Article
A Dynamic Physics-Guided Ensemble Model for Non-Intrusive Bond Wire Health Monitoring in IGBTs
by Xinyi Yang, Zhen Hu, Yizhi Bo, Tao Shi and Man Cui
Micromachines 2026, 17(1), 70; https://doi.org/10.3390/mi17010070 - 1 Jan 2026
Viewed by 296
Abstract
Bond wire degradation represents the predominant failure mechanism in IGBT modules, accounting for approximately 70% of power converter failures and posing significant reliability challenges in modern power electronic systems. Existing monitoring techniques face inherent trade-offs between measurement accuracy, implementation complexity, and electromagnetic compatibility. [...] Read more.
Bond wire degradation represents the predominant failure mechanism in IGBT modules, accounting for approximately 70% of power converter failures and posing significant reliability challenges in modern power electronic systems. Existing monitoring techniques face inherent trade-offs between measurement accuracy, implementation complexity, and electromagnetic compatibility. This paper proposes a physics-constrained ensemble learning framework for non-intrusive bond wire health assessment via Vce-on prediction. The methodological innovation lies in the synergistic integration of multidimensional feature engineering, adaptive ensemble fusion, and domain-informed regularization. A comprehensive 16-dimensional feature vector is constructed from multi-physical measurements, including electrical, thermal, and aging parameters, with novel interaction terms explicitly modeling electro-thermal stress coupling. A dynamic weighting mechanism then adaptively fuses three specialized gradient boosting models (CatBoost for high-current, LightGBM for thermal-stress, and XGBoost for late-life conditions) based on context-aware performance assessment. Finally, the meta-learner incorporates a physics-based regularization term that enforces fundamental semiconductor properties, ensuring thermodynamic consistency. Experimental validation demonstrates that the proposed framework achieves a mean absolute error of 0.0066 V and R2 of 0.9998 in predicting Vce-on, representing a 48.4% improvement over individual base models while maintaining 99.1% physical constraint compliance. These results establish a paradigm-shifting approach that harmonizes data-driven learning with physical principles, enabling accurate, robust, and practical health monitoring for next-generation power electronic systems. Full article
(This article belongs to the Special Issue Insulated Gate Bipolar Transistor (IGBT) Modules, 2nd Edition)
Show Figures

Figure 1

34 pages, 6954 KB  
Article
Natural Fatty Acids as Dual ACE2-Inflammatory Modulators: Integrated Computational Framework for Pandemic Preparedness
by William D. Lituma-González, Santiago Ballaz, Tanishque Verma, J. M. Sasikumar and Shanmugamurthy Lakshmanan
Int. J. Mol. Sci. 2026, 27(1), 402; https://doi.org/10.3390/ijms27010402 - 30 Dec 2025
Viewed by 336
Abstract
The COVID-19 pandemic exposed critical vulnerabilities in single-target antiviral strategies, highlighting the urgent need for multi-mechanism therapeutic approaches against emerging viral threats. Here, we present an integrated computational framework systematically evaluating natural fatty acids as potential dual ACE2 (Angiotension Converting Enzyme 2)-inflammatory modulators; [...] Read more.
The COVID-19 pandemic exposed critical vulnerabilities in single-target antiviral strategies, highlighting the urgent need for multi-mechanism therapeutic approaches against emerging viral threats. Here, we present an integrated computational framework systematically evaluating natural fatty acids as potential dual ACE2 (Angiotension Converting Enzyme 2)-inflammatory modulators; compounds simultaneously disrupting SARS-CoV-2 viral entry through allosteric ACE2 binding while suppressing host inflammatory cascades; through allosteric binding mechanisms rather than conventional competitive inhibition. Using molecular docking across eight ACE2 regions, 100 ns molecular dynamics simulations, MM/PBSA free energy calculations, and multivariate statistical analysis (PCA/LDA), we computationally assessed nine naturally occurring fatty acids representing saturated, monounsaturated, and polyunsaturated classes. Hierarchical dynamics analysis identified three distinct binding regimes spanning fast (τ < 50 ns) to slow (τ > 150 ns) timescales, with unsaturated fatty acids demonstrating superior binding affinities (ΔG = −6.85 ± 0.27 kcal/mol vs. −6.65 ± 0.25 kcal/mol for saturated analogs, p = 0.002). Arachidonic acid achieved optimal SwissDock affinity (−7.28 kcal/mol), while oleic acid exhibited top-ranked predicted binding affinity within the computational hierarchy (ΔGbind = −24.12 ± 7.42 kcal/mol), establishing relative prioritization for experimental validation rather than absolute affinity quantification. Energetic decomposition identified van der Waals interactions as primary binding drivers (65–80% contribution), complemented by hydrogen bonds as transient directional anchors. Comprehensive ADMET profiling predicted favorable safety profiles compared to synthetic antivirals, with ω-3 fatty acids showing minimal nephrotoxicity risks while maintaining excellent intestinal absorption (>91%). Multi-platform bioactivity analysis identified convergent anti-inflammatory mechanisms through eicosanoid pathway modulation and kinase inhibition. This computational investigation positions natural fatty acids as promising candidates for experimental validation in next-generation pandemic preparedness strategies, integrating potential therapeutic efficacy with sustainable sourcing. The framework is generalizable to fatty acids from diverse biological origins. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

18 pages, 2586 KB  
Article
Novel ACE-Inhibitory Peptides from Royal Jelly Proteins: Comprehensive Screening, Mechanistic Insights, and Endothelial Protection
by Wanyu Yang, Xinyu Zou, Tianrong Zhang, Qingqing Liu, Ziyan Liu, Fan Li, Yuhong Luo, Yiwen Wang, Zhijun Qiu and Bin Zhang
Foods 2026, 15(1), 84; https://doi.org/10.3390/foods15010084 - 26 Dec 2025
Viewed by 329
Abstract
This study aimed to identify novel angiotensin-converting enzyme (ACE)-inhibitory peptides from royal jelly proteins (RJPs) by integrating in silico digestion, virtual screening, and in vitro evaluation. Three major royal jelly proteins (MRJP1-3) were subjected to in silico digestion using 16 enzymatic systems, yielding [...] Read more.
This study aimed to identify novel angiotensin-converting enzyme (ACE)-inhibitory peptides from royal jelly proteins (RJPs) by integrating in silico digestion, virtual screening, and in vitro evaluation. Three major royal jelly proteins (MRJP1-3) were subjected to in silico digestion using 16 enzymatic systems, yielding 1411 unique peptides. Virtual screening based on predicted bioactivity, toxicity, water solubility, and ADMET profiles resulted in the selection of 27 candidate peptides. Molecular docking revealed strong binding affinities for these peptides compared with the positive control captopril, among which PYPDWSFAK and RPYPDWSF exhibited potent ACE-inhibitory activity, with IC50 values of 110 ± 1.02 μmol/L and 204 ± 0.61 μmol/L, respectively. Kinetic analysis indicated that PYPDWSFAK acts as a mixed-type ACE inhibitor. Docking visualization demonstrated that PYPDWSFAK forms multiple hydrogen bonds with key residues in the ACE active pocket and directly coordinates with the catalytic Zn2+ ion. Cellular assays showed that PYPDWSFAK was non-cytotoxic, suppressed Ang II–induced endothelial cell migration, restored NO and ET-1 balance, and enhanced SOD and GSH-Px activities. Overall, this study enriches the repertoire of ACE-inhibitory peptides derived from royal jelly proteins. Furthermore, PYPDWSFAK is identified as a promising ACE-inhibitory peptide with potential for incorporation into natural antihypertensive ingredients or functional foods. Full article
Show Figures

Graphical abstract

18 pages, 3768 KB  
Article
Catalytic Ozonation of Ammonia Nitrogen to Nitrogen by Manganese-Loaded Powdered Activated Coke
by Mengning Liu, Huiru Ma, Fuyu Huang, Guifang Chen, Zhanyao Li, Liqiang Zhang, Shouyan Chen and Ping Zhou
Water 2026, 18(1), 49; https://doi.org/10.3390/w18010049 - 23 Dec 2025
Viewed by 425
Abstract
Activated carbon has shown good catalytic performance in water treatment, but its wide application is limited by its high price. Activated coke exhibits functional groups and is low-cost. However, there is limited research on activated coke as a catalyst. In our previous study, [...] Read more.
Activated carbon has shown good catalytic performance in water treatment, but its wide application is limited by its high price. Activated coke exhibits functional groups and is low-cost. However, there is limited research on activated coke as a catalyst. In our previous study, powdered activated coke (PAC) exhibited good catalytic performance in NH3-N treatment with ozonation. Increasing nitrogen selectivity is the key to harmless degradation of NH3-N, which has received little attention. In this paper, manganese-loaded powdered coke (Mn–PAC) was prepared, aiming to further improve the nitrogen selectivity. Under the same conditions, the PAC/O3 system achieved 92.16% NH3-N removal and 49.46% nitrogen selectivity, while the Mn–PAC/O3 system achieved almost 100% NH3-N removal and 79.31% N2 selectivity. When Mn–PAC was reused for the sixth time, the system achieved about 70% and 46% NH3-N removal and N2 selectivity, both of which were about 10% higher than those of PAC. Complex redox and synergistic interactions existed in the Mn–PAC/O3 system. The Mn–PAC surface contains reactive sites such as C=C, C=O, π–π bonds, ArOH, and various MnOx. These components collectively facilitate ozone decomposition into ·OH, ·O2, and 1O2. The 1O2 may play a significant role in converting NH3-N to N2. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

20 pages, 5425 KB  
Article
Structure, Function and Dynamics of mCoral, a pH-Responsive Engineered Variant of the mCherry Fluorescent Protein with Improved Hydrogen Peroxide Tolerance
by Athena Zitti, Ozan Aksakal, Danoo Vitsupakorn, Pierre J. Rizkallah, Halina Mikolajek, James A. Platts, Georgina E. Menzies and D. Dafydd Jones
Int. J. Mol. Sci. 2026, 27(1), 154; https://doi.org/10.3390/ijms27010154 - 23 Dec 2025
Viewed by 421
Abstract
The red fluorescent protein mCherry is one of the most widely used fluorescent proteins in biology. Here, we have changed the chromophore chemistry by converting the thioether group of M66 to a thiol group through mutation to cysteine. The new variant, termed mCoral [...] Read more.
The red fluorescent protein mCherry is one of the most widely used fluorescent proteins in biology. Here, we have changed the chromophore chemistry by converting the thioether group of M66 to a thiol group through mutation to cysteine. The new variant, termed mCoral (due to its orange fluorescence hue), has similar brightness to mCherry but improved resistance to hydrogen peroxide. The variant is also responsive to pH with low and high pKa forms that have distinct spectral properties, which DFT analysis suggests is due to protonation state changes in the newly introduced thiol group, as well as the phenol group. The structure of mCoral reveals that the M66C mutation creates a space within the β-barrel structure that is filled by a water molecule, which makes new polar interactions, including the backbone carbonyl group of F65. Molecular dynamics simulations suggest that this additional water molecule, together with local solvation around the chromophore, could play a role in promoting planarity of the full conjugated system comprising the chromophore. The mCoral chromophore makes slightly more H-bonds with water than mCherry. The main water exit point for mCherry is also narrower in mCoral, providing a potential explanation for increased resistance to hydrogen peroxide. Overall, a small structural change to mCherry has resulted in a new fluorescent protein with potentially useful characteristics and an insight into the role of dynamics and water in defining the structure–function relationship in red fluorescent proteins. Full article
(This article belongs to the Special Issue Biomolecular Structure, Function and Interactions: 2nd Edition)
Show Figures

Graphical abstract

15 pages, 619 KB  
Article
Assessing Natural Weaning in Suckler Beef Cattle: A Single-Farm Retrospective Data Analysis of Calf-Raising Success and Colostrum Antibody Uptake in the Absence or Presence of a Yearling Calf
by Dorit Albertsen, Peter Plate and Suzanne D. E. Held
Animals 2026, 16(1), 34; https://doi.org/10.3390/ani16010034 - 23 Dec 2025
Viewed by 448
Abstract
Suckler beef cows and their calves are commonly separated when calves are between four and ten months old. This is earlier than would happen naturally and causes stress in dams and calves and reduces feed intake and immunocompetence, and thus introduces calf performance [...] Read more.
Suckler beef cows and their calves are commonly separated when calves are between four and ten months old. This is earlier than would happen naturally and causes stress in dams and calves and reduces feed intake and immunocompetence, and thus introduces calf performance and health problems. To address these concerns, weaning by separation was gradually phased out on a single extensive suckler beef farm comprising nine separate breeding herds based on chalk downland in southern England. Over seven consecutive years, the farm’s breeding herds were converted to natural weaning, one to two herds per year. This meant yearling calves stayed with their dams until weaned off naturally and beyond the subsequent calving season. To examine the effects of yearlings being left with their dams, retrospective data were collected on the subsequent calves’ survival to one year old (‘raising success’). The dams had their previous calf either still present as a yearling (YP) when the new calf arrived or had had their previous calf removed at eight months old, so it was absent (YA). Data were retrospectively analysed on 1822 calves born to 663 dams in total over the seven years. Raising success overall was 96% for YP calves and 95% for YA. Chi-squared analysis of only one calf per cow (N = 663; YP = 382, YA = 281) confirmed that raising success was not negatively associated with yearling presence. A separate analysis compared farm data on serum total protein levels of 81 YP and 12 YA 1–10-day-old calves as measures of colostrum antibody uptake. Mann–Whitney U testing showed an insignificant trend towards higher antibody uptake in YA calves (p < 0.1). However, over 86% of calves in both groups had ‘excellent’ total protein values according to a standard classification used for dairy calves (>6.2 g/dL). The findings show for the first time and under conditions studied here that beef calves can be left with their dams without a negative effect on the survival of the subsequent calf. Concerns of sibling rivalry disturbing the bonding process and leading to competition for colostrum and milk were not confirmed. In conclusion, allowing cows to wean their calves naturally could potentially be a viable management option for similar beef suckler herds, including those used in habitat/soil restoration projects. Full article
Show Figures

Figure 1

24 pages, 5702 KB  
Article
Preparation and Performance Characterization of Thixotropic Gelling Materials with High Temperature Stability and Wellbore Sealing Properties
by Yingbiao Liu, Xuyang Yao, Chuanming Xi, Kecheng Liu and Tao Ren
Polymers 2025, 17(24), 3343; https://doi.org/10.3390/polym17243343 - 18 Dec 2025
Viewed by 428
Abstract
In response to the requirements of wellbore plugging and lost circulation control, this study designed and prepared a new type of thixotropic polymer gel system. The optimal formula was obtained through systematic screening of the types and concentrations of high molecular polymers, cross-linking [...] Read more.
In response to the requirements of wellbore plugging and lost circulation control, this study designed and prepared a new type of thixotropic polymer gel system. The optimal formula was obtained through systematic screening of the types and concentrations of high molecular polymers, cross-linking agents, flow pattern regulators, and resin curing agents. Comprehensive characterization of the gel’s gelling performance, thixotropic properties, high-temperature stability, shear resistance, and plugging capacity was conducted using methods such as the Sydansk bottle test, rheological testing, high-temperature aging experiments, plugging performance evaluation, as well as infrared spectroscopy, nuclear magnetic resonance, and thermogravimetric analysis, and its mechanism of action was revealed. The results show that the optimal formula is 1.2% AM-AA-AMPS terpolymer + 0.5% hydroquinone + 0.6% S-Trioxane + 0.8% modified montmorillonite + 14% modified phenolic resin. This gel system has a gelling time of 6 h, a gel strength reaching grade H, and a storage modulus of 62 Pa. It exhibits significant shear thinning characteristics in the shear rate range of 0.1~1000 s−1, with a viscosity recovery rate of 97.7% and a thixotropic recovery rate of 90% after shearing. It forms a complete gel at a high temperature of 160 °C, with a dehydration rate of only 8.5% and a storage modulus retention rate of 80% after aging at 140 °C for 7 days. Under water flooding conditions at 120 °C, the converted pressure-bearing capacity per 100 m reaches 24.0 MPa. Mechanism analysis confirms that the system forms a stable composite network through the synergistic effect of “covalent cross-linking—hydrogen bonding—physical adsorption”, providing a high-performance material solution for wellbore plugging in high-temperature and high-salt environments. Full article
(This article belongs to the Topic Polymer Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Figure 1

17 pages, 2967 KB  
Article
Identification, Molecular Docking Mechanism and Cellular Activity of Selenium-Enriched ACE Inhibitory Peptides from Oysters
by Zhuangzhuang Yue, Zhen Xia, Fei Xu, Bingbing Chen, Shufei Jiao, Xingtang Liang, Yanzhen Yin and Jianyin Miao
Molecules 2025, 30(24), 4818; https://doi.org/10.3390/molecules30244818 - 18 Dec 2025
Viewed by 419
Abstract
Selenium-enriched oyster proteins were hydrolyzed using trypsin to obtain peptides with angiotensin-I-converting enzyme (ACE) inhibitory activity. The hydrolysate was purified by ultrafiltration and two-step reversed-phase high-performance liquid chromatography (RP-HPLC), yielding the most active fraction M4-2 (selenium content: 37.00 ± 0.56 mg/kg; IC50 [...] Read more.
Selenium-enriched oyster proteins were hydrolyzed using trypsin to obtain peptides with angiotensin-I-converting enzyme (ACE) inhibitory activity. The hydrolysate was purified by ultrafiltration and two-step reversed-phase high-performance liquid chromatography (RP-HPLC), yielding the most active fraction M4-2 (selenium content: 37.00 ± 0.56 mg/kg; IC50: 0.774 mg/mL, significantly lower than the IC50 of the crude hydrolysate, 2.801 mg/mL). This fraction was further analyzed by LC-MS/MS and molecular docking, leading to the identification of 91 selenium-containing peptide sequences. Two novel peptides, SeMFRTSSK and QASeMNEATGGK, showing strong binding affinities (−9.8 and −9.0 kcal/mol, respectively), were selected. Molecular docking revealed that SeMFRTSSK bound to key residues in the ACE active pocket via hydrogen bonds, whereas QASeMNEATGGK interacted with the Zn2+ active center. Cellular assays using EA.hy926 cells demonstrated that both peptides were non-cytotoxic at concentrations up to 0.25 mg/mL. At 0.025 mg/mL, SeMFRTSSK and QASeMNEATGGK enhanced cellular NO release by 202.65% and 273.45%, respectively, while suppressing Endothelin-1 (ET-1) secretion by 18.03% and 27.86%, compared to the blank control group. Notably, these peptides induced higher levels of NO release and greater suppression of ET-1 secretion than those in the captopril-treated positive control group. These findings support selenium-enriched oyster-derived peptides as potential natural antihypertensive ingredients. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Figure 1

19 pages, 1105 KB  
Article
Financial Traits and Convertible Bond Motives: China’s Evidence
by Jiaqi Chen, Xiuwen Lu and Xiongzhi Wang
Int. J. Financial Stud. 2025, 13(4), 240; https://doi.org/10.3390/ijfs13040240 - 16 Dec 2025
Viewed by 987
Abstract
Convertible bond financing has gained significant traction in China’s capital market, yet it poses financial risks, particularly for highly leveraged firms. This study investigates how corporate financial traits influence the decision to issue convertible bonds, challenging the direct applicability of Western theoretical frameworks [...] Read more.
Convertible bond financing has gained significant traction in China’s capital market, yet it poses financial risks, particularly for highly leveraged firms. This study investigates how corporate financial traits influence the decision to issue convertible bonds, challenging the direct applicability of Western theoretical frameworks in China’s unique institutional context. We employ a natural experiment design, constructing a binary logistic regression model to analyze data from Chinese A-share listed companies that issued convertible bonds, corporate bonds, seasoned equity offerings, or rights offerings between 2022 and 2023. Our results reveal a paradox: contrary to risk-transfer theory, firms with lower leverage exhibit a stronger propensity to issue convertible bonds. Instead, motives are driven by high profitability, operational inefficiencies, and robust operating cash flow generation—traits that align with signaling and backdoor equity theories. The study identifies China’s convertible bond market as a dual-track system where regulatory screening distorts classical motives while market frictions amplify the role of convertible bonds in resolving information asymmetry. We conclude with targeted policy implications for regulators and corporate treasurers to enhance market efficiency and governance. Full article
Show Figures

Figure 1

15 pages, 2255 KB  
Article
Photochemical Rearrangements of Pyridine N-Oxides: Pathways to Oxaziridine Derivatives
by Cristian J. Guerra, Yeray A. Rodríguez-Núñez, Efraín Polo-Cuadrado, Mitchell Bacho, Jorge Soto-Delgado, Victor B. Fuentes-Guerrero, Eduardo I. Torres-Olguín, Cristopher A. Fica-Cornejo, Daniela Rodríguez-García, Manuel E. Taborda-Martínez, Leandro Ayarde-Henríquez and Adolfo E. Ensuncho
Molecules 2025, 30(24), 4776; https://doi.org/10.3390/molecules30244776 - 14 Dec 2025
Viewed by 381
Abstract
The photochemical behavior of substituted pyridine N-Oxides is characterized by complex rearrangements culminating in the formation of valuable photoproducts. The CAS(10,8)/cc-pVDZ approach with NEVPT2 corrections is applied to investigate geometric distortions associated with the S1 excited state, conical intersections, and the ultimate [...] Read more.
The photochemical behavior of substituted pyridine N-Oxides is characterized by complex rearrangements culminating in the formation of valuable photoproducts. The CAS(10,8)/cc-pVDZ approach with NEVPT2 corrections is applied to investigate geometric distortions associated with the S1 excited state, conical intersections, and the ultimate transformation of pyridine N-Oxides into oxaziridine-like derivative formations. Our results reveal that the deactivation of the S1 excited state is driven by an out-of-plane rotation of the N-O oxygen atom, resulting in the formation of a lone pair over the nitrogen atom. Along this excited-state reaction pathway, the N-O bond undergoes significant weakening, while a C=C double bond emerges mainly in the excited state. The deactivation at the minimum-energy conical intersection leading to the ground state reveals the formation of an oxaziridine-like intermediate, which subsequently converts into a 1,2-oxazepine derivative. Full article
Show Figures

Graphical abstract

20 pages, 5209 KB  
Article
Methanol-Assisted CO2 Fixation by Hydroxyl-Containing Amidine Leading to Polymeric Ionic Liquid and Cross-Linked Network Formation
by Irina Irgibaeva, Nikolay Barashkov, Farkhad Tarikhov, Anuar Aldongarov, Lyazat Salkeeva, Gulzhian Dzhardimalieva and Yerbolat Tashenov
Polymers 2025, 17(24), 3306; https://doi.org/10.3390/polym17243306 - 14 Dec 2025
Viewed by 394
Abstract
This study presents a methanol-assisted pathway that converts hydroxyl-containing amidine into a polymeric ionic liquid (PIL) through direct CO2 fixation, followed by its transformation into a cross-linked ionic polymer (CL-IP). Methanol plays a crucial role in this process, acting as both a [...] Read more.
This study presents a methanol-assisted pathway that converts hydroxyl-containing amidine into a polymeric ionic liquid (PIL) through direct CO2 fixation, followed by its transformation into a cross-linked ionic polymer (CL-IP). Methanol plays a crucial role in this process, acting as both a structural and electronic mediator. Its strong hydrogen-bonding interactions with amidine activate the molecule toward CO2 capture and promote the formation of ionic intermediates. Spectroscopic analyses (FTIR, 1H and 13C NMR) revealed the emergence of amidinium and alkyl-carbonate groups, while viscosity and mass measurements indicated progressive polymerization during CO2 absorption. Density functional theory calculations confirmed the stabilizing effect of methanol and the reduced HOMO–LUMO gap, which facilitates PIL formation. The subsequent condensation of the PIL with glutaraldehyde produced a dense three-dimensional cross-linked network (CL-IP), as verified by FTIR, XPS, SEM, and TGA analyses. These results highlight a straightforward and sustainable strategy for constructing hydrogen-bond-mediated ionic polymers capable of tunable CO2 capture and potential application in environmentally compatible materials. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Figure 1

14 pages, 2641 KB  
Article
Continuous Deoxygenation of Palmitic Acid, Methyl Palmitate, and Licuri Biodiesel over Granular Pd/C Catalysts in a Trickle-Bed Reactor
by Pedro H. M. Araujó, Connor Thompson, Taylor C. Schulz and H. Henry Lamb
Reactions 2025, 6(4), 73; https://doi.org/10.3390/reactions6040073 - 13 Dec 2025
Viewed by 340
Abstract
Biofuels offer potential to mitigate climate change, increase energy security, and economically support farmers around the world. Licuri (Syagrus coronata) could be an important biofuel feedstock because its kernel (edible seed) has high energy content. This research investigates the optimal reaction [...] Read more.
Biofuels offer potential to mitigate climate change, increase energy security, and economically support farmers around the world. Licuri (Syagrus coronata) could be an important biofuel feedstock because its kernel (edible seed) has high energy content. This research investigates the optimal reaction conditions to convert fatty acids (FAs) and fatty acid methyl esters (FAMEs) (including licuri biodiesel) to hydrocarbons via deoxygenation in a trickle-bed reactor over granular Pd/C catalysts. Our results indicate that a 20 wt.% palmitic acid (PA) feed is optimum for continuous deoxygenation at 300 °C and 15 bar in 5% H2/He because of decarboxylation inhibition at higher concentrations. Deoxygenation rates are higher for PA than for methyl palmitate (MP) because of the slow initial hydrogenolysis of the methoxy bond over Pd/C. The hydrocarbon product distributions from deoxygenation of licuri biodiesel were fully consistent with FA decarboxylation and decarbonylation. A lab-prepared 5 wt.% Pd/C catalyst with higher metal dispersion provided modestly higher hydrocarbon yields from licuri biodiesel than a commercial 1 wt.% Pd/C catalyst. Full article
Show Figures

Figure 1

17 pages, 1652 KB  
Article
Boron-Doped Bamboo-Derived Porous Carbon via Dry Thermal Treatment for Enhanced Electrochemical Performance
by Hyeon-Hye Kim, Cheol-Ki Cho, Ju-Hwan Kim, Hye-Min Lee, Kay-Hyeok An, Dong-Cheol Chung and Byung-Joo Kim
Batteries 2025, 11(12), 443; https://doi.org/10.3390/batteries11120443 - 2 Dec 2025
Viewed by 466
Abstract
In this study, boron was introduced into bamboo-derived porous carbon (BPC) through dry thermal treatment using boric acid. During heat treatment, boric acid was converted to B2O3, which subsequently interacted with the oxygen-containing surface groups of BPC, leading to [...] Read more.
In this study, boron was introduced into bamboo-derived porous carbon (BPC) through dry thermal treatment using boric acid. During heat treatment, boric acid was converted to B2O3, which subsequently interacted with the oxygen-containing surface groups of BPC, leading to the formation and evolution of B–O–B and B–C bonds. This boron-induced bonding network reconstruction enhanced π-electron delocalization and surface polarity, while maintaining the intrinsic microporous framework of BPC. Among the prepared samples, B-BPC-1 exhibited an optimized balance between the conductive domains and defect concentration, resulting in lower internal resistance and improved ion transport behavior. Correspondingly, B-BPC-1 delivered a better capacitive performance than both undoped BPC and commercial activated carbon. These results indicate that controlling boron incorporation under appropriate heat-treatment conditions effectively improves charge-transfer kinetics while maintaining a stable pore morphology. The proposed dry thermal doping method provides a practical and environmentally benign route for developing high-performance porous carbon electrodes for electric double-layer capacitor applications. Full article
Show Figures

Figure 1

Back to TopTop