Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (205)

Search Parameters:
Keywords = controlled-release N fertilizer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2995 KiB  
Article
A New High-Efficiency Fertilization System from Waste Materials for Soil Protection: Material Engineering, Chemical-Physical Characterization, Antibacterial and Agronomic Performances
by Martina Napolitano, Gianluca Malavasi, Daniele Malferrari, Giulio Galamini, Michelina Catauro, Veronica Viola, Fabrizio Marani and Luisa Barbieri
Materials 2025, 18(15), 3492; https://doi.org/10.3390/ma18153492 - 25 Jul 2025
Viewed by 274
Abstract
The development of slow-release fertilizers (SRFs) based on production residues is a promising strategy to improve nutrient use efficiency and promote circular economy practices in agriculture. In this study, a series of experimental formulations were designed and tested using pumice scraps, liquid and [...] Read more.
The development of slow-release fertilizers (SRFs) based on production residues is a promising strategy to improve nutrient use efficiency and promote circular economy practices in agriculture. In this study, a series of experimental formulations were designed and tested using pumice scraps, liquid and dried blood, and bone meal, aiming at producing sustainable and low-cost N-P-K SRFs. These were processed through mixing and granulation, both in the laboratory and on a semi-industrial scale. The formulations were evaluated through release tests in 2% citric acid solution simulating the acidic conditions of the rhizosphere, and in acetic acid to assess potential nutrient leaching under acid rain conditions. The results showed a progressive cumulative release of macronutrients (NPKs), ranging from approximately 8% at 24 h to 73% after 90 days for the most effective formulation (WBF6). Agronomic trials on lettuce confirmed the effectiveness of WBF6, resulting in significant biomass increases compared with both the untreated control and a conventional fertilizer. The use of livestock waste and minerals facilitated the development of a scalable product aligned with the principles of sustainable agriculture. The observed release behavior, combined with the simplicity of production, positions these formulations as a promising alternative to conventional slow-release fertilizers. Full article
(This article belongs to the Section Green Materials)
Show Figures

Graphical abstract

15 pages, 1398 KiB  
Article
Hydrochar as a Potential Soil Conditioner for Mitigating H+ Production in the Nitrogen Cycle: A Comparative Study
by Weijia Yu, Qingyue Zhang, Shengchang Huai, Yuwen Jin and Changai Lu
Agronomy 2025, 15(8), 1777; https://doi.org/10.3390/agronomy15081777 - 24 Jul 2025
Viewed by 263
Abstract
Pyrochar has been identified as a favorable soil conditioner that can effectively ameliorate soil acidification. Hydrochar is considered a more affordable carbon material than pyrochar, but its effect on the process of soil acidification has yet to be investigated. An indoor incubation and [...] Read more.
Pyrochar has been identified as a favorable soil conditioner that can effectively ameliorate soil acidification. Hydrochar is considered a more affordable carbon material than pyrochar, but its effect on the process of soil acidification has yet to be investigated. An indoor incubation and a soil column experiment were conducted to study the effect of rice straw hydrochar application on nitrification and NO3-N leaching in acidic red soil. Compared to the control and pyrochar treatments, respectively, hydrochar addition mitigated the net nitrification rate by 3.75–48.75% and 57.92–78.19%, in the early stage of urea fertilization. This occurred mainly because a greater amount of dissolved organic carbon (DOC) was released from hydrochar than the other treatments, which stimulated microbial nitrogen immobilization. The abundances of ammonia-oxidizing archaea and ammonia-oxidizing bacteria were dramatically elevated by 25.62–153.19% and 12.38–22.39%, respectively, in the hydrochar treatments because of DOC-driven stimulation. The cumulative leaching loss of NO3-N in soils amended with hydrochar was markedly reduced by 43.78–59.91% and 61.70–72.82% compared with that in the control and pyrochar treatments, respectively, because hydrochar promoted the soil water holding capacity by 2.70–9.04% and reduced the residual NO3-N content. Hydrochar application can dramatically diminish total H+ production from soil nitrification and NO3-N leaching. Thus, it could be considered an economical soil amendment for ameliorating soil acidification. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

17 pages, 8540 KiB  
Article
Effects of N-P-K Ratio in Root Nutrient Solutions on Ectomycorrhizal Formation and Seedling Growth of Pinus armandii Inoculated with Tuber indicum
by Li Huang, Rui Wang, Fuqiang Yu, Ruilong Liu, Chenxin He, Lanlan Huang, Shimei Yang, Dong Liu and Shanping Wan
Agronomy 2025, 15(7), 1749; https://doi.org/10.3390/agronomy15071749 - 20 Jul 2025
Viewed by 319
Abstract
Ectomycorrhizal symbiosis is a cornerstone of ecosystem health, facilitating nutrient uptake, stress tolerance, and biodiversity maintenance in trees. Optimizing Pinus armandiiTuber indicum mycorrhizal synthesis enhances the ecological stability of coniferous forests while supporting high-value truffle cultivation. This study conducted a pot [...] Read more.
Ectomycorrhizal symbiosis is a cornerstone of ecosystem health, facilitating nutrient uptake, stress tolerance, and biodiversity maintenance in trees. Optimizing Pinus armandiiTuber indicum mycorrhizal synthesis enhances the ecological stability of coniferous forests while supporting high-value truffle cultivation. This study conducted a pot experiment to compare the effects of three root nutrient regulations—Aolu 318S (containing N-P2O5-K2O in a ratio of 15-9-11 (w/w%)), Aolu 328S (11-11-18), and Youguduo (19-19-19)—on the mycorrhizal synthesis of P. armandiiT. indicum. The results showed that root nutrient supplementation significantly improved the seedling crown, plant height, ground diameter, biomass dry weight, and mycorrhizal infection rate of both the control and mycorrhizal seedlings, with the slow-release fertilizers Aolu 318S and 328S outperforming the quick-release fertilizer Youguduo. The suitable substrate composition in this experiment was as follows: pH 6.53–6.86, organic matter content 43.25–43.49 g/kg, alkali-hydrolyzable nitrogen 89.25–90.3 mg/kg, available phosphorus 83.69–87.32 mg/kg, available potassium 361.5–364.65 mg/kg, exchangeable magnesium 1.17–1.57 mg/kg, and available iron 33.06–37.3 mg/kg. It is recommended to mix the Aolu 318S and 328S solid fertilizers evenly into the substrate, with a recommended dosage of 2 g per plant. These results shed light on the pivotal role of a precise N-P-K ratio regulation in fostering sustainable ectomycorrhizal symbiosis, offering a novel paradigm for integrating nutrient management with mycorrhizal biotechnology to enhance forest restoration efficiency in arid ecosystems. Full article
Show Figures

Figure 1

21 pages, 1206 KiB  
Article
Evaluation of Olive Mill Waste Compost as a Sustainable Alternative to Conventional Fertilizers in Wheat Cultivation
by Ana García-Rández, Silvia Sánchez Méndez, Luciano Orden, Francisco Javier Andreu-Rodríguez, Miguel Ángel Mira-Urios, José A. Sáez-Tovar, Encarnación Martínez-Sabater, María Ángeles Bustamante, María Dolores Pérez-Murcia and Raúl Moral
Agriculture 2025, 15(14), 1543; https://doi.org/10.3390/agriculture15141543 - 17 Jul 2025
Viewed by 338
Abstract
This study evaluates the agronomic and environmental performance of pelletized compost derived from olive mill waste as a sustainable alternative to mineral fertilizers for cultivating wheat (Triticum turgidum L.) under conventional tillage methods. A field experiment was conducted in semi-arid Spain, employing [...] Read more.
This study evaluates the agronomic and environmental performance of pelletized compost derived from olive mill waste as a sustainable alternative to mineral fertilizers for cultivating wheat (Triticum turgidum L.) under conventional tillage methods. A field experiment was conducted in semi-arid Spain, employing three fertilization strategies: inorganic (MAP + Urea), sewage sludge (SS), and organic compost pellets (OCP), each providing 150 kg N ha−1. The parameters analyzed included wheat yield, grain quality, soil properties, and greenhouse gas (GHG) emissions. Inorganic fertilization yielded the highest productivity and nutrient uptake. However, the OCP treatment reduced grain yield by only 15%, while improving soil microbial activity and enzymatic responses. The SS and OCP treatments showed increased CO2 and N2O emissions compared to the control and inorganic plots. However, the OCP treatment also acted as a CH4 sink. Nutrient use efficiency was greatest under mineral fertilization, though the OCP treatment outperformed the SS treatment. These results highlight the potential of OCP as a circular bio-based fertilizer that can enhance soil function and partially replace mineral inputs. Optimizing application timing is critical to aligning nutrient release with crop demand. Further long-term trials are necessary to evaluate their impact on the soil and improve environmental outcomes. Full article
Show Figures

Figure 1

17 pages, 1915 KiB  
Article
Optimizing Nutrition Protocols for Improved Rice Yield, Quality, and Nitrogen Use Efficiency in Coastal Saline Soils
by Xiang Zhang, Xiaoyu Geng, Yang Liu, Lulu Wang, Jizou Zhu, Weiyi Ma, Xiaozhou Sheng, Lei Shi, Yinglong Chen, Pinglei Gao, Huanhe Wei and Qigen Dai
Agronomy 2025, 15(7), 1662; https://doi.org/10.3390/agronomy15071662 - 9 Jul 2025
Viewed by 263
Abstract
This study evaluated the effects of one-time application of controlled-release fertilizer (CRF) on rice (Oryza sativa L.) grain yield, grain quality, and agronomic nitrogen use efficiency (ANUE, ANUE (kg/kg) = (Grain yield with N application − grain yield without N application)/N application [...] Read more.
This study evaluated the effects of one-time application of controlled-release fertilizer (CRF) on rice (Oryza sativa L.) grain yield, grain quality, and agronomic nitrogen use efficiency (ANUE, ANUE (kg/kg) = (Grain yield with N application − grain yield without N application)/N application amount) in coastal saline soils. A two-year field experiment (2023–2024) was conducted using two rice varieties (Nanjing 5718 and Yongyou 4953) under four nitrogen treatments: N0 (no nitrogen fertilization), N1 (270 kg·hm−2, with a ratio of 5:1:2:2 at 1-day before transplanting, 7-day after transplanting, panicle initiation, and penultimate-leaf appearance stage, respectively), N2 (270 kg·hm−2, one-time application at 1-day before transplanting as 50% CRF with 80-day release period + 50% urea), and N3 (270 kg·hm−2, 50% one-time application of CRF with 120-day release period at the seedling stage + 50% urea at 1-day before transplanting). Compared with N1, the N3 treatment significantly increased grain yield by 10.2% to 12.9% and improved ANUE by 18.5% to 51.6%. It also improved processing quality (higher brown rice, milled rice, and head rice rates), appearance quality (reduced chalkiness degree and chalky rice percentage), and taste value (by 19.3% to 31.2%). These improvements were associated with lower amylose, protein, and soluble sugar contents and favorable changes in starch composition and pasting properties. While N2 slightly improved some quality traits, it significantly reduced yield and ANUE. Correlation analysis revealed that starch and protein composition, as well as pasting properties, were significantly associated with taste value and related attributes such as appearance, stickiness, balance degree, and hardness. Overall, one-time application of CRF with a 120-day release period at the seedling stage, combined with basal urea, offers an effective strategy to boost yield, quality, and ANUE in coastal saline rice systems. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

21 pages, 3454 KiB  
Article
Yield Increase and Emission Reduction Effects of Alfalfa in the Yellow River Irrigation District of Gansu Province: The Coupling Mechanism of Biodegradable Mulch and Controlled-Release Nitrogen Fertilizer
by Wenjing Chang, Haiyan Li, Yaya Duan, Yi Ling, Jiandong Lu, Minhua Yin, Yanlin Ma, Yanxia Kang, Yayu Wang, Guangping Qi and Jianjun Wang
Plants 2025, 14(13), 2022; https://doi.org/10.3390/plants14132022 - 2 Jul 2025
Viewed by 355
Abstract
Agricultural production in Northwest China is widely constrained by residual plastic film pollution, excessive greenhouse gas emissions, and low productivity. Integrating biodegradable film with controlled-release nitrogen fertilizer offers a promising approach to optimize crop management, enhance yield, and improve environmental outcomes. In this [...] Read more.
Agricultural production in Northwest China is widely constrained by residual plastic film pollution, excessive greenhouse gas emissions, and low productivity. Integrating biodegradable film with controlled-release nitrogen fertilizer offers a promising approach to optimize crop management, enhance yield, and improve environmental outcomes. In this study, three planting patterns (conventional flat planting, FP; ridge mulching with biodegradable film, BM; and ridge mulching with conventional plastic film, PM), two nitrogen fertilizer types (urea, U, and controlled-release nitrogen fertilizer, C), and four nitrogen application rates (0, 80, 160, and 240 kg·hm−2) were applied to systematically investigate their effects on alfalfa yield and N2O emissions from grasslands. The results showed that BM and PM increased alfalfa yield by 23.49% and 18.65%, respectively, compared to FP, while C increased yield by 8.46% compared to urea. The highest yield (24.84 t·hm−2) was recorded under the BMC2 treatment, which was 97.11% higher than that of FPN0. N2O emission flux and cumulative emissions increased with nitrogen application rate. Compared with U, C reduced cumulative N2O emissions and greenhouse gas emission intensity (GHGI) by 23.89% and 25.84%, respectively. Compared to PM, BM reduced cumulative N2O emissions and GHGI by 11.58% and 20.15%, respectively. Principal component analysis indicated that the combination of ridge mulching with biodegradable film and 160 kg·hm−2 of C was optimal for simultaneously increasing alfalfa yield and reducing N2O emissions, making it a suitable planting–fertilization strategy for the Yellow River irrigation district in Gansu and similar ecological regions. Full article
(This article belongs to the Special Issue Advances in Plant Nutrition and Novel Fertilizers—Second Edition)
Show Figures

Figure 1

16 pages, 3123 KiB  
Article
Ammonia Losses, Wheat Biomass, and N Dynamics as Influenced by Organo-Mineral Fertilizer
by Helen Carla Santana Amorim, Francielle Roberta Dias de Lima, Mariene Helena Duarte, Rafael Marta Carbone Carneiro, Gustavo Avelar Zorgdrager Van Opbergen, Raphael Felipe Rodrigues Corrêa and Luiz Roberto Guimarães Guilherme
Biosphere 2025, 1(1), 4; https://doi.org/10.3390/biosphere1010004 - 1 Jul 2025
Viewed by 297
Abstract
Organo-mineral fertilizers can slow N release to plants, reducing N losses to the environment and enhancing N use efficiency (NUE). Yet, this greater NUE is not always coupled to greater crop yields, which warrants further investigation. Here, we assessed the relationship between N-NH [...] Read more.
Organo-mineral fertilizers can slow N release to plants, reducing N losses to the environment and enhancing N use efficiency (NUE). Yet, this greater NUE is not always coupled to greater crop yields, which warrants further investigation. Here, we assessed the relationship between N-NH3 losses from volatilization and wheat (Triticum aestivum L.) biomass and N status. The following treatments were tested: conventional urea (U, 45% N), urea treated with NBPT (N-(n-butyl) thiophosphoric triamide) (U + NBPT, 45.6% N), S-coated urea (U + S; 37% N), Se-coated urea (U + Se; 45% N), organo-mineral fertilizer Azoslow 29 (OMF, 29% N + 50% Azogel®). The above treatments and non-fertilized control were tested in two soils (LVd and LVAd, 71 and 25% clay, respectively). Semi-open static collectors were used to determine N-NH3 volatilization 1, 2, 4, 8, 11, 15, 18, 23, 29, and 36 days after application of treatments. Wheat was cultivated for 35 days, and shoot dry mass and total leaf N were determined after harvest. Cumulative N-NH3 losses from OMF (27 and 32% of N applied in the LVd and LVAd soils, respectively) did not differ from U and (26–32%) and U + Se (24–31%), likely due to organic matter inputs enhancing urease activity in soils. Nevertheless, OMF resulted in 2–4 times greater wheat dry matter than U, U + Se, and U + S, with similar dry mass of U + NBPT for LVAd soils. OMF application enhanced total N removal in wheat leaves relative to the unfertilized control and most N sources. N-NH3 losses did not reduce biomass yield, but were negatively linked to N accumulation in wheat. The OMF enhanced wheat biomass and nutrition while sustaining environmental quality and promoting circularity in agroecosystems. Full article
Show Figures

Figure 1

13 pages, 1121 KiB  
Article
Optimizing Nitrogen Use Efficiency and Reducing Nutrient Losses in Maize Using Controlled-Release Coated Fertilizers
by Jong-Hyeong Lee and Hyun-Hwoi Ku
Agrochemicals 2025, 4(3), 10; https://doi.org/10.3390/agrochemicals4030010 - 30 Jun 2025
Viewed by 371
Abstract
This study aimed to evaluate the agronomic performance and environmental impact of controlled-release coated fertilizers (CRCFs) in upland maize systems. Specifically, we sought to determine the optimal nitrogen (N) application rate that maximizes nitrogen use efficiency (NUE) and minimizes nutrient runoff, while maintaining [...] Read more.
This study aimed to evaluate the agronomic performance and environmental impact of controlled-release coated fertilizers (CRCFs) in upland maize systems. Specifically, we sought to determine the optimal nitrogen (N) application rate that maximizes nitrogen use efficiency (NUE) and minimizes nutrient runoff, while maintaining yield comparable to conventional fertilization practices. A two-year field experiment (2017–2018) was conducted to assess CRCF formulations composed of urea, MAP, and potassium sulfate encapsulated in LDPE/EVA coatings with talc, humic acid, and starch additives. Treatments included various nitrogen application rates (33–90 kg N ha−1) using CRCF and a conventional NPK fertilizer (150 kg N ha−1). Measurements included fresh ear yield, aboveground biomass, NUE, and concentrations of total N (TN), nitrate N (NO3–N), and total P (TP) in surface runoff. Statistical analyses were performed using linear and quadratic regression models to determine yield responses and agronomic optimal N rate. CRCF treatments produced yields comparable to or exceeding those of conventional fertilization while using less than half the recommended N input. The modeled agronomic optimum N rate was 88.4 kg N ha−1, which closely matched the maximum observed yield. CRCF application significantly reduced TN, NO3–N, and TP runoff in 2017 and improved NUE up to 71.2%. Subsurface placement and sigmoidal nutrient release contributed to reduced nutrient losses. CRCFs can maintain maize yield while reducing N input by approximately 40%, aligning with climate-smart agriculture principles. This strategy enhances NUE, reduces environmental risks, and offers economic benefits by enabling single basal application. Further multi-site studies are recommended to validate these findings under diverse agroecological conditions. Full article
(This article belongs to the Section Fertilizers and Soil Improvement Agents)
Show Figures

Figure 1

29 pages, 6729 KiB  
Article
Balancing Productivity and Environmental Sustainability in Pomelo Production Through Controlled-Release Fertilizer Optimization
by Zetian Zhang, Guangzhao Gao, Jinghui Yu, Runzhi Zhan, Hongyu Yang, Zhengjia He, Bin Dong, Jindun Fan, Yina Fang, Sisi Zeng, Xinyu Xuan, Siyi Wang, Liangquan Wu, Wenhao Yang and Lijin Guo
Agriculture 2025, 15(13), 1367; https://doi.org/10.3390/agriculture15131367 - 25 Jun 2025
Viewed by 410
Abstract
In the context of agricultural green transformation, the balance between the environmental footprint and economic return is a key indicator for measuring the synergy of high yields, high efficiency, and environmental friendliness in agricultural systems. However, the pathways and mechanisms for achieving this [...] Read more.
In the context of agricultural green transformation, the balance between the environmental footprint and economic return is a key indicator for measuring the synergy of high yields, high efficiency, and environmental friendliness in agricultural systems. However, the pathways and mechanisms for achieving this synergy in orchard systems remain unclear. Based on a three-year field experiment in Pinghe County, Fujian Province, a comprehensive evaluation framework integrating life cycle assessment (LCA) was constructed. This framework was used to systematically analyze the differences in the net ecosystem economic benefit (EEB) and environmental impact of four fertilization regimes: the conventional farming regime with no mulching (A; 1084 kg N ha−1, 914 kg P2O5 ha−1, and 906 kg K2O ha−1), the conventional farming regime with mulching (B), the optimized fertilization regime with water–fertilizer integration (C; 250 kg N ha−1, 200 kg K2O ha−1, 100 kg MgO ha−1, and 400 kg CaO ha−1), and the optimized fertilization regime with controlled-release fertilizers (D). The results showed that regime D performed best in terms of yield, nutrient-use efficiency, and EEB, which increased by 220.5% and 297.5% compared with regime A, and reduced the input cost by CNY 63,100~69,000 hm−2. Moreover, compared with regime A, regimes B, C, and D significantly reduced the carbon, nitrogen, and phosphorus footprints, respectively, with the carbon footprint reduced by 6.7~21.7%, 72.4~74.8%, and 71.6~76.5%; the nitrogen footprint reduced by 2.6~19.0%, 80.7~82.2%, and 80.1~83.4%; and the phosphorus footprint reduced by 15.3%, 100%, and 100%. Furthermore, the comprehensive evaluation index (CEI) is D > C > B > A. In total, the three optimized regimes balanced high yield with environmental sustainability, with the D regime showing the best performance, offering scientific support for transitioning to low-carbon, high-value orchards in smallholder systems. Full article
(This article belongs to the Special Issue Innovative Conservation Cropping Systems and Practices—2nd Edition)
Show Figures

Figure 1

18 pages, 2047 KiB  
Article
Optimizing Management of Alfalfa (Medicago sativa L.) Nitrogen Fertilizer Based on Critical Nitrogen Concentration Dilution Curve Model
by Yaya Duan, Yi Ling, Haiyan Li, Wenjing Chang, Jiandong Lu, Minhua Yin, Yanxia Kang, Yanlin Ma, Yayu Wang, Guangping Qi and Guoyun Shen
Plants 2025, 14(12), 1782; https://doi.org/10.3390/plants14121782 - 11 Jun 2025
Viewed by 407
Abstract
The critical nitrogen dilution curve (CNDC) model enables precise nitrogen management by quantifying the threshold of nitrogen deficiency in crops, thereby enhancing both crop productivity and nitrogen use efficiency. However, its applicability to perennial crops remains unclear. In this study, alfalfa (Medicago [...] Read more.
The critical nitrogen dilution curve (CNDC) model enables precise nitrogen management by quantifying the threshold of nitrogen deficiency in crops, thereby enhancing both crop productivity and nitrogen use efficiency. However, its applicability to perennial crops remains unclear. In this study, alfalfa (Medicago sativa L.), a perennial leguminous forage, was used as the model crop. Based on two years of field experiments, CNDC models of aboveground biomass were constructed under two nitrogen fertilizer regimes: urea (0, 80, 160, and 240 kg·ha−1, applied in a 6:2:2 basal-to-topdressing ratio) and controlled-release urea (CRU; 0, 80, 160, and 240 kg·ha−1, applied as a single basal dose). Using these models, the nitrogen nutrition index (NNI) and cumulative nitrogen deficit (Nand) models were developed to diagnose alfalfa nitrogen status, and the optimal nitrogen application rates were determined via regression analysis. The results showed that critical nitrogen concentration and aboveground biomass followed a power function relationship under both fertilizer types. For CRU treatments, parameters a and b were 3.41 and 0.20 (first cut), 3.15 and 0.12 (second cut), and 2.24 and 0.40 (third cut), respectively. For urea treatments, a and b were 3.13 and 0.35 (first cut), 2.21 and 0.16 (second cut), and 1.75 and 0.73 (third cut). The normalized root mean square error (n-RMSE) of the models ranged from 3.1% to 13%, indicating high model reliability. Based on the NNI, Nand, and yield response models, the optimal nitrogen application rates were 175.44~181.71 kg·ha−1 for urea and 145.63~153.46 kg·ha−1 for CRU, corresponding to theoretical maximum yields of 14.76~17.40 t·ha−1 and 16.76~20.66 t·ha−1, respectively. Compared to urea, CRU reduced nitrogen input by 18.41~20.47% while achieving equivalent or higher theoretical yields. This study provides a scientific basis for nitrogen status diagnosis and precision nitrogen application in alfalfa cultivation. Full article
(This article belongs to the Special Issue Advances in Plant Nutrition Responses and Stress)
Show Figures

Figure 1

25 pages, 1328 KiB  
Article
Cytokine Profiling and Puberty Enhancement Post Altrenogest Feeding in Prepubertal Murrah Buffalo (Bubalus bubalis) Heifers
by Sneha Swapna Haridas, Prahlad Singh, Navdeep Singh Ratta, Chanchal Singh and Mrigank Honparkhe
Ruminants 2025, 5(2), 24; https://doi.org/10.3390/ruminants5020024 - 10 Jun 2025
Viewed by 563
Abstract
Cytokine and Anti-Müllerian Hormone (AMH) profiling were performed in prepubertal Murrah buffalo heifers’ post-progesterone supplementation and Co-synchronization (Co-synch) protocol. Cytokine (IFNγ, IL6, IL1, IL13, TNFα, and TGFβ), AMH, progesterone, and estrogen hormone estimations were conducted. The ovarian follicular pattern and fertility outcome were [...] Read more.
Cytokine and Anti-Müllerian Hormone (AMH) profiling were performed in prepubertal Murrah buffalo heifers’ post-progesterone supplementation and Co-synchronization (Co-synch) protocol. Cytokine (IFNγ, IL6, IL1, IL13, TNFα, and TGFβ), AMH, progesterone, and estrogen hormone estimations were conducted. The ovarian follicular pattern and fertility outcome were recorded. Eighteen prepubertal heifers, 15–17 months of age, 250–300 kg body weight (BWt) were randomly divided into three groups, Group 1: n = 6, supplemented with altrenogest 0.044 mg/kg BWt/day/heifer orally for 14 days along with Co-synch program; Group 2: n = 6, implanted Controlled Internal Drug Release (CIDR) for 14 days and co-synch program, Group 3: n = 6, received Co-synch program. Ultrasonography was performed to determine ovarian follicle status on respective days of sampling. Pregnancy diagnosis was performed around 45 and 60 days post artificial insemination (AI). The Estradiol 17-β level remained constant in Group 1, Group 2, and Group 3 during the progesterone treatment and Co-synch treatment. Estradiol levels during Co-synch were significantly less (p = 0.024) on day 9 of Co-synch (14.41 ± 1.97 pg/mL) than on day 0 (20.11 ± 0.36 pg/mL) and on day 7 (19.77 ± 0.34 pg/mL) in prepubertal buffalo heifers in Group 1. However, no significance was observed in other groups. Progesterone levels in buffalo heifers subjected to synchronization protocols varied significantly (p < 0.05) on day 7 of progesterone (P4) treatment between Group 1, Group 2, and Group 3. Supplementation of altrenogest showed a significant (p = 0.043) increase in progesterone levels by day 14 of altrenogest treatment. Progesterone varied significantly in all groups on day 9 of Co-synch protocol [Group 1 (p = 0.020), Group 2 (p = 0.041), and Group 3 (p = 0.007)]. Cytokine IFNγ showed high correlation with progesterone, indicating the role of IFNγ in puberty in buffalo heifers (r = 0.626, p < 0.01). Anti-Müllerian Hormone had a significant positive correlation when supplemented with altrenogest with IFNγ (r = 0.673, p < 0.01) and TGFβ (r = 0.463, p < 0.01), whereas it was a negatively correlated with TNFα (r = −0.34, p < 0.05). Based on Karl Pearson correlation coefficients, IL13 and TGFβ could be considered as markers for puberty in buffalo heifers. Full article
Show Figures

Graphical abstract

19 pages, 2694 KiB  
Article
Biphasic CAPA-IVM Improves Equine Oocyte Quality and Subsequent Embryo Development Without Inducing Genetic Aberrations
by Muhammad Fakhar-I-Adil, Daniel Angel-Velez, Emin Araftpoor, Qurratul Ain Amin, Mohamed Hedia, Marcel Bühler, Kris Gevaert, Björn Menten, Ann Van Soom, Susana Marina Chuva de Sousa Lopes, Dominic Stoop, Chloë De Roo, Katrien Smits and Björn Heindryckx
Int. J. Mol. Sci. 2025, 26(12), 5495; https://doi.org/10.3390/ijms26125495 - 8 Jun 2025
Viewed by 889
Abstract
In vitro maturation (IVM) of oocytes retrieved from ovum pick-up (OPU) or ovarian tissue (OT) is a standard approach for patients with specific conditions where prior hormonal stimulation is contraindicated. However, the developmental competence of oocytes matured in vitro is still inferior to [...] Read more.
In vitro maturation (IVM) of oocytes retrieved from ovum pick-up (OPU) or ovarian tissue (OT) is a standard approach for patients with specific conditions where prior hormonal stimulation is contraindicated. However, the developmental competence of oocytes matured in vitro is still inferior to that of oocytes matured in vivo. Capacitation IVM (CAPA-IVM) includes an extra step of pre-maturation culture (PMC) with c-type natriuretic peptide (CNP) as a meiotic arrestor to better synchronize cytoplasmic and nuclear maturity in oocytes by allowing the cytoplasm additional time to acquire essential components critical for optimal competency. This study aims to evaluate the effect of CAPA-IVM on equine oocyte quality and developmental competence. Immature cumulus–oocyte complexes (COCs) were retrieved from slaughterhouse ovaries and matured in vitro either in CAPA-IVM (short 6 h, long 24 h pre-maturation) or standard IVM. Mature oocytes from each group were analyzed for calcium-releasing potential (n = 52) and single-oocyte proteomics (n = 44), and embryo development (n = 229) was assessed after fertilization with piezo-drilled intracytoplasmic sperm injection (ICSI). Genetic analysis of developed blastocysts (n = 41) was performed to detect chromosomal aberrations. Our findings demonstrate that CAPA-IVM of equine COCs yields significantly higher maturation rates than controls. Moreover, short CAPA-IVM with six hours pre-maturation culture showed substantially higher embryo development potential than the control group (20/69 vs. 9/63, respectively). Genetic analysis revealed a high euploidy rate in equine blastocysts regardless of the maturation conditions. Live calcium imaging of the fertilized oocytes demonstrated that the majority of oocytes displayed non-continuous calcium oscillation patterns, irrespective of maturation conditions. Single-oocyte proteomics reveals a comparable proteomic landscape between mature oocytes subjected to short CAPA-IVM and standard IVM. However, we identified four enriched gene sets with positive enrichment scores after short CAPA-IVM, related to cytoskeleton regulation, ribosomal function, and cytosolic components. Our findings indicate that CAPA-IVM holds the potential to improve oocyte quality and competence in horses. However, further fine-tuning of culture conditions would benefit the effective use of these IVM systems. Moreover, given that the mare serves as an excellent model for human reproduction, the molecular trends identified in this study could provide valuable insights for advancing human artificial reproductive technologies. Full article
(This article belongs to the Special Issue Molecular Research on Embryo Developmental Potential)
Show Figures

Figure 1

18 pages, 3451 KiB  
Article
Cutting-Edge Technology Using Blended Controlled-Release Fertilizers and Conventional Monoammonium Phosphate as a Strategy to Improve Phosphorus Coffee Nutrition During the Coffee Development Phase
by Mateus Portes Dutra, Leonardo Fernandes Sarkis, Damiany Pádua Oliveira, Hugo de Almeida Santiago, Gustavo Tadeu de Sousa Resende, Maria Elisa Araújo de Melo, Adrianne Braga da Fonseca, Cristhian José Hernández López, Euler dos Santos Silva, Aline dos Santos Zaqueu, Gustavo Henrique Furtado de Lima, João Marcelo Silva, Adélia Aziz Alexandre Pozza and Douglas Guelfi
Soil Syst. 2025, 9(2), 47; https://doi.org/10.3390/soilsystems9020047 - 13 May 2025
Viewed by 974
Abstract
Controlled-release fertilizers contain polymeric coatings that modify the dynamics of phosphorus (P) release in soil. This study aimed to characterize P release from physical mixtures between conventional and controlled-release fertilizers (CRFs), quantify soil P availability, and assess agronomic responses of coffee plants during [...] Read more.
Controlled-release fertilizers contain polymeric coatings that modify the dynamics of phosphorus (P) release in soil. This study aimed to characterize P release from physical mixtures between conventional and controlled-release fertilizers (CRFs), quantify soil P availability, and assess agronomic responses of coffee plants during the establishment phase. Two main types of P fertilizer were evaluated: conventional monoammonium phosphate (MAP) and a blend (physical mixture of conventional MAP and controlled-release P fertilizers). Both fertilizers were applied at 0, 134, 268, and 403 kg ha−1 of P2O5. Our findings revealed a blend longevity of 3 and 6 months. P fertilization contributed to an increase in leaf area (1134.7 cm2 plant−1) and shoot biomass (602.8 kg ha−1) and raised P in the soil (0.061 mg dm−3 per kg of P2O5 applied). P accumulation in the coffee plants ranged between 3 and 4 kg ha−1. Other macronutrient accumulations in aerial parts were of the following ranges (in kg ha−1): 47–60 for N, 36–46 for K, 18–22 for Ca, 5–7 for Mg, and 3–4 for S. Micronutrients accumulated (in g ha−1): 454–657 for Fe; 117–160 for B; 117–149 for Mn; 58–71 for Cu; and 34–43 for Zn. Up to 74% of the nutrients were distributed in the leaves. We concluded that the use of blends did not impose any limitation on P nutrition for coffee plants and led to biomass gains (18.9%) in plagiotropic branches. P fertilization proved essential for supporting the initial growth of coffee plants and increasing coffee leaf area and P levels in the soil and promotes adequate levels of P accumulation in plants, leading to improvements in coffee crop nutrition in the establishment phase. Full article
Show Figures

Figure 1

21 pages, 713 KiB  
Article
The Kind of Fertilization and Type of Soil Tillage Affect Soil Fertility and Foliar Nutrient Concentrations in an Experimental Vineyard of Kefalonia
by Theocharis Chatzistathis, Virginia Sarropoulou, Athanasios Fragkos, Eirini Katsalirou, Ioannis Daskalakis, Katerina Biniari, Gerasimos Danalatos and Areti Bountla
Environments 2025, 12(5), 160; https://doi.org/10.3390/environments12050160 - 12 May 2025
Viewed by 465
Abstract
Our study was based on the premise that the type of soil tillage and the kind of fertilization significantly affect soil properties, nutrient availability, and uptake by Vitis vinifera L. (cv. ‘Robola’) plants. For this purpose, a two-year field experiment was conducted, in [...] Read more.
Our study was based on the premise that the type of soil tillage and the kind of fertilization significantly affect soil properties, nutrient availability, and uptake by Vitis vinifera L. (cv. ‘Robola’) plants. For this purpose, a two-year field experiment was conducted, in a 2 × 3 factorial (i.e., two types of soil tillage-conventional and reduced and three kinds of fertilization-conventional, controlled N release and organic), with six treatments derived from the combination of the two tillage and the three fertilization methods. The results showed that the organic matter content (%), as well as the exchangeable Mg, were significantly influenced by the type of tillage. The kind of fertilization affected soil nitrate and leaf N (lower values in the organic fertilization) and P concentrations (higher values in the organic fertilization). Regarding the effect of the type of tillage, foliar Mg was significantly higher in the conventional soil tillage. Finally, both the type of tillage and kind of fertilization significantly affected leaf Zn. Overall, these data show the importance of innovative dual co-application of pomace (an organic by-product of the wine industry) with reduced soil tillage on soil properties and plant nutrition. Thus, it is expected to gain environmental, ecological, and economic benefits for wine producers and also to improve vineyards’ sustainability and protected designation of origin (PDO) wine quality under the challenges provoked by climatic and recent energy crises. Full article
(This article belongs to the Special Issue Coping with Climate Change: Fate of Nutrients and Pollutants in Soil)
Show Figures

Figure 1

16 pages, 4435 KiB  
Article
Harnessing Vitamin C Industrial Byproducts for Sustainable Agriculture: Improved Soil Quality and Maize Production in Degraded Semi-Arid Farmlands
by Haotian Cheng, Hao Sun, Weichao Yang, Mingfu Gao, Xinhua Zhao and Hui Xu
Agronomy 2025, 15(4), 897; https://doi.org/10.3390/agronomy15040897 - 3 Apr 2025
Viewed by 558
Abstract
Vitamin C industrial residue after evaporation (RAE) acts as both a rapid-release carbon source and a microbial activity promoter. A two-year maize field experiment assessed the effectiveness of RAE in improving soil quality in degraded semi-arid regions. The RAE formulation was applied via [...] Read more.
Vitamin C industrial residue after evaporation (RAE) acts as both a rapid-release carbon source and a microbial activity promoter. A two-year maize field experiment assessed the effectiveness of RAE in improving soil quality in degraded semi-arid regions. The RAE formulation was applied via drip irrigation during the sixth true leaf unfolded (BBCH 24), fourteenth true leaf unfolded (BBCH 38), and middle of grain filling (BBCH 66) stages, which consisted of three treatments: (1) untreated control (CK), (2) low RAE rate (LR: 150 L/ha), and (3) high RAE rate (HR: 300 L/ha). Soil physicochemical properties, enzyme activities, maize nutrient accumulations, and yields were comprehensively analyzed at the maize maturity stage. RAE application significantly improved the following soil nutrients: dissolved organic carbon (10.40–25.92%), ammonium nitrogen (14.04–70.67%), nitrate nitrogen (14.80–78.63%), and available phosphorus (11.79–42.55%). Soil enzyme activities also increased: sucrase (12.38–30.25%), amidase (1.95–25.69%), peptidase (0.56–48.79%), β-1,4-N-acetylglucosaminidase (3.11–9.48%), protease (17.41–226.29%), and acid phosphatase (8.73–60.04%). These changes enhanced maize nitrogen (17.63–40.73%) and phosphorus (20.09–42.11%) uptake, increasing yield by 7.12–13.46%. Statistical analysis showed strong correlations between yields and nutrient accumulations (r = 0.82, p < 0.01), particularly phosphorus (r = 0.91, p < 0.001). RAE enhances crop productivity in degraded agricultural systems by improving soil nutrient availability and plant assimilation, making it a viable alternative to conventional fertilizers. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

Back to TopTop