Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (256)

Search Parameters:
Keywords = continuous anaerobic digestion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5059 KiB  
Article
Effects of Graphene-Based Nanomaterials on Anaerobic Digestion of Thermally Hydrolyzed Municipal Sewage Sludge
by Luiza Usevičiūtė, Tomas Januševičius, Vaidotas Danila and Mantas Pranskevičius
Materials 2025, 18(15), 3561; https://doi.org/10.3390/ma18153561 - 29 Jul 2025
Viewed by 172
Abstract
In this study, the effects of graphene-based nanomaterials—specifically graphene nanoplatelets (GNPs) and graphene oxide (GO) nanosheets—on methane (CH4) production during anaerobic digestion (AD) of thermally hydrolyzed sewage sludge were investigated. Anaerobic digestion was carried out over a 40-day period under mesophilic [...] Read more.
In this study, the effects of graphene-based nanomaterials—specifically graphene nanoplatelets (GNPs) and graphene oxide (GO) nanosheets—on methane (CH4) production during anaerobic digestion (AD) of thermally hydrolyzed sewage sludge were investigated. Anaerobic digestion was carried out over a 40-day period under mesophilic conditions in batch digesters with a volume of 2.65 L. The influence of various dosages of GNPs and GO nanosheets on methane yields was assessed, including a comparison between GNPs with different specific surface areas (320 m2/g and 530 m2/g). The highest CH4 yield (194 mL/g-VSadded) was observed with a GNP dosage of 5 mg/g-TS and a surface area of 530 m2/g, showing an increase of 3.08% compared to the control. This treatment group had the greatest positive effect also on the degradation of organic matter, with total solids (TS) and volatile solids (VS) removal reaching 34.35% and 44.18%, respectively. However, the GO dosages that significantly decreased cumulative CH4 production were determined to be 10–15 mg/g-TS. Graphene oxide at dosages of 10 and 15 mg/g-TS reduced specific cumulative CH4 yields by 4.03% and 5.85%, respectively, compared to the control, indicating CH4 yield inhibition. This lab-scale study highlights the potential for integrating GNPs into full-scale, continuously operated wastewater treatment anaerobic digesters for long-term use in future applications. Full article
Show Figures

Figure 1

19 pages, 1488 KiB  
Article
Anaerobic Co-Digestion of Sewage Sludge and Organic Solid By-Products from Table Olive Processing: Influence of Substrate Mixtures on Overall Process Performance
by Encarnación Díaz-Domínguez, José Ángel Rubio, James Lyng, Enrique Toro, Fernando Estévez and José L. García-Morales
Energies 2025, 18(14), 3812; https://doi.org/10.3390/en18143812 - 17 Jul 2025
Viewed by 220
Abstract
Sewage sludge, characterized by its high organic matter and nutrient content, as well as the presence of microbial pathogens and other contaminants, requires proper management due to its significant generation rate. The table olive sector, which is highly significant in Spain as a [...] Read more.
Sewage sludge, characterized by its high organic matter and nutrient content, as well as the presence of microbial pathogens and other contaminants, requires proper management due to its significant generation rate. The table olive sector, which is highly significant in Spain as a global leader in production and export, generates various waste streams such the Organic Solid By-Products from Table Olive Processing (OSBTOP), which are mainly derived from the olive pit after the pitting process. The main aim of this study was to enhance the methane production performance of sewage sludge through co-digestion with OSBTOP as a co-substrate. Batch assays demonstrated that employing OSBTOP as a co-substrate increased methane content by 35–41% across all tested mixtures. While the highest methane yield was produced at a 40:60 (sludge:OSBTOP) ratio, a 60:40 mixture proved to be a more advantageous option for scale-up and practical application. This is attributed to factors such as the higher availability of sludge and its inherent buffering capacity, which counteracts the accumulation of volatile fatty acids and promotes process stability, thereby contributing to the study’s objective of significantly enhancing methane production from sewage sludge through co-digestion. In semi-continuous operation, methane yields in the co-digestion scenario exceeded those of mixed sludge digestion, showing a yield of 180 versus 120 LCH4−1 · kgVSadded−1, representing a 50% improvement. This study highlights the potential of anaerobic digestion as a strategy for valorizing OSBTOP, a by-product with no prior studies, while demonstrating that its co-digestion with sewage sludge enhances methane generation, offering a sustainable approach to organic waste treatment. Full article
(This article belongs to the Special Issue Zero Waste Technology from Biofuel Development)
Show Figures

Figure 1

17 pages, 2975 KiB  
Article
Investigating the Impact of Organic Loading Rates and Magnetic Nanoparticles on the Performance and Stability of Continuous Stirred Tank Reactors
by Asim Ali, Adham Mohammed Alnadish, Sallahuddin Panhwar, Hareef Ahmed Keerio, Abdul Waheed and Rasool Bux Mahar
Processes 2025, 13(7), 2126; https://doi.org/10.3390/pr13072126 - 4 Jul 2025
Viewed by 1218
Abstract
Research on energy demand is advancing, with the addition of nanomaterials in anaerobic digestion increasing stability, accelerating hydrolysis, and reducing microbial inhibition. However, further research is needed to determine the mechanisms, ideal dosages, and long-term impacts. This work used continuous stir tank reactors [...] Read more.
Research on energy demand is advancing, with the addition of nanomaterials in anaerobic digestion increasing stability, accelerating hydrolysis, and reducing microbial inhibition. However, further research is needed to determine the mechanisms, ideal dosages, and long-term impacts. This work used continuous stir tank reactors (CSTRs) to experimentally examine the biocompatibility of iron oxide nanoparticles (Fe3O4-NPs) at a concentration of 75 mg/L at various organic loading rates (OLRs) of 0.3, 0.8, and 1.3 gVS/L.d (CSTRs). The efficiency of the reactors was observed by considering various parameters, such as pH, soluble chemical oxygen demand (sCOD), TVFA formation and degradation, total solids (TS), and volatile solids (VS) removal, as well as methane (CH4) generation. Hence, it was found that the reactor with added NPs (R1) yielded an optimum 725.9 mL/gVS of CH4 and this was achieved at the lowest OLR of 0.3 gVS/Ld. However, another reactor (R2, without NPs), exhibited more stabilized results, ranging from 372.8 to 424.4 mL/gVS at 0.3 to 1.3 gVS/Ld of OLR, respectively. Therefore, in R1, the maximum removal of sCOD, TVFAs, and VS was achieved at 90%, 74%, and 93%, respectively, as compared to R2. Full article
(This article belongs to the Special Issue Advances in Biomass Conversion and Biorefinery Applications)
Show Figures

Figure 1

15 pages, 1564 KiB  
Article
Organic Waste and Wastewater Sludge to Volatile Fatty Acids and Biomethane: A Semi-Continuous Biorefinery Approach
by Paolo S. Calabrò, Domenica Pangallo, Mariastella Ferreri, Altea Pedullà and Demetrio A. Zema
Recycling 2025, 10(4), 125; https://doi.org/10.3390/recycling10040125 - 21 Jun 2025
Viewed by 446
Abstract
Volatile fatty acids (VFA) are valuable intermediates with growing demand in chemical, pharmaceutical, and environmental applications. Their sustainable production from organic waste is increasingly explored in the context of circular economy and biorefinery models. This study investigates the co-fermentation of waste-activated sludge (WAS) [...] Read more.
Volatile fatty acids (VFA) are valuable intermediates with growing demand in chemical, pharmaceutical, and environmental applications. Their sustainable production from organic waste is increasingly explored in the context of circular economy and biorefinery models. This study investigates the co-fermentation of waste-activated sludge (WAS) and the organic fraction of municipal solid waste (OFMSW) as a strategy for integrated VFA and biogas production. Semi-continuous experiments were carried out to assess the effect of the substrates ratio (WAS:OFMSW = 90:10 and 30:70), hydraulic retention time (HRT), and pH control (5, 9, no control) on VFA yield and composition. Results showed that higher OFMSW content and alkaline conditions favoured VFA production, with a maximum yield of 144.9 mgHAc·gVS−1 at pH 9 and 70:30 ratio. Acetate dominated, while butyrate production peaked at 114.1 mgHBu·gVS−1 under high sludge conditions. However, the addition of alkali required for pH control may lead to excessive accumulation of alkaline-earth metal ions, which can disrupt biological processes due to their potential toxicity. Anaerobic digestion of fermentation residues enhanced biomethane yields significantly (0.27 NL·gVS−1 vs. 0.05 NL·gVS−1 from raw sludge). The proposed process demonstrates potential for converting wastewater treatment plants into biorefineries, maximising resource recovery while reducing environmental impact. Full article
(This article belongs to the Special Issue Biomass Revival: Rethinking Waste Recycling for a Greener Future)
Show Figures

Graphical abstract

16 pages, 761 KiB  
Article
Combined Continuous Resin Adsorption and Anaerobic Digestion of Olive Mill Wastewater for Polyphenol and Energy Recovery
by Chaimaa Hakim, Mounsef Neffa, Abdessadek Essadek, Audrey Battimelli, Renaud Escudie, Diana García-Bernet, Jérôme Harmand and Hélène Carrère
Energies 2025, 18(13), 3226; https://doi.org/10.3390/en18133226 - 20 Jun 2025
Viewed by 377
Abstract
Olive mill wastewater (OMWW) has high energetic potential due to its organic load, but its complex composition and toxicity limit efficient energy recovery. This study proposes an innovative integrated process combining continuous resin adsorption with anaerobic digestion to detoxify OMWW and recover renewable [...] Read more.
Olive mill wastewater (OMWW) has high energetic potential due to its organic load, but its complex composition and toxicity limit efficient energy recovery. This study proposes an innovative integrated process combining continuous resin adsorption with anaerobic digestion to detoxify OMWW and recover renewable energy simultaneously. It studies the recovery of polyphenols, methane production, and substrate degradation efficiency using resin column bed heights (C1: 5.7 cm, C2: 12.1 cm, C3: 18.5 cm), as well as kinetic modeling of organic matter degradation. Adsorption reduced chemical oxygen demand (COD) by up to 80% and polyphenols by up to 64%, which significantly improved substrate biodegradability from 34% to 82%, corresponding to a methane yield of 287 mL CH4/g COD. Organic matter was fractioned into rapid (S1), moderate (S2), and slow (S3) biodegradable fractions. The highest degradation kinetics was C3, with methane production rates of K1 = 23.86, K2 = 2.47, and K3 = 2.92 mL CH4/d. However, this condition produced the lowest volumetric methane production due to excessive COD removal, including readily biodegradable matter. These results highlight the importance of optimizing the adsorption step in order to find to a balance between detoxification and energy recovery from OMWW, thus supporting the principles of circular economy and promoting renewable energy production. Full article
(This article belongs to the Special Issue Sustainable Biomass Conversion: Innovations and Environmental Impacts)
Show Figures

Figure 1

17 pages, 1333 KiB  
Article
Anaerobic Digestion of the Halophyte Salicornia ramosissima in Co-Digestion with Swine Manure in Lab-Scale Batch and Continuous Reactor Tests
by Aadila Cayenne and Hinrich Uellendahl
Energies 2025, 18(12), 3085; https://doi.org/10.3390/en18123085 - 11 Jun 2025
Viewed by 309
Abstract
This laboratory study investigated the anaerobic co-digestion process of the halophyte S. ramosissima (Sram) together with swine manure (SM) in different mixing ratios in batch and continuous reactor experiments. In the batch experiments, a methane yield of 214 mLCH4·gVS−1 was [...] Read more.
This laboratory study investigated the anaerobic co-digestion process of the halophyte S. ramosissima (Sram) together with swine manure (SM) in different mixing ratios in batch and continuous reactor experiments. In the batch experiments, a methane yield of 214 mLCH4·gVS−1 was obtained for Sram in mono-digestion. In co-digestion with SM, the methane yields were slightly higher than calculated from the yields of each substrate in mono-digestion. Also, the kinetic rate constant in the co-digestion with swine manure increased from 0.219 d−1 for mono-digested S. ramosissima to 0.318 d−1 in the co-digestion of 50:50 Sram:SM (based on VS). Two continuous 5 L lab-scale CSTR reactors were operated: one as a control (100% SM) and the other as a co-digestion reactor with an increasing VS share of Sram (15, 25, and 35%) in the feed. Both reactors were operated at an organic loading rate (OLR) of 2.5 gVS.L−1·d−1 and a hydraulic retention time (HRT) of 20 days. In the continuous process, the highest methane yield of 276 mLCH4·gVS−1 was achieved at a co-digestion VS ratio of Sram:SM 25:75, corresponding to a methane yield from the added S. ramosissima of 277 mLCH4·gVS−1. This showed successful operation of the continuous co-digestion process of S. ramosissima and swine manure, with higher methane yields of S. ramosissima than in the mono-digestion batch tests. Full article
(This article belongs to the Special Issue Biomass Resources to Bioenergy: 2nd Edition)
Show Figures

Figure 1

20 pages, 3749 KiB  
Article
Performance Characteristics of a Pilot-Scale Electromethanogenic Reactor Treating Brewery Wastewater
by Kyle Bowman, Marcelo Elaiuy, George Fudge, Harvey Rutland, William Gambier, Theo Hembury, Ben Jobling-Purser, Thomas Fudge, Izzet Kale and Godfrey Kyazze
Energies 2025, 18(11), 2939; https://doi.org/10.3390/en18112939 - 3 Jun 2025
Viewed by 540
Abstract
A pilot-scale (4000 L) continuous flow electromethanogenic reactor (EMR), also known as a microbial electrochemical cell coupled with an anaerobic digester (MEC-AD), treating brewery wastewater was designed and installed at Hepworth’s Brewery, UK. This investigation presents a 4-fold increase in size compared to [...] Read more.
A pilot-scale (4000 L) continuous flow electromethanogenic reactor (EMR), also known as a microbial electrochemical cell coupled with an anaerobic digester (MEC-AD), treating brewery wastewater was designed and installed at Hepworth’s Brewery, UK. This investigation presents a 4-fold increase in size compared to the next largest pilot-scale MEC-AD system presented in the literature, providing findings to inform the operation of a 52,000 L MEC-AD system (currently under construction). Housed in a 20 ft shipping container, the pilot system features four 1000 L reaction vessels arranged in series, each with a working volume of 900 L. Each reaction vessel contained 8 electrode modules. The system was tested over varying organic loading rates (OLRs), achieved through systematic reductions in hydraulic retention time (HRT). HRTs between 24 and 1.8 days were investigated to align with commercial viability targets. OLRs were observed from 0.4 to 7.5 kgCOD/m3/d. A maximum stable OLR of 6.75 kgCOD/m3/d at a HRT of 2.3 days was observed while maintaining COD removal of 65 and 88% over the first two vessels. This pilot demonstrated commercially viable performance of an EMR at a brewery, resulting in the purchase of the technology at commercial scale (52,000 L) to form part of a wastewater treatment system. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Graphical abstract

22 pages, 955 KiB  
Article
Start-Up Strategies for Thermophilic Semi-Continuous Anaerobic Digesters: Assessing the Impact of Inoculum Source and Feed Variability on Efficient Waste-to-Energy Conversion
by Amal Hmaissia, Edgar Martín Hernández, Steve Boivin and Céline Vaneeckhaute
Sustainability 2025, 17(11), 5020; https://doi.org/10.3390/su17115020 - 30 May 2025
Viewed by 617
Abstract
Anaerobic digestion (AD) has gained broad interest as a sustainable organic waste management and resource recovery method. However, the complexity of the AD process could pose serious risks in real-scale applications. One of the most critical phases in the operation of AD systems [...] Read more.
Anaerobic digestion (AD) has gained broad interest as a sustainable organic waste management and resource recovery method. However, the complexity of the AD process could pose serious risks in real-scale applications. One of the most critical phases in the operation of AD systems is the start-up phase, including the seeding strategy of the digesters. This study aims to assess the effect of digestate post-treatment before seeding on the start-up of thermophilic AD systems. Two anaerobic digesters (R1 and R2) were started using two different thermophilic inocula and were kept operational for 17 weeks under identical conditions. Lab digesters were seeded with digestates sampled from a thermophilic full-scale reactor (R2) and a post-treatment mesophilic tank (R1). The start-up strategies exhibited satisfactory stability and high productivity, achieving mean weekly methane-based biodegradability rates of 61 and 64% of the feed’s theoretical biomethane potential (BMP), respectively, in R1 and R2. However, R2 showed greater resilience to high and sudden organic loads applications, making it more suitable for rapid and aggressive start-ups. These results are expected to assist full-scale anaerobic digester operators in selecting an appropriate inoculum based on the characteristics of its source. Full article
(This article belongs to the Special Issue Recycling Materials for the Circular Economy—2nd Edition)
Show Figures

Figure 1

11 pages, 4020 KiB  
Article
Responses of Soil Microbial Communities to Biogas Slurry Irrigation in Paddy Fields: Interactions with Environmental Factors
by Die Hu, Man Yu, Yuying Qiao, Yiping Shang, Yufei Yan, Shunyue Wang and Xiaoyang Chen
Water 2025, 17(11), 1577; https://doi.org/10.3390/w17111577 - 23 May 2025
Viewed by 419
Abstract
Biogas slurry (BS), a nutrient-rich byproduct of anaerobic digestion, is increasingly utilized in agriculture to enhance soil fertility and crop productivity. However, the long-term effects of BS on soil microbial communities in paddy fields have not been thoroughly investigated. This study investigated the [...] Read more.
Biogas slurry (BS), a nutrient-rich byproduct of anaerobic digestion, is increasingly utilized in agriculture to enhance soil fertility and crop productivity. However, the long-term effects of BS on soil microbial communities in paddy fields have not been thoroughly investigated. This study investigated the impacts of continuous BS irrigation over 0–3 years on soil microbial diversity, community composition, and their relationships with environmental factors in southeastern China. The results showed that bacterial diversity (Shannon index) significantly decreased from 6.96 (0 year) to 6.58 (3 years) (p < 0.05), while fungal diversity displayed a U-shaped trend, initially declining to 4.13 (1 year) and subsequently recovering to 4.86 (3 years) (p < 0.05). Dominant bacterial phyla such as Chloroflexi and Bacteroidetes increased in abundance under BS treatment, whereas Gemmatimonadetes decreased. Fungal communities shifted, with Mortierellomycota replacing Basidiomycota as the dominant phylum. Redundancy analysis (RDA) accounted for 91% and 74.9% of the variance in bacterial and fungal communities, respectively. Correlation analysis further indicated that soil available nitrogen and Cr were the primary drivers of bacterial community composition (p < 0.001), whereas soil available potassium and Cd were the key factors influencing the fungal community structure (p < 0.001). This study highlights that BS application alters microbial dynamics, favoring anaerobic bacteria and suppressing pathogenic fungi like Fusarium, thereby supporting sustainable soil management in rice cultivation systems. Full article
Show Figures

Figure 1

20 pages, 1271 KiB  
Article
Advanced Mathematical Modeling of Hydrogen and Methane Production in a Two-Stage Anaerobic Co-Digestion System
by Olympia Roeva, Elena Chorukova and Lyudmila Kabaivanova
Mathematics 2025, 13(10), 1601; https://doi.org/10.3390/math13101601 - 13 May 2025
Cited by 1 | Viewed by 361
Abstract
This study introduces a novel mathematical model characterizing the anaerobic co-digestion of wheat straw and waste algal biomass for hydrogen and methane production, implemented in a two-stage bioreactor system. Co-digestion can be a tool to increase biogas production utilizing difficult-to-digest organic waste by [...] Read more.
This study introduces a novel mathematical model characterizing the anaerobic co-digestion of wheat straw and waste algal biomass for hydrogen and methane production, implemented in a two-stage bioreactor system. Co-digestion can be a tool to increase biogas production utilizing difficult-to-digest organic waste by introducing easily degradable substrates. Two continuous operational regimes, with organic loading rates of 50 g/L and 33 g/L, were employed to generate the experimental datasets for model parameterization and validation, respectively. Parameter identification was achieved through dynamic experimentation, utilizing three distinct optimization algorithms: the deterministic active-set method (A-S) and the metaheuristics–genetic algorithm (GA), coyote optimization algorithm (COA), and marine predator algorithm (MPA). We assessed the predictive capability of the developed mathematical models using an independent dataset. The models demonstrated good agreement with the experimental data across all measured process variables. Notably, the MPA exhibited superior data fitting accuracy, as quantitatively confirmed by the objective function value, compared to GA, COA, and the A-S algorithm. Full article
Show Figures

Figure 1

14 pages, 3131 KiB  
Article
Dark Fermentation and Anaerobic Digestion for H2 and CH4 Production, from Food Waste Leachates
by Ioannis Kontodimos, Christos Evaggelou, Nikolaos Margaritis, Panagiotis Grammelis and Maria Goula
Methane 2025, 4(2), 11; https://doi.org/10.3390/methane4020011 - 8 May 2025
Viewed by 643
Abstract
The present study investigates a two-stage process aimed at producing biogas from food waste leachates (FWL) through an experimental approach. The first stage involves biohydrogen production via dark fermentation (DF), while the second focuses on biomethane production through anaerobic digestion (AD). The substrate [...] Read more.
The present study investigates a two-stage process aimed at producing biogas from food waste leachates (FWL) through an experimental approach. The first stage involves biohydrogen production via dark fermentation (DF), while the second focuses on biomethane production through anaerobic digestion (AD). The substrate consists of leachates derived from fruit and vegetable waste, which are introduced into two continuous stirred-tank reactors (CSTR1) with two different inoculum-to-substrate ratios (ISR). Dark fermentation occurs in these reactors. The effluent from the CSTRs is then fed into two additional reactors for methanogenesis. All reactors operated under mesophilic conditions. During the DF stage, hydrogen yields were relatively low, with a maximum of 8.2 NmL H2/g VS added (ISR = 0.3) and 6.1 NmL H2/g VS added (ISR = 0.5). These results were attributed to limited biodegradation of volatile solids (VS), which reached only 21.9% and 23.6% in each respective assay. Similarly, the removal of organic matter was modest. In contrast, the AD stage demonstrated more robust methane production, achieving yields of 275.2 NmL CH4/g VS added (ISR = 0.3) and 277.5 NmL CH4/g VS added (ISR = 0.5). The system exhibited significant organic matter degradation, with VS biodegradability reaching 66%, and COD removal efficiencies of 50.8% (ISR = 0.3) and 60.1% (ISR = 0.5). The primary focus of the study was to monitor and quantify the production of the two biofuels, biohydrogen and biomethane. In conclusion, this study provides an assessment of the two biochemical conversion pathways, detailing the generation of two valuable and utilizable gaseous products. This research examines the process-specific operational conditions governing gas production, with a focus on optimizing process parameters to enhance yield and overall efficiency. Full article
(This article belongs to the Special Issue Anaerobic Digestion Process: Converting Waste to Energy)
Show Figures

Figure 1

18 pages, 3690 KiB  
Article
Harnessing Horsepower from Horse Manure at the EARTH Centre in South Africa: Biogas Initiative Improve the Facility’s Operational Sustainability
by Charles Rashama, Tonderayi Matambo, Asheal Mutungwazi, Christian Riann and Godwell Nhamo
Energies 2025, 18(7), 1808; https://doi.org/10.3390/en18071808 - 3 Apr 2025
Viewed by 540
Abstract
This study investigated the sustainability aspects of implementing a small-scale biogas digester project at the EARTH Centre, a horse-riding facility for the disabled, in South Africa. Firstly, an energy audit of the facility was conducted. From this exercise, energy-saving opportunities through anaerobic digestion [...] Read more.
This study investigated the sustainability aspects of implementing a small-scale biogas digester project at the EARTH Centre, a horse-riding facility for the disabled, in South Africa. Firstly, an energy audit of the facility was conducted. From this exercise, energy-saving opportunities through anaerobic digestion of horse manure were identified. Biomethane potential tests (BMPs) were then performed using the Automatic Methane potential test system II (AMPTS II) of BioProcess Control (Lund, Sweden). The horse manure BMP result was 106 L/kg.VS with the biogas averaging a methane content of 40%. This BMP was lower than that of common substrates such as cow manure which can range from 150–210 L/kg.VS. The gas production rate was almost constant in the first 13 days indicating a long hydrolysis period for horse manure. The microbial species in the digester did not change much during the incubation period although small changes were visible in the proportions of each species as the reaction progressed from start to finish. The energy audit showed that 47% of the EARTH Centre’s energy requirements, which equated to 14,372 kWh/year, could be secured from biogas or solar instead of obtaining it from the national grid which is powered mainly by unsustainable coal-fired systems. As a starting point, a 10 cubic meter biogas digester was installed to produce 5512 kWh of energy per year in the form of biogas. To boost biogas production and continue running the system smoothly, it was evident that the horse manure-fed digester would require regular spiking with cow manure as a bioaugmentation strategy. The digester also produced bio-fertiliser and several sustainable development goals were fulfilled by this project. Current efforts are focused on process optimization of this technology at the Earth Centre to further improve the sustainability of the whole business. Full article
(This article belongs to the Special Issue New Challenges in Waste-to-Energy and Bioenergy Systems)
Show Figures

Figure 1

17 pages, 3495 KiB  
Article
Optimizing Anaerobic Co-Digestion Formula of Agro-Industrial Wastes in Semi-Continuous Regime
by Ana I. Parralejo, Jerónimo González, Luis Royano and Juan F. González
Energies 2025, 18(7), 1689; https://doi.org/10.3390/en18071689 - 28 Mar 2025
Viewed by 389
Abstract
The actual environmental and energy crises are two of the main problems existing in the world. Among the different technologies that can be implemented is anaerobic digestion, which employs waste and renewable biomass materials. To reach the optimum ratio of different raw materials [...] Read more.
The actual environmental and energy crises are two of the main problems existing in the world. Among the different technologies that can be implemented is anaerobic digestion, which employs waste and renewable biomass materials. To reach the optimum ratio of different raw materials or substrates in the feed of digesters, laboratory tests are necessary. This work aims to study the increase in the Organic Load Rate (OLR) (1 g VS L−1d−1, 2 g VS L−1d−1, 3 g VS L−1d−1 and 4 g VS L−1d−1, VS: Volatile Solid) and the raw materials number (sorghum (S), pig manure (P), triticale (T), corn stover (C) and microalgae biomass (M)) in the feedstock of the anaerobic digestion process. Mean values of methane yields for the evaluated set were lower in SMP and SMPTC assays (149.80 LCH4 kg VS−1 and 157.15 LCH4 kg VS−1, respectively) than SP, SM and SMPT assays (195.09 LCH4 kg VS−1, 197.69 LCH4 kg VS−1 and 195.76 LCH4 kg VS−1, respectively). Along the experiments, several parameters were evaluated, along with their interactions with OLR and number of raw materials. Two kinetic models were employed to fit the COD (Chemical Oxygen Demand) removal results. Full article
(This article belongs to the Special Issue Sustainable Biofuels for Carbon Neutrality)
Show Figures

Figure 1

15 pages, 6934 KiB  
Article
Alleviation of Organic Load Inhibition and Enhancement of Caproate Biosynthesis via Fe3O4 Addition in Anaerobic Fermentation of Food Waste
by Yue Wang, Yan Zhou, Pengyao Wang, Bo Wu, Xin Li, Hongbo Liu, Dara S. M. Ghasimi and Xuedong Zhang
Fermentation 2025, 11(4), 160; https://doi.org/10.3390/fermentation11040160 - 21 Mar 2025
Viewed by 682
Abstract
The conversion of food waste into caproate via anaerobic chain elongation has gained increasing attention. However, limitations such as reliance on external electron donors, low carbon conversion efficiency under high loads, and unclear microbial mechanisms hinder its application. Fe3O4 reportedly [...] Read more.
The conversion of food waste into caproate via anaerobic chain elongation has gained increasing attention. However, limitations such as reliance on external electron donors, low carbon conversion efficiency under high loads, and unclear microbial mechanisms hinder its application. Fe3O4 reportedly can act as an electron shuttle and mitigate product inhibition during anaerobic digestion of sludge. Thus, Fe3O4 addition could overcome the challenges from high loads under certain conditions. In this study, the experiments were conducted under batch and semi-continuous conditions. This study investigated the effects of organic loads on the hydrolysis, acidification, and chain elongation of fermentation. Furthermore, the influences of Fe3O4 on caproate production and microbial profile under varying substrate-to-inoculation ratios and dosages were examined. The key results harvested from the semi-continuous trial indicate that high organic loads severely inhibited caproate production. And in batch tests, at an F/M ratio of 1:2, increasing Fe3O4 dosage evidently enhanced caproate production by promoting lactate conversion to butyrate and carbon chain elongation. At an F/M ratio of 6:1, maximum caproate yield reached 0.45 g COD/g COD at Fe3O4 of 2.0 g/L. High organic load reduced the abundance of butyrate-producing bacteria (Latilactobacillus and Stenotrophomonas). Nevertheless, the addition of Fe3O4 increased the abundance of butyrate-producing and caproate-producing bacteria (Caproiciproducens). In conclusion, Fe3O4 at an optimal dosage evidently enhanced caproate production under high organic loads by stimulating microbial electron transport and enriching relevant microorganisms. Full article
Show Figures

Figure 1

16 pages, 2039 KiB  
Article
Anaerobic Digestion of Rice Straw as Profitable Climate Solution Reduces Paddy Field Greenhousegas Emissions and Produces Climate-Smart Fertilizer Under Carbon Trading Mechanisms
by Yuanzhi Ni, Min Zhang, Xiaoyong Qian, Genxiang Shen and Onesmus Mwabonje
Sustainability 2025, 17(6), 2439; https://doi.org/10.3390/su17062439 - 11 Mar 2025
Viewed by 895
Abstract
Continuous incorporation of rice straw has caused significant CH4 emissions from the paddy field production system in East China. Anaerobic digestion (AD) of the rice straw has been considered as a promising approach that could not only mitigate the land-based CH4 [...] Read more.
Continuous incorporation of rice straw has caused significant CH4 emissions from the paddy field production system in East China. Anaerobic digestion (AD) of the rice straw has been considered as a promising approach that could not only mitigate the land-based CH4 emissions, but also generate low-carbon electricity and high-quality organic fertilizer. However, this approach, in many circumstances, is unable to be cost-competitive with other straw treatment processes or power sources. To understand the potential incentives that recently launched carbon trading schemes, the China Carbon Emission Trade Exchange (CCETE) and Chinese Certified Emission Reduction (CCER), could bring to the rice straw utilization value chain, we conducted a cradle-to-factory gate life cycle assessment and economic analysis of a small-scale AD system with rice straw as the main feedstock in East China. The results indicate that, depending on the choice of allocation method, the climate change impact of the bioenergy generated through the studied small-scale AD system is 0.21 to 0.28 kg CO2eq./kWh, and the digester fertilizer produced is 6.88 to 22.09 kg CO2eq./kg N. The economic analysis validates the financial sustainability of such small-scale AD projects with rice straw feedstock under carbon trading mechanisms. The climate mitigation potential could be achieved at the marginal reduction cost of 13.98 to −53.02 USD/t CO2eq. in different carbon price scenarios. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

Back to TopTop