Dark Fermentation and Anaerobic Digestion for H2 and CH4 Production, from Food Waste Leachates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Bench-Scale Tests
2.2. Biogas Production
Produced Yields
2.3. Biogas Composition
2.4. H2S Percentage
3. Materials and Methods
3.1. Materials
3.1.1. Food Waste Leachates
3.1.2. Anaerobic Sludge
3.1.3. Experimental Procedure
3.1.4. HRT
3.2. Methods
3.2.1. Analytical Methods
3.2.2. Potential Yield
3.2.3. MicroGC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Institute of Food Science and Technology (IFST), Food Waste. Available online: https://www.ifst.org/resources/information-statements/food-waste (accessed on 9 August 2024).
- Sahota, S.; Kumar, S.; Lombardi, L. Biohythane, Biogas, and Biohydrogen Production from Food Waste: Recent Advancements, Technical Bottlenecks, and Prospects. Energies 2024, 17, 666. [Google Scholar] [CrossRef]
- Eurostat 2024, Food Waste and Food Waste Prevention–Estimates. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Food_waste_and_food_waste_prevention_-_estimates (accessed on 24 July 2024).
- Directive of the European Parliament and of the Council Amending Directive 2008/98/EC on Waste. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:1fefebb0-1b4e-11ee-806b-01aa75ed71a1.0001.02/DOC_5&format=PDF (accessed on 24 July 2024).
- UN Environment Programme, Food Waste Index Report 2024. Available online: https://www.unep.org/resources/publication/food-waste-index-report-2024 (accessed on 9 August 2024).
- Kannah, R.Y.; Merrylin, J.; Devi, T.P.; Kavitha, S.; Sivashanmugam, P.; Kumar, G.; Banu, J.R. Food waste valorization: Biofuels and value added product recovery. Bioresour. Technol. Rep. 2020, 11, 100524. [Google Scholar] [CrossRef]
- Yun, Y.-M.; Lee, M.-K.; Im, S.-W.; Marone, A.; Trably, E.; Shin, S.-R.; Kim, M.-G.; Cho, S.-K.; Kim, D.-H. Biohydrogen production from food waste: Current status, limitations, and future perspectives. Bioresour. Technol. 2018, 248, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, A.; Kumar, P.S.; Khoo, K.S.; Show, P.L.; Carolin, C.F.; Jackulin, C.F.; Jeevanantham, S.; Karishma, S.; Show, K.Y.; Lee, D.J.; et al. Biohydrogen from organic wastes as a clean and environment-friendly energy source: Production pathways, feedstock types, and future prospects. Bioresour. Technol. 2021, 342, 126021. [Google Scholar] [CrossRef]
- Lay, C.-H.; Kuo, S.-Y.; Sen, B.; Chen, C.-C.; Chang, J.-S.; Lin, C.-Y. Fermentative biohydrogen production from starch-containing textile wastewater. Int. J. Hydrogen Energy 2012, 37, 2050–2057. [Google Scholar] [CrossRef]
- Nagarajan, D.; Lee, D.-J.; Kondo, A.; Chang, J.-S. Recent insights into biohydrogen production by microalgae–From biophotolysis to dark fermentation. Bioresour. Technol. 2017, 227, 373–387. [Google Scholar] [CrossRef] [PubMed]
- Kamusoko, R.; Raphael; Jingura, M.; Chikwambi, Z.; Parawira, W. Handbook of Biofuels; Academic Press, Sarojini Naidu Government Girl’s Postgraduate College: Bhopal, India, 2022; pp. 485–497. [Google Scholar]
- Park, J.; Kim, D.; Baik, J.; Park, J.; Yoon, J.; Lee, C.; Kim, S. Improvement in H2 production from Clostridium butyricum by co-culture with Sporolactobacillus vineae. Fuel 2021, 285, 119051. [Google Scholar] [CrossRef]
- Swaminaathan, P.; Saravanan, A. Thamarai, Utilization of bioresources for high-value bioproducts production: Sustainability and perspectives in circular bioeconomy. Sustain. Energy Technol. Assess 2024, 63, 103672. [Google Scholar]
- Kang, S.; Fu, J.; Zhang, G. From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis. Renew. Sustain. Energy Rev. 2018, 94, 340–362. [Google Scholar] [CrossRef]
- Villanueva-Galindo, E.; Vital-Jacome, M.; Moreno-Andrade, I. Dark fermentation for H2 production from food waste and novel strategies for its enhancement. Int. J. Hydrogen Energy 2023, 48, 9957–9970. [Google Scholar] [CrossRef]
- Martínez-Fraile, C.; Muñoz, R.; Teresa Simorte, M.; Sanz, I.; García-Depraect, O. Biohydrogen production by lactate-driven dark fermentation of real organic wastes derived from solid waste treatment plants. Bioresour. Technol. 2024, 403, 130846. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Mendoza, L.J.; Lebrero, R.; Muñoz, R.; García-Depraect, O. Influence of key operational parameters on biohydrogen production from fruit and vegetable waste via lactate-driven dark fermentation. Bioresour. Technol. 2022, 364, 128070. [Google Scholar] [CrossRef] [PubMed]
- Cappai, G.; De Gioannis, G.; Muntoni, A.; Spiga, D.; Boni, M.R.; Polettini, A.; Pomi, R.; Rossi, A. Biohydrogen Production from Food Waste: Influence of the Inoculum-To-Substrate Ratio. Sustainability 2018, 10, 4506. [Google Scholar] [CrossRef]
- Pilarska, A.A.; Kulupa, T.; Kubiak, A.; Wolna-Maruwka, A.; Pilarski, K.; Niewiadomska, A. Anaerobic Digestion of Food Waste—A Short Review. Energies 2023, 16, 5742. [Google Scholar] [CrossRef]
- Filer, J.; Ding, H.H.; Chang, S. Biochemical Methane Potential (BMP) Assay Method for Anaerobic Digestion Research. Water 2019, 11, 921. [Google Scholar] [CrossRef]
- Kontodimos, I.; Ketikidis, C.; Grammelis, P. Valorization of Food Waste Leachates through Anaerobic Digestion. Eng. Proc. 2022, 31, 25. [Google Scholar] [CrossRef]
- Nathao, C.; Sirisukpoka, U.; Pisutpaisal, N. Production of hydrogen and methane by one and two stage fermentation of food waste. Int. J. Hydrogen Energy 2013, 38, 15764–15769. [Google Scholar] [CrossRef]
- Hans, M.; Kumar, S. Biohythane production in two-stage anaerobic digestion system. Int. J. Hydrogen Energy 2019, 44, 17363–17380. [Google Scholar] [CrossRef]
- Chu, C.; Li, Y.; Xu, K.; Ebie, Y.; Inamori, Y.; Kong, H. A pH- and temperature-phased two-stage process for hydrogen and methane production from food waste. Int. J. Hydrogen Energy 2008, 33, 4739–4746. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Y. A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process. Int. J. Hydrogen Energy 2008, 34, 245–254. [Google Scholar] [CrossRef]
- Sukphun, P.; Wongarmat, W.; Imai, T.; Sittijunda, S.; Chaiprapat, S.; Reungsang, A. Two-stage biohydrogen and methane production from sugarcane-based sugar and ethanol industrial wastes: A comprehensive review. Bioresour. Technol. 2023, 386, 129519. [Google Scholar] [CrossRef] [PubMed]
- Kontodimos, I.; Papadelis, C.E.; Margaritis, N.; Grammelis, P. Valorization of Medical Plants Residues through Anaerobic Digestion. Waste Biomass Valor 2025, 16, 119–129. [Google Scholar] [CrossRef]
- Tian, G.; Xi, J.; Yeung, M.; Ren, G. Characteristics and mechanisms of H2S production in anaerobic digestion of food waste. Sci. Total Environ. 2020, 724, 137977. [Google Scholar] [CrossRef] [PubMed]
- Magrini, F.E.; de Almeida, G.M.; da Maia Soares, D.; Fuentes, L.; Ecthebehere, C.; Beal, L.L.; da Silveira, M.M.; Paesi, S. Effect of different heat treatments of inoculum on the production of hydrogen and volatile fatty acids by dark fermentation of sugarcane vinasse. Biomass Conv. Bioref. 2021, 11, 2443–2456. [Google Scholar] [CrossRef]
- VDI 4630; Fermentation of Organic Materials-Characterization of the Substrate, Sampling, Collection of Material Data, Fermentation Tests; VDI-Gesellschaft Energie und Umwelt: Düsseldorf, Germany, 2016.
- APHA/AWWA/WEF; Standard Methods for the Examination of Water and Wastewater, Stand. Methods. American Public Health Association: Washington, DC, USA, 2012; p. 541.
- Mota, V.T.; Santos, F.S.; Araujo, T.A.; Amaral, M.C.S. Evaluation of titrations methods for volatile fatty acids measurement: Effect of the bicarbonate interference and feasibility for the monitoring of anaerobic reactors. Water Pract. Technol. 2015, 10, 486–495. [Google Scholar] [CrossRef]
Parameter (Unit) | CSTR1 0.3 Start | CSTR1 0.3 Final | CSTR1 0.5 Start | CSTR1 0.5 Final |
---|---|---|---|---|
pH (−) | 4.9 | 3.56 | 5.6 | 4.83 |
TS (g/L) | 39.9 | 30.8 | 40.6 | 30.4 |
VS (g/L) | 31.5 | 24.6 | 29.7 | 22.7 |
Alkalinity (g CaCO3/L) | 2.1 | 1.8 | 2.0 | 1.7 |
VFAs (g HACeq/L) | - 1 | |||
COD (g/L) | 36.7 | 32.6 | 31.1 | 28.9 |
NH4+ (g/L) | 0.64 | 0.62 | 0.79 | 0.82 |
H2 NmL | 134.8 | 82.2 | ||
H2 NmL/g VSadded | 8.2 | 6.1 | ||
VSbiodegradability (%) | 21.9 | 23.6 | ||
CODbiodegradability (%) | 11.2 | 7.1 |
Parameter (Unit) | CSTR2 0.3 Start | CSTR2 0.3 Final | CSTR2 0.5 Start | CSTR2 0.5 Final |
---|---|---|---|---|
pH (−) | 7.00 | 8.44 | 7.12 | 8.56 |
TS (g/L) | 41.3 | 16.7 | 41.1 | 17.3 |
VS (g/L) | 25.2 | 8.5 | 24.8 | 8.5 |
Alkalinity (g CaCO3/L) | 2.7 | 7.5 | 2.7 | 7.5 |
VFAs (g HACeq/L) | 1.6 | 0.9 | 1.4 | 0.8 |
COD (g/L) | 19.1 | 9.4 | 17.3 | 6.9 |
NH4+ (g/L) | 1.46 | 1.89 | 1.54 | 1.88 |
VFAs/Alkalinity | 0.59 | 0.12 | 0.52 | 0.11 |
CH4 NmL | 6769.1 | 6714.7 | ||
CH4 NmL/g VSadded | 275.2 | 277.5 | ||
VSbiodegradability (%) | 66.3 | 65.7 | ||
CODbiodegradability (%) | 50.8 | 60.1 |
Test | Time (Hrs) | CH4 (%) | H2 (%) | CO2 (%) | H2S (%) | Other Gases (%) |
---|---|---|---|---|---|---|
Dark Fermentation | ||||||
CSTR1 0.3 | 0.0 | 40.3 | 57.2 | - | 2.5 | |
CSTR1 0.5 | 0.0 | 38.3 | 56.4 | - | 5.3 | |
Anaerobic Digestion | ||||||
CSTR2 0.3 | 24 | 6.3 | 0.1 | 64.9 | n.d. 1 | 28.7 |
48 | 10.9 | 0.2 | 80.9 | 0.117 | 8.0 | |
144 | 36.9 | 0.0 | 61.6 | 0.375 | 1.1 | |
192 | 49.5 | 0.0 | 48.9 | 0.243 | 1.4 | |
240 | 65.9 | 0.0 | 32.2 | 0.103 | 1.8 | |
312 | 74.3 | 0.0 | 23.7 | 0.057 | 1.9 | |
360 | 73.7 | 0.0 | 24.6 | 0.041 | 1.7 | |
408 | 73.5 | 0.0 | 25.3 | 0.027 | 1.1 | |
480 | 81.2 | 0.0 | 17.6 | 0.019 | 1.2 | |
CSTR2 0.5 | 24 | 7.3 | 0.0 | 53.5 | n.d. 1 | 39.2 |
48 | 14.6 | 0.4 | 77.7 | 0.108 | 7.1 | |
144 | 45.7 | 0.0 | 52.3 | 0.246 | 1.7 | |
192 | 64.4 | 0.0 | 33.8 | 0.140 | 1.7 | |
240 | 72.5 | 0.0 | 25.8 | 0.087 | 1.7 | |
312 | 72.4 | 0.0 | 26.2 | 0.066 | 1.4 | |
360 | 77.6 | 0.0 | 21.0 | 0.049 | 1.3 | |
408 | 79.0 | 0.0 | 19.6 | 0.041 | 1.4 | |
480 | 79.8 | 0.0 | 18.6 | 0.033 | 1.6 |
Parameter (Unit) | AS | FWL |
---|---|---|
pH (−) | 8.18 | 3.25 |
TS (g/L) | 47.0 | 39.6 |
VS (g/L) | 25.9 | 30.0 |
Alkalinity (g CaCO3/L) | 2.7 | 1.8 |
VFAs (g HACeq/L) | 0.37 | - 1 |
COD (g/L) | 8.2 | 41.9 |
NH4+ (g/L) | 1.3 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kontodimos, I.; Evaggelou, C.; Margaritis, N.; Grammelis, P.; Goula, M. Dark Fermentation and Anaerobic Digestion for H2 and CH4 Production, from Food Waste Leachates. Methane 2025, 4, 11. https://doi.org/10.3390/methane4020011
Kontodimos I, Evaggelou C, Margaritis N, Grammelis P, Goula M. Dark Fermentation and Anaerobic Digestion for H2 and CH4 Production, from Food Waste Leachates. Methane. 2025; 4(2):11. https://doi.org/10.3390/methane4020011
Chicago/Turabian StyleKontodimos, Ioannis, Christos Evaggelou, Nikolaos Margaritis, Panagiotis Grammelis, and Maria Goula. 2025. "Dark Fermentation and Anaerobic Digestion for H2 and CH4 Production, from Food Waste Leachates" Methane 4, no. 2: 11. https://doi.org/10.3390/methane4020011
APA StyleKontodimos, I., Evaggelou, C., Margaritis, N., Grammelis, P., & Goula, M. (2025). Dark Fermentation and Anaerobic Digestion for H2 and CH4 Production, from Food Waste Leachates. Methane, 4(2), 11. https://doi.org/10.3390/methane4020011