Start-Up Strategies for Thermophilic Semi-Continuous Anaerobic Digesters: Assessing the Impact of Inoculum Source and Feed Variability on Efficient Waste-to-Energy Conversion
Abstract
1. Introduction
2. Materials and Methods
2.1. AD System
2.2. Feedstock and Inocula
2.3. Operation and Monitoring
2.4. Physicochemical Analysis and Calculations
2.5. Statistical Analysis
3. Results and Discussion
3.1. Inocula and Substrate Characteristics
3.2. Effect of the Start-Up Strategy on the Stability of Anaerobic Digesters
3.2.1. Comparison Between R1 and R2 in Terms of Gas Production Rate
3.2.2. Comparison Between R1 and R2 in Terms of FOS/TAC and pH
3.2.3. Comparison Between R1 and R2 in Terms of Ammonia Concentration
3.2.4. Stability of Thermophilic Anaerobic Digestion of Sewage Sludge
3.3. Effect of the Start-Up Strategy on the Performance of Anaerobic Digesters
3.3.1. Comparison Between R1 and R2 in Terms of the Methane-Base Biodegradability
3.3.2. Comparison Between R1 and R2 in Terms of Volatile Solid Removal Efficiency
3.3.3. Performance of Thermophilic Anaerobic Digestion of Sewage Sludge
3.4. Steady-State Operation and Mass Balance
3.5. Correlation Between Influent Properties Variability and Reactors’ Response
3.6. Overall Differences Between R1 and R2
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maroun, R.; El Fadel, M. Start-up of anaerobic digestion of source-sorted organic municipal solid waste in the absence of classical inocula. Environ. Sci. Technol. 2007, 41, 6808–6814. [Google Scholar] [CrossRef] [PubMed]
- Calbry-Muzyka, A.; Madi, H.; Rüsch-Pfund, F.; Gandiglio, M.; Biollaz, S. Biogas composition from agricultural sources and organic fraction of municipal solid waste. Renew. Energy 2022, 181, 1000–1007. [Google Scholar] [CrossRef]
- Griffin, M.E.; Mcmahon, K.D.; Mackie, R.I.; Raskin, L. Methanogenic Population Dynamics during Start-Up of Anaerobic Digesters Treating Municipal Solid Waste and Biosolids. Biotechnol. Bioeng. 1998, 57, 342–355. [Google Scholar] [CrossRef]
- Tezel, U.; Tandukar, M.; Hajaya, M.G.; Pavlostathis, S.G. Transition of municipal sludge anaerobic digestion from mesophilic to thermophilic and long-term performance evaluation. Bioresour. Technol. 2014, 170, 385–394. [Google Scholar] [CrossRef]
- Ahmed, W.; Rodríguez, J. A model predictive optimal control system for the practical automatic start-up of anaerobic digesters. Water Res. 2020, 174, 115599. [Google Scholar] [CrossRef]
- Escudié, R.; Cresson, R.; Delgenès, J.P.; Bernet, N. Control of start-up and operation of anaerobic biofilm reactors: An overview of 15 years of research. Water Res. 2011, 45, 1–10. [Google Scholar] [CrossRef]
- Goux, X.; Calusinska, M.; Lemaigre, S.; Marynowska, M.; Klocke, M.; Udelhoven, T.; Benizri, E.; Delfosse, P. Microbial community dynamics in replicate anaerobic digesters exposed sequentially to increasing organic loading rate, acidosis, and process recovery. Biotechnol. Biofuels 2015, 8, 122. [Google Scholar] [CrossRef] [PubMed]
- El-Fadel, M.; Saikaly, P.; Ghanimeh, S. Startup and stability of thermophilic anaerobic digestion of OFMSW. Crit. Rev. Environ. Sci. Technol. 2013, 43, 2685–2721. [Google Scholar] [CrossRef]
- Mcmahon, K.D.; Stroot, P.G.; Mackie, R.I.; Raskin, L. Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions—II: Microbial population dynamics. Water Res. 2001, 35, 1817–1827. [Google Scholar] [CrossRef]
- Angelidaki, I.; Sanders, W. Assessment of the anaerobic biodegradability of macropollutants. Rev. Environ. Sci. Biotechnol. 2004, 3, 117–129. [Google Scholar] [CrossRef]
- Moestedt, J.; Westerholm, M.; Isaksson, S.; Schnürer, A. Inoculum source determines acetate and lactate production during anaerobic digestion of sewage sludge and food waste. Bioengineering 2020, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Mellyanawaty, M.; Nakakoji, S.; Tatara, M.; Marbelia, L.; Sarto; Prijambada, I.D.; Budhijanto, W.; Ueno, Y. Enrichment of thermophilic methanogenic microflora from mesophilic waste activated sludge for anaerobic digestion of garbage slurry. J. Biosci. Bioeng. 2021, 132, 630–639. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Sun, L.; Müller, B.; Schnürer, A. Importance of inoculum source and initial community structure for biogas production from agricultural substrates. Bioresour. Technol. 2017, 245, 768–777. [Google Scholar] [CrossRef] [PubMed]
- Hmaissia, A.; Vaneeckhaute, C. Effects of inoculum temperature and characteristics on cellulose and sewage sludge biodegradability: A comparative study of three inocula. Chemosphere 2025, 372, 144077. [Google Scholar] [CrossRef]
- De Vrieze, J.; Christiaens, M.E.R.; Walraedt, D.; Devooght, A.; Ijaz, U.Z.; Boon, N. Microbial community redundancy in anaerobic digestion drives process recovery after salinity exposure. Water Res. 2017, 111, 109–117. [Google Scholar] [CrossRef]
- Hmaissia, A.; Hernández, E.M.; Vaneeckhaute, C. Comparing sewage sludge vs. digested sludge for starting-up thermophilic two-stage anaerobic digesters: Operational and economic insights. Waste Manag. 2025, 194, 24–35. [Google Scholar] [CrossRef]
- Gu, Y.; Chen, X.; Liu, Z.; Zhou, X.; Zhang, Y. Effect of inoculum sources on the anaerobic digestion of rice straw. Bioresour. Technol. 2014, 158, 149–155. [Google Scholar] [CrossRef]
- Martí-Herrero, J.; Castro, L.; Jaimes-Estévez, J.; Grijalva, M.; Gualatoña, M.; Aldás, M.B.; Escalante, H. Biomethane potential test applied to psychrophilic conditions: Three issues about inoculum temperature adaptation. Bioresour. Technol. Rep. 2022, 20, 101279. [Google Scholar] [CrossRef]
- Tsigkou, K.; Sakarika, M.; Kornaros, M. Inoculum origin and waste solid content influence the biochemical methane potential of olive mill wastewater under mesophilic and thermophilic conditions. Biochem. Eng. J. 2019, 151, 107301. [Google Scholar] [CrossRef]
- Li, K.; Yun, J.; Zhang, H.; Yu, Z. Full-scale anaerobic reactor samples would be more suitable than lab-scale anaerobic reactor and natural samples to inoculate the wheat straw batch anaerobic digesters. Bioresour. Technol. 2019, 293, 122040. [Google Scholar] [CrossRef]
- Li, Q.; Koyama, M.; Nakasaki, K. Effect of storage time on organic matter decomposition during composting by inoculating enriched microorganisms. Environ. Technol. Innov. 2023, 29, 102984. [Google Scholar] [CrossRef]
- Liu, C.; Ge, J.; Dai, J.; Qu, M.; Ouyang, K.; Qiu, Q. The Effects of Mixed Inoculum Storage Time on In Vitro Rumen Fermentation Characteristics, Microbial Diversity, and Community Composition. Animals 2025, 15, 5. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Fotidis, I.A.; Jéglot, A.; Treu, L.; Tian, H.; Palomo, A.; Zhu, X.; Angelidaki, I. Long-term preserved and rapidly revived methanogenic cultures: Microbial dynamics and preservation mechanisms. J. Clean Prod. 2020, 263, 121577. [Google Scholar] [CrossRef]
- Astals, S.; Koch, K.; Weinrich, S.; Hafner, S.D.; Tait, S.; Peces, M. Impact of storage conditions on the methanogenic activity of anaerobic digestion inocula. Water 2020, 12, 1321. [Google Scholar] [CrossRef]
- Nohra, J.A.; Barrington, S.; Frigon, J.C.; Guiot, S.R. In storage psychrophilic anaerobic digestion of swine slurry. Resour. Conserv. Recycl. 2003, 38, 23–37. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, H.; Zhao, Y.; Yuan, X.; Cui, Z. Effect of Temperature on the Inocula Preservation, Mesophilic Anaerobic Digestion Start-Up, and Microbial Community Dynamics. Agronomy 2024, 12, 2991. [Google Scholar] [CrossRef]
- Jain, S.; Jain, S.; Wolf, I.T.; Lee, J.; Tong, Y.W. A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renew. Sustain. Energy Rev. 2015, 52, 142–154. [Google Scholar] [CrossRef]
- Poggi-Varaldo, H.M.; Oleszkiewicz, J.A. Anaerobic co-composting of municipal solid waste and waste sludge at hlgh total solids levels. Environ. Technol. 1992, 13, 409–421. [Google Scholar] [CrossRef]
- McMahon, K.D.; Zheng, D.; Stams, A.J.M.; Mackie, R.I.; Raskin, L. Microbial population dynamics during start-up and overload conditions of anaerobic digesters treating municipal solid waste and sewage sludge. Biotechnol. Bioeng. 2004, 87, 823–834. [Google Scholar] [CrossRef]
- Rimkus, R.R.; Ryan, J.M.; Cook, E.J. Full-Scale Thermophilic Digestion at the West-Southwest Sewage Treatment Works, Chicago, Illinois. Water Pollut. Control. Fed. 1982, 54, 1447–1457. [Google Scholar]
- Bortoloti, M.A.; Challiol, A.Z.; Navarro, B.L.; Sicchieri, I.M.; Kuroda, E.K.; Fernandes, F. Challenges of Load Variation on Anaerobic Digestion of Organic Waste on a Full Scale: An Applied Study. Waste Biomass Valorization 2023, 14, 4141–4154. [Google Scholar] [CrossRef]
- Schievano, A.; D’Imporzano, G.; Orzi, V.; Adani, F. On-field study of anaerobic digestion full-scale plants (Part II): New approaches in monitoring and evaluating process efficiency. Bioresour. Technol. 2011, 102, 8814–8819. [Google Scholar] [CrossRef]
- Haghighi Podeh, M.R.; Bhattacharya, S.K.; Qu, M. Effects of nitrophenols on acetate utilizing methanogenic systems. Water Res. 1995, 29, 391–399. [Google Scholar] [CrossRef]
- Azbar, N.; Ursillo, P.; Speece, R.E. Effect of process configuration and substrate complexity on the performance of anaerobic processes. Water Res. 2001, 35, 817–829. [Google Scholar] [CrossRef]
- Alvarez, R.; Villca, S.; Lidén, G. Biogas production from llama and cow manure at high altitude. Biomass Bioenergy 2006, 30, 66–75. [Google Scholar] [CrossRef]
- Eaton, A.D. (Ed.) Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 1999. [Google Scholar]
- Boyle, W.C. Energy Recovery from Sanitary Landfills—A review. In Microbial Energy Conversion; Elsevier: Amsterdam, The Netherlands, 1977; pp. 119–138. [Google Scholar]
- Raposo, F.; Fernández-Cegrí, V.; de la Rubia, M.A.; Borja, R.; Béline, F.; Fernández-Polanco, M.; Frigon, J.C.; Ganesh, R.; Kaparaju, P.; Koubova, J.; et al. Biochemical methane potential (BMP) of solid organic substrates: Evaluation of anaerobic biodegradability using data from an international interlaboratory study. J. Chem. Technol. Biotechnol. 2011, 86, 1088–1098. [Google Scholar] [CrossRef]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Olivoto, T.; Lúcio, A.D.C. metan: An R package for multi-environment trial analysis. Methods Ecol. Evol. 2020, 11, 783–789. [Google Scholar] [CrossRef]
- Babson, D.M.; Bellman, K.; Prakash, S.; Fennell, D.E. Anaerobic digestion for methane generation and ammonia reforming for hydrogen production: Athermodynamic energy balance of a model system to demonstrate net energy feasibility. Biomass Bioenergy 2013, 56, 493–505. [Google Scholar] [CrossRef]
- Hao, T.; Xiao, Y.; Varjani, S. Transiting from the inhibited steady-state to the steady-state through the ammonium bicarbonate mediation in the anaerobic digestion of low-C/N-ratio food wastes. Bioresour. Technol. 2022, 351, 127046. [Google Scholar] [CrossRef]
- Moure Abelenda, A.; Aiouache, F. Flash Distillation Process for Stabilization of Anaerobic Digestate and Synthesis of Ammonium Bicarbonate. Preprints 2023, 2023052236. [Google Scholar] [CrossRef]
- Braguglia, C.M.; Gallipoli, A.; Gianico, A.; Pagliaccia, P. Anaerobic bioconversion of food waste into energy: A critical review. Bioresour. Technol. 2018, 248, 37–56. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tian, H.; Wang, X.; Tong, Y.W. Effects of activated carbon on mesophilic and thermophilic anaerobic digestion of food waste: Process performance and life cycle assessment. Chem. Eng. J. 2020, 399, 125757. [Google Scholar] [CrossRef]
- Kobayashi, T.; Yasuda, D.; Li, Y.Y.; Kubota, K.; Harada, H.; Yu, H.Q. Characterization of start-up performance and archaeal community shifts during anaerobic self-degradation of waste-activated sludge. Bioresour. Technol. 2009, 100, 4981–4988. [Google Scholar] [CrossRef]
- Tezel, U.; Tandukar, M.; Pavlostathis, S.G. Anaerobic Biotreatment of Municipal Sewage Sludge. In Comprehensive Biotechnology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 6, pp. 447–461. [Google Scholar]
- Córdoba, V.; Fernández, M.; Santalla, E. The effect of different inoculums on anaerobic digestion of swine wastewater. J. Environ. Chem. Eng. 2016, 4, 115–122. [Google Scholar] [CrossRef]
- Angelidaki, I.; Chen, X.; Cui, J.; Kaparaju, P.; Ellegaard, L. Thermophilic anaerobic digestion of source-sorted organic fraction of household municipal solid waste: Start-up procedure for continuously stirred tank reactor. Water Res. 2006, 40, 2621–2628. [Google Scholar] [CrossRef]
- Tian, Z.; Zhang, Y.; Li, Y.; Chi, Y.; Yang, M. Rapid establishment of thermophilic anaerobic microbial community during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester. Water Res. 2015, 69, 9–19. [Google Scholar] [CrossRef]
- Shin, J.; Jang, H.M.; Shin, S.G.; Kim, Y.M. Thermophilic anaerobic digestion: Effect of start-up strategies on performance and microbial community. Sci. Total. Environ. 2019, 687, 87–95. [Google Scholar] [CrossRef]
- Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on research achievements of biogas from anaerobic digestion. Renew. Sustain. Energy Rev. 2015, 45, 540–555. [Google Scholar] [CrossRef]
- Cioabla, A.E.; Ionel, I.; Dumitrel, G.-A.; Popescu, F. Comparative study on factors affecting anaerobic digestion of agricultural vegetal residues. Biotechnol. Biofuels 2012, 5, 39. [Google Scholar] [CrossRef]
- Iranpour, R.; Oh, S.; Cox, H.H.J.; Shao, Y.J.; Moghaddam, O.; Kearney, R.J.; Deshusses, M.A.; Stenstrom, M.K.; Ahring, B.K. Changing Mesophilic Wastewater Sludge Digestion into Thermophilic Operation at Terminal Island Treatment Plant. Water Environ. Res. 2002, 74, 494–507. [Google Scholar] [CrossRef]
- Kroeker, E.J.; Schulte, D.D.; Sparling, A.B.; Lapp, H.M. Anaerobic Treatment Process Stability. Water Pollut. Control. Fed. 1979, 51, 718–727. [Google Scholar]
- Scano, E.A.; Asquer, C.; Pistis, A.; Ortu, L.; Demontis, V.; Cocco, D. Biogas from anaerobic digestion of fruit and vegetable wastes: Experimental results on pilot-scale and preliminary performance evaluation of a full-scale power plant. Energy Convers. Manag. 2014, 77, 22–30. [Google Scholar] [CrossRef]
- De La Rubia, M.A.; Riau, V.; Raposo, F.; Borja, R. Thermophilic anaerobic digestion of sewage sludge: Focus on the influence of the start-up A review. Crit. Rev. Biotechnol. 2013, 33, 448–460. [Google Scholar] [CrossRef]
- Karthikeyan, O.P.; Visvanathan, C. Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: A review. Rev. Environ. Sci. Biotechnol. 2013, 12, 257–284. [Google Scholar] [CrossRef]
- Chandra, R.; Takeuchi, H.; Hasegawa, T. Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Energy Rev. 2012, 16, 1462–1476. [Google Scholar] [CrossRef]
- Fikri Hamzah, M.A.; Md Jahim, J.; Mohamed Abdul, P. Comparative start-up between mesophilic and thermophilic for acidified palm oil mill effluent treatment. IOP Conf. Ser. Earth Environ. Sci. 2019, 268, 012028. [Google Scholar] [CrossRef]
- Tonanzi, B.; Gallipoli, A.; Gianico, A.; Montecchio, D.; Pagliaccia, P.; Di Carlo, M.; Rossetti, S.; Braguglia, C.M. Long-term anaerobic digestion of food waste at semi-pilot scale: Relationship between microbial community structure and process performances. Biomass Bioenergy 2018, 118, 55–64. [Google Scholar] [CrossRef]
- Batstone, D.J.; Angelidaki, I.; Vavilin, V. Anaerobic digestion model No 1 (ADM1). Water Sci. Technol. 2002, 45, 65–73. [Google Scholar] [CrossRef]
- Anthonisen, A.C.; Loehr, R.C.; Prakasam, T.B.S.; Srinath, E.G. Inhibition of nitrification by ammonia and nitrous acid. J. Water Pollut. Control Fed. 1976, 48, 835–852. [Google Scholar]
- Weiland, P. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef]
- López-Escobar, L.A.; Martínez-Hernández, S.; Corte-Cano, G.; Méndez-Contreras, J.M. Influence of organic loading rate on methane production in a CSTR from physicochemical sludge generated in a poultry slaughterhouse. J. Environ. Sci. Health A Tox Hazard. Subst. Environ. Eng. 2014, 49, 1710–1717. [Google Scholar] [CrossRef]
- Nakasaki, K.; Kwon, S.H.; Takemoto, Y. An interesting correlation between methane production rates and archaea cell density during anaerobic digestion with increasing organic loading. Biomass Bioenergy 2015, 78, 17–24. [Google Scholar] [CrossRef]
- Steiniger, B.; Hupfauf, S.; Insam, H.; Schaum, C. Exploring Anaerobic Digestion from Mesophilic to Thermophilic Temperatures—Operational and Microbial Aspects. Fermentation 2023, 9, 798. [Google Scholar] [CrossRef]
- Wirasembada, Y.C.; Shin, B.; Shin, J.; Kurniawan, A.; Cho, J. Effects of sudden shock load on simultaneous biohythane production in two-stage anerobic digestion of high-strength organic wastewater. Bioresour. Technol. 2023, 394, 130186. [Google Scholar] [CrossRef]
- Mercado, J.V.; Koyama, M.; Nakasaki, K. Complexity of acclimatization substrate affects anaerobic digester microbial community response to organic load shocks. Environ. Res. 2022, 216, 114722. [Google Scholar] [CrossRef]
- De La Rubia, M.A.; Romero, L.I.; Sales, D.; Perez, M. Temperature conversion (mesophilic to thermophilic) of municipal sludge digestion. AIChE J. 2005, 51, 2581–2586. [Google Scholar] [CrossRef]
- Ghanimeh, S.; Al-Sanioura, D.; Saikaly, P.E.; El-Fadel, M. Comparison of Single-Stage and Two-Stage Thermophilic Anaerobic Digestion of SS-OFMSW During the Start-Up Phase. Waste Biomass Valorization 2020, 11, 6709–6716. [Google Scholar] [CrossRef]
- Kim, M.; Cui, F. Multiple-layer statistical methodology for developing data-driven models of anaerobic digestion process. J. Environ. Manag. 2023, 347, 119153. [Google Scholar] [CrossRef]
- Tisocco, S.; Weinrich, S.; Lyons, G.; Wills, M.; Zhan, X.; Crosson, P. Application of a simplified ADM1 for full-scale anaerobic co-digestion of cattle slurry and grass silage: Assessment of input variability. Front. Environ. Sci. Eng. 2023, 18, 50. [Google Scholar] [CrossRef]
- Jørgensen, N.O.G. Organic Nitrogen; Elsevier Inc.: Amsterdam, The Netherlands, 2009; pp. 832–851. [Google Scholar]
- Fang, H.H.P.; Lau, I.W.C. Startup of thermophilic (55 °C) UASB reactors using different mesophilic seed sludges. Water Sci. Technol. 1996, 34, 445–452. [Google Scholar] [CrossRef]
- Kadam, P.C.; Boone, D.R. Influence of pH on Ammonia Accumulation and Toxicity in Halophilic, Methylotrophic Methanogens. Appl. Environ. Microbiol. 1996, 62, 4486–4492. [Google Scholar] [CrossRef]
- Filer, J.; Ding, H.H.; Chang, S. Biochemical methane potential (BMP) assay method for anaerobic digestion research. Water 2019, 11, 921. [Google Scholar] [CrossRef]
- Bonk, F.; Popp, D.; Weinrich, S.; Sträuber, H.; Kleinsteuber, S.; Harms, H.; Centler, F. Intermittent fasting for microbes: How discontinuous feeding increases functional stability in anaerobic digestion 06 Biological Sciences 0605 Microbiology. Biotechnol. Biofuels 2018, 11, 274. [Google Scholar] [CrossRef]
- Toreci, I.; Droste, R.L.; Kennedy, K.J. Mesophilic Anaerobic Digestion with High-Temperature Microwave Pretreatment and Importance of Inoculum Acclimation. Water Environ Res. 2011, 83, 549–559. [Google Scholar] [CrossRef]
- Ghanimeh, S.; El Fadel, M.; Saikaly, P. Mixing effect on thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste. Bioresour. Technol. 2012, 117, 63–71. [Google Scholar] [CrossRef]
Event | Week | OLR Change |
---|---|---|
E1 | 4 | Increase from 0.97 to 2.43 g VS·d−1·Lreactor−1. |
E2 | 7 | Increase from 2.87 to 3.36 g VS·d−1·Lreactor−1 followed by a rapid decrease to 2.85 g VS·d−1·Lreactor−1 after two days because of the reception of a different load of SS. |
E3 | 9–10 | Increase of OLR to 4.42 g VS·d−1·Lreactor−1 followed by a decrease to 3.64 g VS·d−1·Lreactor−1 after reaching the full load HRT. |
Parameter | Unit | Sewage Sludge | Post-Treated Inoculum | Fresh Thermophilic Inoculum | ||
---|---|---|---|---|---|---|
Min | Max | Mean | ||||
TS | %FM | 5.1 | 7.2 | 5.8 ± 0.7 | 1.6 | 2.2 |
VS | %FM | 4.1 | 5.3 | 4.6 ± 0.4 | 0.8 | 1.3 |
CODt | g·L−1 | 53.3 | 101.5 | 81.8 ± 15.6 | 13.3 | 14.9 |
Ammonia | mg·L−1 | 86.1 | 279.0 | 138.0 ± 65.7 | 2140.0 | 1898.0 |
pH | - | 5.34 | 6.03 | 5.60 ± 0.21 | 8.41 | 8.91 |
Alkalinity | g·L−1 | 1.59 | 2.26 | 1.92 ± 0.27 | 11.90 | 10.47 |
VFA * | g aace·L−1 | 6.46 | 10.42 | 8.16 ± 1.55 | 1.94 | 1.65 |
TKN | g·L−1 | 1.70 | 2.80 | 2.25 ± 0.35 | 2.39 | 2.07 |
TN | mg·L−1 | 1.79 | 2.91 | 2.34 ± 0.39 | 2.44 | 2.12 |
C | %TS | 36.83 | 41.80 | 39.55 ± 1.78 | - | - |
H | %TS | 5.22 | 6.05 | 5.65 ± 0.29 | - | - |
O | %TS | 27.88 | 32.70 | 31.08 ± 1.60 | - | - |
N | %TS | 3.25 | 4.39 | 3.80 ± 0.35 | - | - |
S | %TS | 0.38 | 0.54 | 0.45 ± 0.05 | - | - |
C/N | - | 9.07 | 12.07 | 10.53 | - | - |
B0-th | NmL·(gVS)−1 | 461.30 | 508.38 | 489.43 ± 17.05 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hmaissia, A.; Hernández, E.M.; Boivin, S.; Vaneeckhaute, C. Start-Up Strategies for Thermophilic Semi-Continuous Anaerobic Digesters: Assessing the Impact of Inoculum Source and Feed Variability on Efficient Waste-to-Energy Conversion. Sustainability 2025, 17, 5020. https://doi.org/10.3390/su17115020
Hmaissia A, Hernández EM, Boivin S, Vaneeckhaute C. Start-Up Strategies for Thermophilic Semi-Continuous Anaerobic Digesters: Assessing the Impact of Inoculum Source and Feed Variability on Efficient Waste-to-Energy Conversion. Sustainability. 2025; 17(11):5020. https://doi.org/10.3390/su17115020
Chicago/Turabian StyleHmaissia, Amal, Edgar Martín Hernández, Steve Boivin, and Céline Vaneeckhaute. 2025. "Start-Up Strategies for Thermophilic Semi-Continuous Anaerobic Digesters: Assessing the Impact of Inoculum Source and Feed Variability on Efficient Waste-to-Energy Conversion" Sustainability 17, no. 11: 5020. https://doi.org/10.3390/su17115020
APA StyleHmaissia, A., Hernández, E. M., Boivin, S., & Vaneeckhaute, C. (2025). Start-Up Strategies for Thermophilic Semi-Continuous Anaerobic Digesters: Assessing the Impact of Inoculum Source and Feed Variability on Efficient Waste-to-Energy Conversion. Sustainability, 17(11), 5020. https://doi.org/10.3390/su17115020