Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,552)

Search Parameters:
Keywords = controlled environmental conditions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 6671 KB  
Review
Heavy Metals in Tropical Forest and Agroforestry Soils: Mechanisms, Impacts, Monitoring and Restoration Strategies
by Hermano Melo Queiroz, Giovanna Bergamim Araujo Lopes, Ana Beatriz Abade Silva, Diego Barcellos, Gabriel Nuto Nóbrega, Tiago Osório Ferreira and Xosé Luis Otero
Forests 2026, 17(2), 161; https://doi.org/10.3390/f17020161 (registering DOI) - 26 Jan 2026
Abstract
Heavy metal pollution in forest and agroforestry soils represents a persistent environmental challenge with direct implications for ecosystem functioning, food security, and human health. In tropical and subtropical regions, intense weathering, rapid organic matter turnover, and dynamic redox conditions strongly modulate metal mobility, [...] Read more.
Heavy metal pollution in forest and agroforestry soils represents a persistent environmental challenge with direct implications for ecosystem functioning, food security, and human health. In tropical and subtropical regions, intense weathering, rapid organic matter turnover, and dynamic redox conditions strongly modulate metal mobility, bioavailability, and long-term soil vulnerability. This review synthesizes current knowledge on the sources, biogeochemical mechanisms, ecological impacts, monitoring approaches, and restoration strategies associated with heavy metal contamination in forest and agroforestry systems, with particular emphasis on tropical landscapes. We examine natural and anthropogenic metal inputs, highlighting how atmospheric deposition, legacy contamination, land-use practices, and soil management interact with mineralogy, organic matter, and hydrology to control metal fate. Key processes governing metal behavior include sorption and complexation, Fe–Mn redox cycling, pH-dependent solubility, microbial mediation, and rhizosphere dynamics. The ecological consequences of contamination are discussed in terms of soil health degradation, plant physiological stress, disruption of ecosystem services, and risks of metal transfer to food chains in managed systems. The review also evaluates integrated monitoring frameworks that combine field-based soil analyses, biomonitoring, and geospatial technologies, while acknowledging methodological limitations and scale-dependent uncertainties. Finally, restoration and remediation strategies—ranging from phytotechnologies and soil amendments to engineered Technosols—are assessed in relation to their effectiveness, scalability, and relevance for long-term functional recovery. By linking mechanistic understanding with management and policy considerations, this review provides a process-oriented framework to support sustainable management and restoration of contaminated forest and agroforestry soils in tropical and subtropical regions. Full article
(This article belongs to the Special Issue Biogeochemical Cycles in Forests: 2nd Edition)
40 pages, 1256 KB  
Review
Architecting Functional Polymers: Advances in Modular Synthesis, Responsive Design, and Multifaceted Applications
by Akhil Sharma, Monu Sharma, Sonu Sharma, Vikas Sharma, Shivika Sharma and Iyyakkannu Sivanesan
Polymers 2026, 18(3), 334; https://doi.org/10.3390/polym18030334 - 26 Jan 2026
Abstract
The recent development in polymer science has gone beyond the traditional linear and randomly functionalizable macromolecules to the architected polymer systems, which integrate modular synthesis and dynamic responsiveness. Although the literature related to polymer synthesis and stimuli-responsive materials and applications is widely discussed, [...] Read more.
The recent development in polymer science has gone beyond the traditional linear and randomly functionalizable macromolecules to the architected polymer systems, which integrate modular synthesis and dynamic responsiveness. Although the literature related to polymer synthesis and stimuli-responsive materials and applications is widely discussed, it is common to review the aspects independently, restricting a complete picture of how architectural modularity controls adaptive performance. This gap is filled in this review with an integrated framework of relating modular polymer synthesis, stimuli-responsive design, and application-oriented functionality in a single coherent design philosophy. The scientific novelty of this review is that the focus on modular polymers is not only on synthetic constructs, but is a programmable functional scaffold where the structural precision is the direct determinant of responsiveness, multifunctionality, and performance. Controlled polymerization and post-polymerization modification regimes are mentioned to be tools that allow precise positioning of functional modules, and this allows polymers to respond in predictable ways to environmental stimuli like pH, temperature, light, redox conditions, etc. In addition, the review identifies the role of a synergistic combination of various responsive modules in the emergence of behaviours that would not be reached in conventional polymer systems. This review offers a coherent viewpoint on the future of functional polymers of the next generation by bringing together synthetic approaches to nano-responsive behaviour and real-world technologies, such as drug delivery, self-healing surfaces, adaptive surfaces, and biosensing surfaces. The framework in the present paper provides a logical route towards the development of environmentally friendly, multifunctional, and adjustable polymer structures. Full article
17 pages, 1279 KB  
Article
Design of Multifunctional SC-PLA Pesticide Carrier System and Study of Controlled-Release Performance‌
by Xuanxuan Wang, Ruizhe Wang, Dongxia Han, Yaling Zhou and Qinwei Gao
Materials 2026, 19(3), 492; https://doi.org/10.3390/ma19030492 - 26 Jan 2026
Abstract
To construct a high-performance avermectin (Avm) carrier system, this study utilized the advantages of stereocomplex (SC) crystal formation between poly (L-lactic acid) (PLLA) and poly (D-lactic acid) (PDLA) to prepare Avm-loaded stereocomplex polylactic acid (SC-PLA) nanoformulations via the emulsion solvent evaporation method. The [...] Read more.
To construct a high-performance avermectin (Avm) carrier system, this study utilized the advantages of stereocomplex (SC) crystal formation between poly (L-lactic acid) (PLLA) and poly (D-lactic acid) (PDLA) to prepare Avm-loaded stereocomplex polylactic acid (SC-PLA) nanoformulations via the emulsion solvent evaporation method. The results showed the successful formation of SC-PLA after introducing PDLA into the PLLA matrix, and the influence of SC-PLA crystallinity enabled the fabrication of tunable Avm@SC-PLA nanospheres with a regular spherical morphology. Avm@SC-PLA exhibited controlled release characteristics and possessed pH-responsive properties with specific release behaviors under pH 5.5, 7.4, and 8.0 conditions. The Avm@SC-PLA sustained-release nano system had a series of advantages, including controllable particle size, efficient drug loading, excellent sustained-release performance, good UV-shielding ability, high stability, favorable spreadability, and strong affinity for different leaves. In conclusion, the Avm@SC-PLA nanoformulation not only achieves effective loading and stable encapsulation of Avm but also possesses good structural stability and environmental responsiveness. It provides a novel PLA-based carrier strategy for the efficient delivery of Avm and holds potential application value in the pesticide and pharmaceutical fields. Full article
(This article belongs to the Section Polymeric Materials)
19 pages, 5322 KB  
Article
Cooling-Fog Impacts on Microclimate and Thermal Comfort in Gwajeong Park, Busan
by Joowon Choi, Jaemoon Kim, Jaekyoung Kim, Taeyoon Kim and Soonchul Kwon
Buildings 2026, 16(3), 503; https://doi.org/10.3390/buildings16030503 - 26 Jan 2026
Abstract
Rapid urbanization and climate change have increased urban air temperatures and intensified the urban heat island effect through the expansion of impervious surfaces, loss of green areas, and high-density development. This study quantitatively evaluates the heat-mitigation performance and outdoor-thermal-comfort benefits of a high-pressure [...] Read more.
Rapid urbanization and climate change have increased urban air temperatures and intensified the urban heat island effect through the expansion of impervious surfaces, loss of green areas, and high-density development. This study quantitatively evaluates the heat-mitigation performance and outdoor-thermal-comfort benefits of a high-pressure micro-mist cooling-fog system installed in the Oncheoncheon area of Busan, South Korea. Five environmental sensors were deployed in Gwajeong Park to monitor the near-pedestrian air temperature and relative humidity, and thermal comfort was assessed using the Universal Thermal Climate Index and the Physiological Equivalent Temperature derived from meteorological variables. Both indices indicated improved thermal comfort during fog operation relative to the control condition. The relationship between air temperature and perceived thermal conditions was strong, while the mean radiant temperature exhibited substantial dispersion even under similar air temperatures. Higher global horizontal irradiance (GHI: incoming solar radiation on a horizontal surface) was associated with elevated mean radiant temperature, highlighting the importance of radiative load in pedestrian thermal stress. Overall, the findings provide field-based evidence that high-pressure micro-misting can improve outdoor thermal comfort and function as practical cooling infrastructure for heat-stress mitigation and urban climate resilience. Full article
Show Figures

Figure 1

12 pages, 545 KB  
Article
Pd/C–H2-Catalyzed One-Pot Aromatization–Deoxygenation of Dihydropyridinediones: A Green, Scalable Route to Alkyl Pyridines
by Susanta Mandal, Tushar Sharma Banstola, Dhan Maya Chettri, Kimron Protim Phukan and Biswajit Gopal Roy
Chemistry 2026, 8(2), 12; https://doi.org/10.3390/chemistry8020012 - 26 Jan 2026
Abstract
Alkyl-substituted pyridines are ubiquitous structural motifs found in natural products, pharmaceuticals, agrochemicals, and functional organic materials. However, their direct synthesis remains challenging because of the electron-deficient nature of the pyridine ring and the harsh conditions typically required for conventional carbonyl-to-alkane reduction. Herein, we [...] Read more.
Alkyl-substituted pyridines are ubiquitous structural motifs found in natural products, pharmaceuticals, agrochemicals, and functional organic materials. However, their direct synthesis remains challenging because of the electron-deficient nature of the pyridine ring and the harsh conditions typically required for conventional carbonyl-to-alkane reduction. Herein, we report a mild and environmentally benign Pd/C–H2 catalytic system that enables one-pot oxidative aromatization–deoxygenation of dihydropyridinedione derivatives to afford alkyl-substituted pyridines. The transformation proceeds efficiently at room temperature under atmospheric hydrogen pressure using ethanol as a green solvent, delivering the desired products in up to 91% isolated yield. The protocol exhibits broad substrate scope, high chemoselectivity, operational simplicity, and excellent catalyst recyclability. Mechanistic studies, including hydrogen-free control experiments and intermediate isolation, support a sequential Pd-mediated pathway involving oxidative aromatization, stepwise hydrogen-transfer reduction, and final deoxygenation, with water as the sole stoichiometric by-product. This method provides a sustainable and scalable alternative to classical harsh or reagent-intensive deoxygenation strategies for the synthesis of alkyl-substituted pyridines. Full article
(This article belongs to the Section Molecular Organics)
Show Figures

Graphical abstract

18 pages, 4674 KB  
Article
AI Correction of Smartphone Thermal Images: Application to Diabetic Plantar Foot
by Hafid Elfahimi, Rachid Harba, Asma Aferhane, Hassan Douzi and Ikram Damoune
J. Sens. Actuator Netw. 2026, 15(1), 13; https://doi.org/10.3390/jsan15010013 - 26 Jan 2026
Abstract
Prevention of complications related to diabetic foot (DF) can now be performed using smartphone-connected thermal cameras. However, the absolute error associated with these devices remains particularly high, compromising measurement reliability, especially under variable environmental conditions. To address this, we introduce a physiologically motivated [...] Read more.
Prevention of complications related to diabetic foot (DF) can now be performed using smartphone-connected thermal cameras. However, the absolute error associated with these devices remains particularly high, compromising measurement reliability, especially under variable environmental conditions. To address this, we introduce a physiologically motivated two-region segmentation task (forehead + plantar foot) to enable stable temperature correction. First, we developed a fully automated joint method for this task, building upon a new multimodal thermal–RGB dataset constructed with detailed annotation procedures. Five deep learning methods (U-Net, U-Net++, SegNet, DE-ResUnet, and DE-ResUnet++) were evaluated and compared to traditional baselines (Adaptive Thresholding and Region Growing), demonstrating the clear advantage of data-driven approaches. The best performance was achieved by the DE-ResUnet++ architecture (Dice score: 98.46%). Second, we validated the correction approach through a clinical study. Results showed that the variance of corrected temperatures was reduced by half compared to absolute values (p < 0.01), highlighting the effectiveness of the correction approach. Furthermore, corrected temperatures successfully distinguished DF patients from healthy controls (p < 0.01), unlike absolute temperatures. These findings suggest that our approach could enhance the performance of smartphone-connected thermal devices and contribute to the early prevention of DF complications. Full article
(This article belongs to the Special Issue IoT and Networking Technologies for Smart Mobile Systems)
Show Figures

Figure 1

32 pages, 4221 KB  
Article
Microwave-Assisted Wet Granulation for Engineering Rice Starch–Mannitol Co-Processed Excipients for Direct Compression of Orally Disintegrating Tablets
by Karnkamol Trisopon and Phennapha Saokham
Pharmaceutics 2026, 18(2), 153; https://doi.org/10.3390/pharmaceutics18020153 - 25 Jan 2026
Abstract
Background/Objectives: Enhancing excipient functionality through environmentally friendly and scalable processing methods is essential for improving the manufacturability and performance of orally disintegrating tablets (ODTs). Microwave-assisted wet granulation enables controlled microstructural modification without chemical alteration of excipient components. This study aimed to develop [...] Read more.
Background/Objectives: Enhancing excipient functionality through environmentally friendly and scalable processing methods is essential for improving the manufacturability and performance of orally disintegrating tablets (ODTs). Microwave-assisted wet granulation enables controlled microstructural modification without chemical alteration of excipient components. This study aimed to develop and evaluate a rice starch (RS)–mannitol co-processed excipient using microwave-assisted wet granulation for direct compression of ODTs. Methods: RS and mannitol were co-processed by wet granulation followed by microwave treatment under varying power levels and irradiation times. The effects of processing conditions on granule morphology, solid-state properties, porosity, powder flow, compressibility, wettability, and disintegration behavior were systematically investigated. The optimized excipient was further evaluated in ODT formulations containing chlorpheniramine maleate and piroxicam and benchmarked against a commercial co-processed excipient (Starlac®). Results: Microwave treatment generated internal vapor pressure that promoted pore formation and particle agglomeration, resulting in enhanced powder flowability (compressibility index 8.4–10.8%). Partial crystallinity reduction and microstructural modification improved compressibility and surface wettability compared with non-microwave-treated materials. The optimized formulation (MW-RM-H-30) exhibited rapid wetting (25 s), high water absorption (90.5%), low contact angle (42°), and fast tablet disintegration (31 s). ODTs prepared with MW-RM-H-30 showed rapid disintegration (42 s for chlorpheniramine maleate and 32 s for piroxicam) and dissolution behavior comparable to Starlac®. Conclusions: Microwave-assisted wet granulation provides an efficient, scalable, and environmentally friendly strategy for engineering starch-based co-processed excipients with enhanced functionality for direct compression ODT applications. The developed excipient demonstrates strong potential for solid dosage form manufacturing. Full article
35 pages, 24985 KB  
Article
From Blade Loads to Rotor Health: An Inverse Modelling Approach for Wind Turbine Monitoring
by Attia Bibi, Chiheng Huang, Wenxian Yang, Oussama Graja, Fang Duan and Liuyang Zhang
Energies 2026, 19(3), 619; https://doi.org/10.3390/en19030619 - 25 Jan 2026
Abstract
Operational expenditure in wind farms is heavily influenced by unplanned maintenance, much of which stems from undetected rotor system faults. Although many fault-detection methods have been proposed, most remain confined to laboratory test. Blade-root bending-moment measurements are among the few techniques applied in [...] Read more.
Operational expenditure in wind farms is heavily influenced by unplanned maintenance, much of which stems from undetected rotor system faults. Although many fault-detection methods have been proposed, most remain confined to laboratory test. Blade-root bending-moment measurements are among the few techniques applied in the field, yet their reliability is limited by strong sensitivity to varying operational and environmental conditions. This study presents a data-driven rotor health-monitoring framework that enhances the diagnostic value of blade bending-moments. Assuming that the wind speed profile remains approximately stationary over short intervals (e.g., 20 s), a machine-learning model is trained on bending-moment data from healthy blades to predict the incident wind-speed profile under a wide range of conditions. During operation, real-time bending-moment signals from each blade are independently processed by the trained model. A healthy rotor yields consistent wind-speed profile predictions across all three blades, whereas deviations for an individual blade indicate rotor asymmetry. In this study, the methodology is verified using high-fidelity OpenFAST simulations with controlled blade pitch misalignment as a representative fault case, providing simulation-based verification of the proposed framework. Results demonstrate that the proposed inverse-modeling and cross-blade consistency framework enables sensitive and robust detection and localization of pitch-related rotor faults. While only pitch misalignment is explicitly investigated here, the approach is inherently applicable to other rotor asymmetry mechanisms such as mass imbalance or aerodynamic degradation, supporting reliable condition monitoring and earlier maintenance interventions. Using OpenFAST simulations, the proposed framework reconstructs height-resolved wind profiles with RMSE below 0.15 m/s (R² > 0.997) under healthy conditions, and achieves up to 100% detection accuracy for moderate-to-severe pitch misalignment faults. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
41 pages, 5336 KB  
Review
From Processing to Performance: Innovations and Challenges in Ceramic-Based Materials
by Sachin Kumar Sharma, Sandra Gajević, Lokesh Kumar Sharma, Yogesh Sharma, Mohit Sharma, Saša Milojević, Slobodan Savić and Blaža Stojanović
Crystals 2026, 16(2), 85; https://doi.org/10.3390/cryst16020085 (registering DOI) - 25 Jan 2026
Abstract
In aerospace, defense, and energy systems, ceramic matrix composites (CMCs) are smart structural materials designed to function continuously in harsh mechanical, thermal, and oxidative conditions. Using high-strength fiber reinforcements and tailored interphases that enable damage-tolerant behavior, their creation tackles the intrinsic brittleness and [...] Read more.
In aerospace, defense, and energy systems, ceramic matrix composites (CMCs) are smart structural materials designed to function continuously in harsh mechanical, thermal, and oxidative conditions. Using high-strength fiber reinforcements and tailored interphases that enable damage-tolerant behavior, their creation tackles the intrinsic brittleness and low fracture toughness of monolithic ceramics. With a focus on chemical vapor infiltration, polymer infiltration and pyrolysis, melt infiltration, and additive manufacturing, this paper critically analyzes current developments in microstructural design, processing technologies, and interfacial engineering. Toughening mechanisms are examined in connection to multiscale mechanical responses, including controlled debonding, fiber bridging, fracture deflection, and energy dissipation pathways. Cutting-edge environmental barrier coatings are assessed alongside environmental durability issues like oxidation, volatilization, and hot corrosion. High-performance braking, nuclear systems, hypersonic vehicles, and turbine propulsion are evaluated as emerging uses. Future directions emphasize self-healing systems, ultra-high-temperature design, and environmentally friendly production methods. Full article
Show Figures

Figure 1

26 pages, 5958 KB  
Article
A Material–Structure Integrated Approach for Soft Rock Roadway Support: From Microscopic Modification to Macroscopic Stability
by Sen Yang, Yang Xu, Feng Guo, Zhe Xiang and Hui Zhao
Processes 2026, 14(3), 414; https://doi.org/10.3390/pr14030414 - 24 Jan 2026
Viewed by 55
Abstract
As a cornerstone of China’s energy infrastructure, the coal mining industry relies heavily on the stability of its underground roadways, where the support of soft rock formations presents a critical and persistent technological challenge. This challenge arises primarily from the high content of [...] Read more.
As a cornerstone of China’s energy infrastructure, the coal mining industry relies heavily on the stability of its underground roadways, where the support of soft rock formations presents a critical and persistent technological challenge. This challenge arises primarily from the high content of expansive clay minerals and well-developed micro-fractures within soft rock, which collectively undermine the effectiveness of conventional support methods. To address the soft rock control problem in China’s Longdong Mining Area, an integrated material–structure control approach is developed and validated in this study. Based on the engineering context of the 3205 material gateway in Xin’an Coal Mine, the research employs a combined methodology of micro-mesoscopic characterization (SEM, XRD), theoretical analysis, and field testing. The results identify the intrinsic instability mechanism, which stems from micron-scale fractures (0.89–20.41 μm) and a high clay mineral content (kaolinite and illite totaling 58.1%) that promote water infiltration, swelling, and strength degradation. In response, a novel synergistic technology was developed, featuring a high-performance grouting material modified with redispersible latex powder and a tiered thick anchoring system. This technology achieves microscale fracture sealing and self-stress cementation while constructing a continuous macroscopic load-bearing structure. Field verification confirms its superior performance: roof subsidence and rib convergence in the test section were reduced to approximately 10 mm and 52 mm, respectively, with grouting effectively sealing fractures to depths of 1.71–3.92 m, as validated by multi-parameter monitoring. By integrating microscale material modification with macroscale structural optimization, this study provides a systematic and replicable solution for enhancing the stability of soft rock roadways under demanding geo-environmental conditions. Soft rock roadways, due to their characteristics of being rich in expansive clay minerals and having well-developed microfractures, make traditional support difficult to ensure roadway stability, so there is an urgent need to develop new active control technologies. This paper takes the 3205 Material Drift in Xin’an Coal Mine as the engineering background and adopts an integrated method combining micro-mesoscopic experiments, theoretical analysis, and field tests. The soft rock instability mechanism is revealed through micro-mesoscopic experiments; a high-performance grouting material added with redispersible latex powder is developed, and a “material–structure” synergistic tiered thick anchoring reinforced load-bearing technology is proposed; the technical effectiveness is verified through roadway surface displacement monitoring, anchor cable axial force monitoring, and borehole televiewer. The study found that micron-scale fractures of 0.89–20.41 μm develop inside the soft rock, and the total content of kaolinite and illite reaches 58.1%, which is the intrinsic root cause of macroscopic instability. In the test area of the new support scheme, the roof subsidence is about 10 mm and the rib convergence is about 52 mm, which are significantly reduced compared with traditional support; grouting effectively seals rock mass fractures in the range of 1.71–3.92 m. This synergistic control technology achieves systematic control from micro-mesoscopic improvement to macroscopic stability by actively modifying the surrounding rock and optimizing the support structure, significantly improving the stability of soft rock roadways. Full article
(This article belongs to the Section Petroleum and Low-Carbon Energy Process Engineering)
Show Figures

Figure 1

23 pages, 1322 KB  
Review
Impact of Early-Life Environmental Exposures and Potential Transgenerational Influence on the Risk of Coronary Artery Disease and Heart Failure
by Patrycja Obrycka, Julia Soczyńska, Kamila Butyńska, Agnieszka Frątczak, Jędrzej Hałaburdo, Wiktor Gawełczyk and Sławomir Woźniak
Cells 2026, 15(3), 222; https://doi.org/10.3390/cells15030222 - 24 Jan 2026
Viewed by 183
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide and constitute a substantial economic burden. Despite population aging, recent years have witnessed an increasing prevalence of conditions such as heart failure (HF), including among young adults. In this context, coronary artery disease [...] Read more.
Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide and constitute a substantial economic burden. Despite population aging, recent years have witnessed an increasing prevalence of conditions such as heart failure (HF), including among young adults. In this context, coronary artery disease (CAD) has also become an increasingly discussed issue. It has long been recognized that control of risk factors is crucial for prevention. Researchers stress the need to monitor these factors from the earliest stages of life, and detailed analyses indicate an influence of the prenatal period on the development of chronic diseases, including cardiovascular disorders. Transgenerational and intergenerational epigenetic mechanisms are also taken into account. This review aims to systematically evaluate the existing literature and summarize the mechanisms that may link these factors. We consider epigenetic, metabolic, immunological, and inflammatory influences. We describe examples of environmental exposures, such as air pollution, maternal diet, toxins, and infections, and analyze data derived from clinical studies. We discuss gaps in the literature and identify limitations, outlining directions for future research and emphasizing the need for CVD prevention initiated at the earliest stages of life. Full article
(This article belongs to the Section Cells of the Cardiovascular System)
Show Figures

Figure 1

23 pages, 1103 KB  
Article
Validation of the Qualified Air System in the Pharmaceutical Industry
by Ignacio Emilio Chica Arrieta, Vladimir Llinás Chica, Angela Patricia González Parias, Ainhoa Rubio-Clemente and Edwin Chica
Sci 2026, 8(2), 25; https://doi.org/10.3390/sci8020025 - 24 Jan 2026
Viewed by 40
Abstract
The present study describes the ten-year (2014–2024) validation of a Class 100,000ISO 8 qualified air system used in the manufacture of non-sterile pharmaceutical dosage forms in a GMP-certified facility. The lifecycle evaluation included design, installation, qualification, continuous operation, environmental monitoring, cleaning and disinfection [...] Read more.
The present study describes the ten-year (2014–2024) validation of a Class 100,000ISO 8 qualified air system used in the manufacture of non-sterile pharmaceutical dosage forms in a GMP-certified facility. The lifecycle evaluation included design, installation, qualification, continuous operation, environmental monitoring, cleaning and disinfection verification, and annual third-party validation. The system was assessed for critical parameters, including air renewal rates, airflow directionality, the integrity of high-efficiency particulate air (HEPA) filters and ultra-low penetration air (ULPA) filters, environmental recovery times, and non-viable particle counts. Particle monitoring focused on 0.5 μm and 1.0 μm channels within the 0.5–5 μm range specified by ISO 14644-1 for ISO 8 areas. The 0.5–1.0 μm range was prioritized because it provides higher statistical representativeness for evaluating filter performance and controlling fine particulate dispersion, which is particularly relevant in non-sterile pharmaceutical production, while larger particles (>5 μm) are more critical in aseptic processes. The influence of personnel and air exchange rates on cleanliness was also assessed during the final years of the study. Results demonstrate that continuous, systematic validation ensures the controlled environmental conditions required for pharmaceutical production and supports the sustained quality and safety of the finished products. This study provides a technical reference for engineers, pharmacists, and quality professionals involved in cleanroom design, qualification, and regulatory compliance. Full article
35 pages, 1587 KB  
Systematic Review
A Review of Subjective Indoor Air Quality Assessment in Non-Residential Buildings: Current Trends and Recommendations
by Quinten Carton, Douaa Al-Assaad, Jakub Kolarik and Hilde Breesch
Buildings 2026, 16(3), 486; https://doi.org/10.3390/buildings16030486 - 24 Jan 2026
Viewed by 51
Abstract
Survey campaigns in non-residential buildings show that occupants are often dissatisfied with the indoor environmental quality (IEQ), including the indoor air quality (IAQ) conditions. Occupant-centric controls (OCCs) have the potential to improve occupants’ satisfaction with IAQ and thermal comfort. Currently, applications of OCC [...] Read more.
Survey campaigns in non-residential buildings show that occupants are often dissatisfied with the indoor environmental quality (IEQ), including the indoor air quality (IAQ) conditions. Occupant-centric controls (OCCs) have the potential to improve occupants’ satisfaction with IAQ and thermal comfort. Currently, applications of OCC systems with IAQ perceptions are limited due to a lack of a suitable modelling approach to predict occupants’ subjective IAQ assessment. In addition, a comprehensive overview of possible confounding variables for subjective IAQ in non-residential buildings is missing. This paper presents a systematic review of 46 papers on subjective IAQ assessments during field investigations in non-residential buildings. The following characteristics of the studies are examined: (1) the study context, (2) study and survey type, (3) dataset and sample size, (4) subjective IAQ assessment scales, (5) analysis and modelling techniques, and (6) associated variables. The review identified 46 different assessment scales and 20 different analysis techniques, respectively, indicating a lack of uniformity across the studies. The vast majority of studies were conducted in classrooms or offices. Other non-residential buildings, such as hospitals and sports halls, were underrepresented. Moreover, most of the studies failed to elaborate on the choice of a statistical technique and to report on the required sample size, compromising the validity of the statistical results. Furthermore, the review highlighted the limited scope of the subjective IAQ assessment analysis, with half of the reviewed studies investigating no more than four different variables. Lastly, only three of the reviewed papers focused on determining an accurate predictive model for subjective IAQ assessment. Full article
(This article belongs to the Topic Indoor Air Quality and Built Environment)
Show Figures

Figure 1

8 pages, 3364 KB  
Proceeding Paper
Effect of Stirring Efficiency on Fatigue Behavior of Graphene Nanoplatelets-Reinforced Friction Stir Spot Welded Aluminum Sheets
by Amir Alkhafaji and Daniel Camas
Eng. Proc. 2026, 124(1), 6; https://doi.org/10.3390/engproc2026124006 - 23 Jan 2026
Viewed by 44
Abstract
Friction stir spot welding (FSSW) is a novel variant of Friction Stir welding (FSW), developed by Mazda Motors and Kawasaki Heavy Industries to join similar and dissimilar materials in a solid state. It is an economic and environmentally friendly alternative to resistance spot [...] Read more.
Friction stir spot welding (FSSW) is a novel variant of Friction Stir welding (FSW), developed by Mazda Motors and Kawasaki Heavy Industries to join similar and dissimilar materials in a solid state. It is an economic and environmentally friendly alternative to resistance spot welding (RSW). The FSSW technique, however, includes some structural defects imbedded within the weld joint, such as keyhole formation, hook crack, and bond line oxidation challenging the joint strength. The unique properties of nanomaterials in the reinforcement of metal matrices motivated researchers to enhance the FSSW joints’ strength. Previous studies successfully fabricated nano-reinforced FSSW joints. At different volumetric ratios of nano-reinforcement, nanoparticles may agglomerate due to inefficient stirring of the welding tool pin, forming stress concentration sites and brittle phases, affecting tensile and fatigue strength under static and cyclic loading conditions, respectively. This work investigated how the welding tool pin affects stirring efficiency by controlling the distribution of a nano-reinforcing material within the joint stir zone (SZ), and thus the tensile and fatigue strength of the FSSW joints. Sheets of AA6061-T6 of 1.8 mm thickness were used as a base material. In addition, graphene nanoplatelets (GNPs) with lateral sizes of 1–10 µm and thicknesses of 3–9 nm were used as nano-reinforcements. GNP-reinforced FSSW specimens were prepared and successfully fabricated. Optical microscope (OM) and field emission scanning electron microscope (FE-SEM) methods were employed to visualize the GNPs’ incorporation into the SZs of the FSSW joints. Micrographs of as-welded specimens showed lower formations of scattered, clustered GNPs achieved by the threaded pin tool compared to continuous agglomerations observed when the cylindrical pin tool was used. Tensile test results revealed a significant improvement of about 30% exhibited by the threaded pin tool compared to the cylindrical pin tool, while fatigue test showed an improvement of 46–24% for the low- and high-cycle fatigue, respectively. Full article
(This article belongs to the Proceedings of The 6th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

23 pages, 1480 KB  
Article
Intelligent Control and Automation of Small-Scale Wind Turbines Using ANFIS for Rural Electrification in Uzbekistan
by Botir Usmonov, Ulugbek Muinov, Nigina Muinova and Mira Chitt
Energies 2026, 19(3), 601; https://doi.org/10.3390/en19030601 - 23 Jan 2026
Viewed by 79
Abstract
This paper examines the application of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for voltage regulation in a small-scale wind turbine (SWT) system intended for off-grid rural electrification in Uzbekistan. The proposed architecture consists of a wind turbine, a permanent-magnet DC generator, and a [...] Read more.
This paper examines the application of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for voltage regulation in a small-scale wind turbine (SWT) system intended for off-grid rural electrification in Uzbekistan. The proposed architecture consists of a wind turbine, a permanent-magnet DC generator, and a buck converter supplying a regulated 48 V DC load. While ANFIS-based control has been reported previously for wind energy systems, the novelty of this work lies in its focused application to a DC-generator-based SWT topology using real wind data from the Bukhara region, together with a rigorous quantitative comparison against a conventional PI controller under both constant- and reconstructed variable-wind conditions. Dynamic performance was evaluated through MATLAB/Simulink simulations incorporating IEC-compliant wind turbulence modeling. Quantitative results show that the ANFIS controller achieves faster settling, reduced voltage ripple, and improved disturbance rejection compared to PI control. The findings demonstrate the technical feasibility of ANFIS-based voltage regulation for decentralized DC wind energy systems, while recognizing that economic viability and environmental benefits require further system-level and experimental assessment. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Back to TopTop