Cooling-Fog Impacts on Microclimate and Thermal Comfort in Gwajeong Park, Busan
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Measurement Setup
2.2. Cooling-Fog System and Data Processing
2.3. Causal Estimation via Difference-in-Differences (DiD)
2.4. Evaluation of Cooling and Thermal Comfort Effects
2.4.1. Universal Thermal Climate Index (UTCI)
2.4.2. Physiological Equivalent Temperature (PET) Evaluation
2.4.3. Relationship Between Air Temperature (Ta) and Mean Radiant Temperature (Tmrt)
- Median Radiant Load Difference (∆Ri):
- Base Linear Model:
- Adjusted Model (Including Solar Radiation):
- Quantile Summary Analysis:
3. Results
3.1. DiD Results
3.2. Relationship Between Air Temperature (Ta) and Mean Radiant Temperature (Tmrt)
3.3. Analysis of UTCI
3.4. Analysis of PET
3.5. Combined Analysis of UTCI and PET
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oke, T.R. Boundary Layer Climates, 2nd ed.; Routledge: London, UK, 1987. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
- Kim, Y.H.; Baik, J.J. Maximum urban heat island intensity in Seoul. J. Appl. Meteor. Climatol. 2002, 41, 651–659. [Google Scholar] [CrossRef]
- Ulpiani, G.; Di Giuseppe, E.; Di Perna, E.; D’Orazio, C.; Zinzi, M. Thermal comfort improvement in urban spaces with water spray systems: Field measurements and survey. Build. Environ. 2019, 156, 46–61. [Google Scholar] [CrossRef]
- Kim, J.; Kang, J. Evaluating the efficiency of fog cooling for climate change adaptation in vulnerable groups: A case study of Daegu Metropolitan City. Build. Environ. 2022, 217, 109120. [Google Scholar] [CrossRef]
- Xie, X.; Sun, Z.; Zhu, X.; Zhao, S.; Wang, Z.; Zhai, Y. Influence of Misting System on the Thermal Environment and Thermal Comfort of Seated People in Semi-Outdoor Space in Xi’an, China. Front. Archit. Res. 2024, 13, 668–681. [Google Scholar] [CrossRef]
- ESMAP. Primer for Cool Cities: Reducing Excessive Urban Heat. Energy Sector Management; Assistance Program (ESMAP) Knowledge Series 031/20; World Bank: Washington, DC, USA, 2020. [Google Scholar]
- Bloomberg Associates. Mitigating Urban Heat Island Effects Cool Pavement Interventions; Bloomberg Associates: New York, NY, USA, 2019. [Google Scholar]
- NYC Mayor’s Office of Resiliency. Cool Neighborhoods NYC: Resiliency and Heat Mitigation Plan; NYC Mayor’s Office: New York, NY, USA, 2019.
- Greater London Authority. The London Plan (Urban Greening Factor Guidance Included); GLA: London, UK, 2021.
- Zhou, D.; Zhao, S.; Zhang, L.; Sun, G.; Liu, Y. The footprint of urban heat island effect in China. Sci. Rep. 2015, 5, 11160. [Google Scholar] [CrossRef] [PubMed]
- Greenpeace East Asia. Extreme Temperature Rise in East Asia Cities; Greenpeace East Asia: Beijing, China, 2021. [Google Scholar]
- Sun, L.; Fertner, C.; Jørgensen, G. Beijing’s First Green Belt—A 50-Year Long Chinese Planning Story. Land 2021, 10, 969. [Google Scholar] [CrossRef]
- Western Sydney Regional Organisation of Councils. Turn Down the Heat: Strategy and Action Plan; WSROC: Sydney, Australia, 2018. [Google Scholar]
- Mohammed, A.; Pignatta, G.; Topriska, E.; Santamouris, M. Canopy Urban Heat Island and Its Association with Climate Conditions in Dubai, UAE. Climate 2020, 8, 81. [Google Scholar] [CrossRef]
- National Parks Board (NParks). Factsheet C—Skyrise Greenery in Singapore; NParks: Singapore, 2017.
- Hong, J.-W.; Hong, J.; Kwon, E.E.; Yoon, D.K. Temporal Dynamics of Urban Heat Island Correlated with the Socio-Economic Development over the Past Half-Century in Seoul, Korea. Environ. Pollut. 2019, 254, 112934. [Google Scholar] [CrossRef]
- Korea Meteorological Administration (KMA). Annual Report 2016; KMA: Seoul, Republic of Korea, 2017. [Google Scholar]
- Santamouris, M.; Gaitani, N.; Spanou, A.; Saliari, M.; Giannopoulou, K.; Vasilakopoulou, K.; Kardomateas, T. Using cool paving materials to improve microclimate of urban areas—Design realization and results of the flisvos project. Build. Environ. 2012, 53, 128–136. [Google Scholar] [CrossRef]
- Vanos, J.K.; Wright, M.K.; Kaiser, A.; Middel, A.; Ambrose, H.; Hondula, D.M. Evaporative misters for urban cooling and comfort: Effectiveness and motivations for use. Int. J. Biometeorol. 2022, 66, 357–369. [Google Scholar] [CrossRef]
- Lai, D.; Liu, W.; Gan, T.; Liu, K.; Chen, Q. A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Sci. Total Environ. 2019, 661, 337–353. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Shi, K.; Li, Z.; Kong, X.; Zhou, H. A Review on the Impacts of Urban Heat Islands on Outdoor Thermal Comfort. Buildings 2023, 13, 1368. [Google Scholar] [CrossRef]
- Błażejczyk, K.; Kuchcik, M.; Błażejczyk, A.; Milewski, P.; Szmyd, J. Assessment of urban thermal stress by UTCI—Experimental and modelling studies: An example from Poland. DIE ERDE—J. Geogr. Soc. Berl. 2014, 145, 16–33. [Google Scholar] [CrossRef]
- Montazeri, H.; Toparlar, Y.; Blocken, B.; Hensen, J.L.M. Simulating the cooling effects of water spray systems in urban landscapes: A computational fluid dynamics study in Rotterdam, The Netherlands. Landsc. Urban Plan. 2017, 159, 85–100. [Google Scholar] [CrossRef]
- Kim, J.; Park, S.; Jung, S.; Lee, G. Urban cold stress assessment using computational fluid dynamics and universal thermal climate index: A case study of Gwacheon City, South Korea. Sustain. Cities Soc. 2025, 133, 106830. [Google Scholar] [CrossRef]
- Kim, J.; Park, S.; Lee, G. Analyzing urban thermal comfort changes due to modifications in urban material properties in a large-scale new town: A CFD study based on the universal thermal climate index (UTCI). Sustain. Cities Soc. 2025, 130, 106627. [Google Scholar] [CrossRef]
- Wu, J.; Chang, H.; Yoon, S. Numerical Study on Microclimate and Outdoor Thermal Comfort of Street Canyon Typology in Extremely Hot Weather—A Case Study of Busan, South Korea. Atmosphere 2022, 13, 307. [Google Scholar] [CrossRef]
- Jendritzky, G.; de Dear, R.; Havenith, G. UTCI—Why another thermal index? Int. J. Biometeorol. 2012, 56, 421–428. [Google Scholar] [CrossRef]
- Błażejczyk, K.; Jendritzky, G.; Bröde, P.; Fiala, D.; Havenith, G.; Epstein, Y.; Psikuta, A.; Kampmann, B. An introduction to the Universal Thermal Climate Index (UTCI). Geogr. Pol. 2013, 86, 5–10. [Google Scholar] [CrossRef]
- Höppe, P. The Physiological Equivalent Temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef]
- Matzarakis, A.; Mayer, H.; Iziomon, M. Applications of a universal thermal index: Physiological equivalent temperature. Int. J. Biometeorol. 1999, 43, 76–84. [Google Scholar] [CrossRef]
- Di Napoli, C.; Pappenberger, F.; Cloke, H.L. Verification of Heat Stress Thresholds for a Health-Based Heat-Wave Definition. J. Appl. Meteorol. Climatol. 2019, 58, 1177–1194. [Google Scholar] [CrossRef]
- Lim, Y.S.; Zoh, H.D.; Kim, T.H.; Kwon, T.K. Analyzing the Cooling Effects of Water Facilities in Urban Park: The Case of Sangju Namsan Park, South Korea. Atmosphere 2024, 15, 1456. [Google Scholar] [CrossRef]
- Chan, S.Y.; Chau, C.K. On the study of the effects of microclimate and park and surrounding building configuration on thermal comfort in urban parks. Sustain. Cities Soc. 2021, 64, 102512. [Google Scholar] [CrossRef]
- Rahmadyani, H.; Fahri, M. A study of the microclimate effects on thermal comfort in warm-humid climate for urban parks, Pangkalpinang. IOP Conf. Ser. Earth Environ. Sci. 2023, 1267, 012075. [Google Scholar] [CrossRef]
- Callaway, B.; Sant’Anna, P.H.C. Difference-in-differences with multiple time periods. J. Econom. 2021, 225, 200–230. [Google Scholar] [CrossRef]
- Goodman-Bacon, A. Difference-in-differences with variation in treatment timing. J. Econom. 2021, 225, 254–277. [Google Scholar] [CrossRef]
- Bröde, P.; Fiala, D.; Błażejczyk, K.; Holmér, I.; Jendritzky, G.; Kampmann, B.; Tinz, B.; Havenith, G. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2012, 56, 481–494. [Google Scholar] [CrossRef]









| Symbol | Description |
|---|---|
| Ta | Air temperature (°C) |
| RH | Relative humidity (%) |
| Tmrt | Mean radiant temperature (°C) |
| UTCI | Universal Thermal Climate Index (°C) |
| PET | Physiological Equivalent Temperature (°C) |
| GHI | Global horizontal irradiance (W m−2) |
| KMA | Korea Meteorological Administration |
| u10 | Wind speed at 10 m height (m s−1) |
| u2 | Estimated wind speed at 2 m height (m s−1) |
| DiD | Difference-in-differences |
| ATT | Average treatment effect on the treated |
| Rabs | Total absorbed radiative flux used for Tmrt estimation (W m−2) |
| met | Metabolic rate (met) |
| clo | Clothing insulation (clo) |
| UTCI | PET | Stress Category |
|---|---|---|
| >46 | >41 | Extreme heat stress |
| 38 to 46 | 35 to 41 | Very strong heat stress |
| 32 to 38 | 29 to 35 | Strong heat stress |
| 26 to 32 | 23 to 29 | Moderate heat stress |
| 9 to 26 | 18 to 23 | No thermal stress |
| 0 to 9 | 13 to 18 | Slight cold stress |
| −13 to 0 | 8 to 13 | Moderate cold stress |
| −27 to −13 | 4 to 8 | Strong cold stress |
| −40 to −27 | <4 | Very strong cold stress |
| <−40 | - | Extreme cold stress |
| Sensor | ATT (β) | 95% CI |
|---|---|---|
| No. 1 (near-spray) | −1.812 | [−2.637, −0.986] |
| No. 2 (pavilion interior) | −0.268 | [−1.206, 0.671] |
| No. 3 (vegetated) | −1.063 | [−2.064, −0.063] |
| No. 4 (open control) | −0.018 | [−2.033, 1.997] |
| No. 5 (pavilion interior) | −0.891 | [−1.982, 0.200] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Choi, J.; Kim, J.; Kim, J.; Kim, T.; Kwon, S. Cooling-Fog Impacts on Microclimate and Thermal Comfort in Gwajeong Park, Busan. Buildings 2026, 16, 503. https://doi.org/10.3390/buildings16030503
Choi J, Kim J, Kim J, Kim T, Kwon S. Cooling-Fog Impacts on Microclimate and Thermal Comfort in Gwajeong Park, Busan. Buildings. 2026; 16(3):503. https://doi.org/10.3390/buildings16030503
Chicago/Turabian StyleChoi, Joowon, Jaemoon Kim, Jaekyoung Kim, Taeyoon Kim, and Soonchul Kwon. 2026. "Cooling-Fog Impacts on Microclimate and Thermal Comfort in Gwajeong Park, Busan" Buildings 16, no. 3: 503. https://doi.org/10.3390/buildings16030503
APA StyleChoi, J., Kim, J., Kim, J., Kim, T., & Kwon, S. (2026). Cooling-Fog Impacts on Microclimate and Thermal Comfort in Gwajeong Park, Busan. Buildings, 16(3), 503. https://doi.org/10.3390/buildings16030503

