Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (224)

Search Parameters:
Keywords = contact strip

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 12626 KB  
Article
Effects of Annealing Temperature on the Microstructure and Mechanical Properties of Asymmetrically Rolled Ultra-Thin Ti-6Al-4V
by Tao Sun, Tan Liu, Mingpei Jiang, Peng Huang, Xianli Yang and Xianlei Hu
Materials 2025, 18(23), 5436; https://doi.org/10.3390/ma18235436 - 2 Dec 2025
Viewed by 286
Abstract
In this study, the asymmetrical rolling technique was employed to fabricate 75 μm-thick Ti-6Al-4V ultra-thin strips from the initial 0.45 mm sheet without intermediate annealing, aiming for applications in fuel cell bipolar plates. The rolled strips exhibited good surface quality without cracking. In [...] Read more.
In this study, the asymmetrical rolling technique was employed to fabricate 75 μm-thick Ti-6Al-4V ultra-thin strips from the initial 0.45 mm sheet without intermediate annealing, aiming for applications in fuel cell bipolar plates. The rolled strips exhibited good surface quality without cracking. In order to enhance both the mechanical response and the shaping capability of Ti-6Al-4V strips produced by asymmetric rolling, the material was subjected to annealing at various temperatures, and the resulting changes in microstructural features and mechanical performance were systematically examined. The findings indicated that the cold-rolled Ti-6Al-4V exhibited a microstructure primarily composed of subgrains with an average size of approximately 0.41 μm, a feature that contributed to improved corrosion resistance and enhanced ductility after annealing. When the alloy was subjected to heat treatment within the range of 650–800 °C, it was observed that annealing temperatures below 700 °C favored microstructural changes governed predominantly by recovery processes and the onset of recrystallization. At 700 °C, the grains became equiaxed and uniformly distributed, and the dislocation density significantly decreased. The tensile strength reached 887 MPa, while the elongation increased to 13.7%, achieving an excellent strength-ductility balance. Once the annealing temperature rose above 700 °C, noticeable grain growth took place, accompanied by a more pronounced grain-size gradient and a renewed increase in dislocation density. Meanwhile, the dimples observed on the fracture surface became finer, collectively contributing to a decline in tensile elongation. The Ti-6Al-4V ultra-thin strip annealed at 700 °C was used for bipolar plate stamping, producing fine micro-channels with an aspect ratio of 0.43. Finally, TiN coating was applied to the surface, which significantly improved the corrosion resistance and reduced the interfacial contact resistance (ICR), meeting the performance requirements for bipolar plates. Full article
Show Figures

Figure 1

14 pages, 1368 KB  
Article
Biomarker-Based Diagnosis of Contact Dermatitis: A Step Towards More Accurate and Patient-Friendly Testing
by Nique Grob, Thomas Rustemeyer and Florentine de Boer
Clin. Pract. 2025, 15(12), 217; https://doi.org/10.3390/clinpract15120217 - 21 Nov 2025
Viewed by 285
Abstract
Background: Contact dermatitis (CD) is a prevalent inflammatory skin condition, with diagnostic challenges in distinguishing allergic (ACD) from irritant contact dermatitis (ICD). This study aimed to explore cholesterol-derived biomarkers as potential diagnostic tools. As cholesterol derivatives play key roles in skin barrier integrity [...] Read more.
Background: Contact dermatitis (CD) is a prevalent inflammatory skin condition, with diagnostic challenges in distinguishing allergic (ACD) from irritant contact dermatitis (ICD). This study aimed to explore cholesterol-derived biomarkers as potential diagnostic tools. As cholesterol derivatives play key roles in skin barrier integrity and inflammation, they are promising candidates for assessing skin barrier disruption in CD. Methods: Stratum corneum samples were collected by tape stripping from experimentally induced and chronic lesions, as well as healthy non-lesional skin. Biomarkers Cholesterol Sulfate (Chol-Sulf), Cholesterol Glucosyl (Chol-Glc) and their ratio were quantified. Data were analyzed using ANOVA, Pearson’s correlation, logistic regression and ROC curves. Results: Chol-Glc and the Chol-Glc/Chol-Sulf ratio differed significantly across the diagnostic groups, while Chol-Sulf did not. Logistic regression and ROC analyses revealed a limited standalone diagnostic accuracy for the individual biomarkers (all AUC < 0.6). Conclusions: Chol-Glc and the ratio exhibit disease-specific patterns relevant for subtype discrimination. Although insufficient as independent diagnostic tools, these markers may contribute to future multivariate diagnostic models for CD diagnosis. Full article
Show Figures

Figure 1

14 pages, 5498 KB  
Article
A Broad Photon Energy Range Multi-Strip Imaging Array Based upon Single Crystal Diamond Schottky Photodiode
by Claudio Verona, Maurizio Angelone, Marco Marinelli and Gianluca Verona-Rinati
Instruments 2025, 9(4), 26; https://doi.org/10.3390/instruments9040026 - 28 Oct 2025
Viewed by 419
Abstract
A multi-strip detector made of synthetic single crystal diamond (SCD), based on a p-type/intrinsic diamond/Schottky metal transverse configuration and operating at zero bias voltage, was developed for imaging from extreme UV (EUV) to soft X-rays. The photodetector was patterned with 32 strips made [...] Read more.
A multi-strip detector made of synthetic single crystal diamond (SCD), based on a p-type/intrinsic diamond/Schottky metal transverse configuration and operating at zero bias voltage, was developed for imaging from extreme UV (EUV) to soft X-rays. The photodetector was patterned with 32 strips made of boron-doped diamond directly deposited, by means of the CVD technique and the standard lithographic technique, on top of the HPHT diamond growth substrate. The width of each strip and the gap between two adjacent strips were 100 μm and 20 μm, respectively. The strips were embedded in intrinsic SCD of an active area of 3.2 × 2.5 mm2, also deposited using the CVD technique in a separate growing machine. In the present structure, the prototype photodetector is suitable for 1D imaging. However, all the dimensions above can be varied depending on the applications. The use of p-type diamond strips represents an attempt to mitigate the photoelectron emission from metal contacts, a non-negligible problem under EUV irradiation. The detector was tested with UV radiation and soft X-rays. To test the photodetector as an imaging device, a headboard (XDAS-DH) and a signal processing board (XDAS-SP) were used as front-end electronics. A standard XDAS software was used to acquire the experimental data. The results of the tests and the detector’s construction process are presented and discussed in the paper. Full article
Show Figures

Figure 1

16 pages, 4514 KB  
Article
LATP-Enhanced Polymer Electrolyte for an Integrated Solid-State Battery
by Xianzheng Liu, Nashrah Hani Jamadon, Liancheng Zheng, Rongji Tang and Xiangjun Ren
Polymers 2025, 17(19), 2673; https://doi.org/10.3390/polym17192673 - 2 Oct 2025
Viewed by 1286
Abstract
Traditional liquid electrolyte batteries face safety concerns such as leakage and flammability, while further optimization has reached a bottleneck. Solid electrolytes are therefore considered a promising solution. Here, a PEO–LiTFSI–LATP (PELT) composite electrolyte was developed by incorporating nanosized Li1.3Al0.3Ti [...] Read more.
Traditional liquid electrolyte batteries face safety concerns such as leakage and flammability, while further optimization has reached a bottleneck. Solid electrolytes are therefore considered a promising solution. Here, a PEO–LiTFSI–LATP (PELT) composite electrolyte was developed by incorporating nanosized Li1.3Al0.3Ti1.7(PO4)3 fillers into a polyethylene oxide matrix, effectively reducing crystallinity, enhancing mechanical robustness, and providing additional Li+ transport channels. The PELT electrolyte exhibited an electrochemical stability window of 4.9 V, an ionic conductivity of 1.2 × 10−4 S·cm−1 at 60 °C, and a Li+ transference number (tLi+) of 0.46, supporting stable Li plating/stripping for over 600 h in symmetric batteries. More importantly, to address poor electrode–electrolyte contact in conventional layered cells, we proposed an integrated electrode–electrolyte architecture by in situ coating the PELT precursor directly onto LiFePO4 cathodes. This design minimized interfacial impedance, improved ion transport, and enhanced electrochemical stability. The integrated PELT/LFP battery retained 74% of its capacity after 200 cycles at 1 A·g−1 and showed superior rate capability compared with sandwich-type batteries. These results highlight that coupling LATP-enhanced polymer electrolytes with an integrated architecture is a promising pathway toward high-safety, high-performance solid-state lithium-ion batteries. Full article
Show Figures

Figure 1

16 pages, 3908 KB  
Article
Numerical Study on the Solidification Microstructure Evolution in Industrial Twin-Roll Casting of Low-Carbon Steel
by Yulong Shi, Kongfang Feng, Liang Liu, Gaorui He and Bo Wang
Materials 2025, 18(19), 4484; https://doi.org/10.3390/ma18194484 - 26 Sep 2025
Viewed by 472
Abstract
Twin-roll strip casting (TRSC) is a key development in near-net-shape casting technology, offering the potential for high-efficiency and low-cost production. During the TRSC process, the solidification characteristics of the strip are largely governed by the configuration of the melt delivery system as well [...] Read more.
Twin-roll strip casting (TRSC) is a key development in near-net-shape casting technology, offering the potential for high-efficiency and low-cost production. During the TRSC process, the solidification characteristics of the strip are largely governed by the configuration of the melt delivery system as well as by various process parameters. In this study, a three-dimensional model of low-carbon steel strip casting was developed using ProCAST software to investigate microstructure evolution under industrial-scale conditions. Simulation results revealed that the solidified strip exhibits a typical three-layer structure: a surface equiaxed grain zone in contact with the cooling rolls, a subsurface columnar grain zone, and a central equiaxed grain zone. Introducing side holes into the delivery system promoted the formation of a distinct columnar grain region near the side dams, resulting in a reduction in the average grain size in this region from 43.7 μm to 38.2 μm compared to the delivery system without side holes. Increasing the heat transfer coefficient at the interface between the molten pool and the cooling rolls significantly enlarged the columnar grain zone. This change had little effect on the average grain size and grain density, with the average grain size remaining close to 37 μm and the grain density variation being less than 0.7%. In contrast, when the casting speed was raised from 50 m min−1 to 70 m min−1, a reduction in the area of the columnar grain zone was observed, while the average grain size decreased slightly (by less than 0.5 μm), and the grain density increased accordingly. This study provides valuable insights for optimizing process parameters and designing more effective melt delivery systems in industrial twin-roll strip casting. Full article
(This article belongs to the Special Issue Advanced Sheet/Bulk Metal Forming)
Show Figures

Figure 1

20 pages, 9180 KB  
Article
Theaflavins as Electrolyte Additives for Inhibiting Zinc Dendrites and Hydrogen Evolution in Aqueous Zinc-Ion Batteries
by Xiao Zhang, Ting Cheng, Chen Chen, Fuqiang Liu, Fei Wu, Li Song, Baoxuan Hou, Yuan Tian, Xin Zhao, Safi Ullah and Rui Li
Int. J. Mol. Sci. 2025, 26(19), 9399; https://doi.org/10.3390/ijms26199399 - 26 Sep 2025
Cited by 1 | Viewed by 780
Abstract
The cycling stability and widespread practical implementation of aqueous zinc ion batteries (AZIBs) are impeded by dendrite growth and the hydrogen evolution reaction (HER). Herein, theaflavins, a low-cost organic bio-compounds and a major component of tea, were innovatively introduced as an electrolyte additive [...] Read more.
The cycling stability and widespread practical implementation of aqueous zinc ion batteries (AZIBs) are impeded by dendrite growth and the hydrogen evolution reaction (HER). Herein, theaflavins, a low-cost organic bio-compounds and a major component of tea, were innovatively introduced as an electrolyte additive for AZIBs to address these challenges. When added into the electrolyte, theaflavins, with their strong de-solvation capability, facilitated the more uniform and stable diffusion of zinc ions, effectively suppressing dendrite formation and HER. This, in turn, significantly enhanced the coulombic efficiency (>95% in Zn/Cu system) and the stability of the zinc deposition/stripping process in Zn/Zn system. The Zn/Zn symmetric battery system stably cycled for approximately 3000 h at current densities of 1 mA/cm2. Compared with H2O molecules, theaflavins exhibited a narrower LUMO and HOMO gap and higher adsorption energy on zinc surfaces. These properties enabled theaflavins to be preferentially adsorbed onto zinc anode surfaces, forming a protective layer that minimized direct contact between water molecules and the zinc surface. This layer also promoted the electron transfer associated with zinc ions, thereby greatly enhancing interfacial stability and significantly mitigating HER. When 10 mmol/L of theaflavins was present in the electrolyte, the system exhibited lower impedance activation energy, a smoother zinc ion deposition process, reduced corrosion current, and higher HER overpotential. Furthermore, incorporating theaflavins into the electrolyte enhanced the vanadium redox reaction and accelerated zinc ion diffusion, thereby significantly improving battery performance. This work explores the design of a cost-effective electrolyte additive, providing essential insights for the progress of practical AZIBs. Full article
Show Figures

Graphical abstract

13 pages, 1789 KB  
Article
Simulation of Pantograph–Catenary Arc Temperature Field in Urban Railway and Study of Influencing Factors on Arc Temperature
by Xiaoying Yu, Yang Su, Mengjie Song, Junrui Yang, Liying Song, Ze Wang, Yixiao Liu, Caizhuo Wei and Yongjia Cheng
Infrastructures 2025, 10(9), 237; https://doi.org/10.3390/infrastructures10090237 - 10 Sep 2025
Viewed by 571
Abstract
During the running of urban railway trains, arcs of the pantograph–catenary (PC) system cause instantaneous high-temperature ablation of PC system materials, which severely impact the standard running of trains. Utilizing magnetohydrodynamics (MHD), a mathematical model of urban railway PC arcs is introduced in [...] Read more.
During the running of urban railway trains, arcs of the pantograph–catenary (PC) system cause instantaneous high-temperature ablation of PC system materials, which severely impact the standard running of trains. Utilizing magnetohydrodynamics (MHD), a mathematical model of urban railway PC arcs is introduced in this article. The multiphysics finite element analysis platform COMSOL Multiphysics was used to solve and simulate the mathematical model of the PC arc. The simulation results were analyzed to explore the temperature dispersion law of the PC arc. Experimental measurements of arc duration and arc temperature were conducted, with the mathematical model’s accuracy validated through empirical comparisons. Based on the established mathematical model of the PC arc, the effects of PC gap and current intensity on the arc temperature were investigated. The results reveal that the PC arc’s temperature field follows a radially decaying dispersion, attaining maximum temperature in the center of the arc column. The surface temperature of the pantograph strip is higher than that of the contact wire. As the duration of the PC arc increases, the arc temperature gradually increases; the temperature of the PC arc diminishes with the increase in the PC gap. The PC current increases, and the arc zone temperature increases. The research conclusions of this article can provide a basis for mitigating the number of PC arcs and enhancing the quality of the PC current. Full article
Show Figures

Figure 1

15 pages, 2964 KB  
Article
Electrochemical Sensors Based on Track-Etched Membranes for Rare Earth Metal Ion Detection
by Nurdaulet Zhumanazar, Arman B. Yeszhanov, Galina B. Melnikova, Ainash T. Zhumazhanova, Sergei A. Chizhik and Ilya V. Korolkov
ChemEngineering 2025, 9(4), 88; https://doi.org/10.3390/chemengineering9040088 - 15 Aug 2025
Cited by 1 | Viewed by 837
Abstract
Electrochemical sensors have been developed based on polyethylene terephthalate track-etched membranes (PET TeMs) modified by photograft copolymerization of N-vinylformamide (N-VFA) and trimethylolpropane trimethacrylate (TMPTMA). The modification, structure and properties of the modified PET TeMs were thoroughly characterized using scanning electron microscopy (SEM) and [...] Read more.
Electrochemical sensors have been developed based on polyethylene terephthalate track-etched membranes (PET TeMs) modified by photograft copolymerization of N-vinylformamide (N-VFA) and trimethylolpropane trimethacrylate (TMPTMA). The modification, structure and properties of the modified PET TeMs were thoroughly characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM), thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR) spectroscopy, gas permeability measurements and contact angle analysis. Optimal membrane modification was achieved using C = 10% (N-VFA), 60 min of UV irradiation and a UV lamp distance of 10 cm. Furthermore, the modified membranes were implemented in a two-electrode configuration for the determination of Eu3+, Gd3+, La3+ and Ce3+ ions via square-wave anodic stripping voltammetry (SW-ASV). The sensors exhibited a linear detection range from 10−7 M to 10−3 M, with limits of detection of 1.0 × 10−6 M (Eu3+), 6.0 × 10−6 M (Gd3+), 2.0 × 10−4 M (La3+) and 2.5 × 10−5 M (Ce3+). The results demonstrated a significant enhancement in electrochemical response due to the grafted PET TeMs-g-N-PVFA-TMPTMA structure, and the sensor showed practical applicability and consistent performance in detecting rare earth ions in tap water. Full article
Show Figures

Figure 1

15 pages, 1251 KB  
Article
Research on the Adhesion Performance of Fast-Melting SBS-Modified Emulsified Asphalt–Aggregate Based on the Surface Free Energy Theory
by Hao Zhang, Haowei Li, Fei Guo, Shige Wang and Jinchao Yue
Materials 2025, 18(15), 3523; https://doi.org/10.3390/ma18153523 - 27 Jul 2025
Cited by 3 | Viewed by 889
Abstract
Aiming at the problems of complex process flow, high energy consumption, and difficult emulsification in the preparation of traditional SBS-modified emulsified asphalt, a preparation method of fast-melting SBS (referred to as SBS-T) modified emulsified asphalt based on the integration of modification and emulsification [...] Read more.
Aiming at the problems of complex process flow, high energy consumption, and difficult emulsification in the preparation of traditional SBS-modified emulsified asphalt, a preparation method of fast-melting SBS (referred to as SBS-T) modified emulsified asphalt based on the integration of modification and emulsification is proposed. Based on surface free energy theory, the contact angles between three rapid-melting SBS-modified emulsified asphalts with different dosages and three probe liquids (deionized water, glycerol, and formamide) were measured using the sessile drop method. The adhesion performance of the asphalt–aggregate system was studied by means of micromechanical methods. The evaluation indicators such as the cohesion work of the emulsified asphalt, the adhesion work of asphalt–aggregate, the spalling work, and the energy ratio were analyzed. The results show that the SBS-T modifier can significantly improve the thermodynamic properties of emulsified asphalt. With increasing modifier content, the SBS-T-modified emulsified asphalt demonstrated enhanced cohesive work, improved asphalt–aggregate adhesive work, and increased energy ratio, while showing reduced stripping work. At equivalent dosage levels, the SBS-T-modified emulsified asphalt demonstrates a slight improvement in adhesion performance to aggregates compared to conventional SBS-modified emulsified asphalt. The SBS-T emulsified modified asphalt provides an effective technical solution for the preventive maintenance of asphalt pavements. Full article
(This article belongs to the Special Issue Advances in Sustainable Construction Materials, Third Edition)
Show Figures

Figure 1

24 pages, 2712 KB  
Article
Impacts of Different Tillage and Straw Management Systems on Herbicide Degradation and Human Health Risks in Agricultural Soils
by Yanan Chen, Feng Zhang, Qiang Gao and Qing Ma
Appl. Sci. 2025, 15(14), 7840; https://doi.org/10.3390/app15147840 - 13 Jul 2025
Cited by 1 | Viewed by 1011
Abstract
Pesticide residues pose risks to the environment and human health. Little is known about how tillage and straw management affect herbicide behavior in soil. This study investigated the effects of different tillage practices under varying straw incorporation scenarios on the degradation of five [...] Read more.
Pesticide residues pose risks to the environment and human health. Little is known about how tillage and straw management affect herbicide behavior in soil. This study investigated the effects of different tillage practices under varying straw incorporation scenarios on the degradation of five commonly used herbicides in a long-term experimental field located in the maize belt of Siping, Jilin Province. Post-harvest soil samples were analyzed for residual herbicide concentrations and basic soil physicochemical properties. A human health risk assessment was conducted, and a controlled incubation experiment was carried out to evaluate herbicide degradation dynamics under three management systems: straw incorporation with traditional rotary tillage (ST), straw incorporation with strip tillage (SS), and no-till without straw (CK). Residual concentrations of atrazine ranged from not detected (ND) to 21.10 μg/kg (mean: 5.28 μg/kg), while acetochlor showed the highest variability (2.29–120.61 μg/kg, mean: 25.26 μg/kg). Alachlor levels were much lower (ND–5.71 μg/kg, mean: 0.34 μg/kg), and neither nicosulfuron nor mesotrione was detected. Soil organic matter (17.6–20.89 g/kg) positively correlated with available potassium and acetochlor residues. Health risk assessments indicated negligible non-cancer risks for both adults and children via ingestion, dermal contact, and inhalation. The results demonstrate that tillage methods significantly influence herbicide degradation kinetics, thereby affecting environmental persistence and ecological risks. Integrating straw with ST or SS enhanced the dissipation of atrazine and mesotrione, suggesting their potential as effective residue mitigation strategies. This study highlights the importance of tailoring tillage and straw management practices to pesticide type for optimizing herbicide fate and promoting sustainable agroecosystem management. Full article
Show Figures

Figure 1

16 pages, 2849 KB  
Article
A Simulation Model for the Transient Characteristics of No-Insulation Superconducting Coils Based on T–A Formulation
by Zhihao He, Yingzhen Liu, Chenyi Yang, Jiannan Yang, Jing Ou, Chengming Zhang, Ming Yan and Liyi Li
Energies 2025, 18(14), 3669; https://doi.org/10.3390/en18143669 - 11 Jul 2025
Viewed by 797
Abstract
The no-insulation (NI) technique improves the stability and defect-tolerance of high-temperature superconducting (HTS) coils by enabling current redistribution, thereby reducing the risk of quenching. NI–HTS coils are widely applied in DC systems such as high-field magnets and superconducting field coils for electric machines. [...] Read more.
The no-insulation (NI) technique improves the stability and defect-tolerance of high-temperature superconducting (HTS) coils by enabling current redistribution, thereby reducing the risk of quenching. NI–HTS coils are widely applied in DC systems such as high-field magnets and superconducting field coils for electric machines. However, the presence of turn-to-turn contact resistance makes current distribution uneven, rendering traditional simulation methods unsuitable. To address this, a finite element method (FEM) based on the T–A formulation is proposed. This model solves coupled equations for the magnetic vector potential (A) and current vector potential (T), incorporating turn-to-turn contact resistance and anisotropic conductivity. The thin-strip approximation simplifies second-generation HTS materials as one-dimensional conductors, and a homogenization technique further reduces computational time by averaging the properties between turns, although it may limit the resolution of localized inter-turn effects. To verify the model’s accuracy, simulation results are compared against the H formulation, distributed circuit network (DCN) model, and experimental data. The proposed T–A model accurately reproduces key transient characteristics, including magnetic field evolution and radial current distribution, in both circular and racetrack NI coils. These results confirm the model’s potential as an efficient and reliable tool for transient electromagnetic analysis of NI–HTS coils. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

25 pages, 5042 KB  
Article
Surface Topography-Based Classification of Coefficient of Friction in Strip-Drawing Test Using Kohonen Self-Organising Maps
by Krzysztof Szwajka, Tomasz Trzepieciński, Marek Szewczyk, Joanna Zielińska-Szwajka and Ján Slota
Materials 2025, 18(13), 3171; https://doi.org/10.3390/ma18133171 - 4 Jul 2025
Cited by 1 | Viewed by 779
Abstract
One of the important parameters of the sheet metal forming process is the coefficient of friction (CoF). Therefore, monitoring the friction coefficient value is essential to ensure product quality, increase productivity, reduce environmental impact, and avoid product defects. Conventional CoF monitoring techniques pose [...] Read more.
One of the important parameters of the sheet metal forming process is the coefficient of friction (CoF). Therefore, monitoring the friction coefficient value is essential to ensure product quality, increase productivity, reduce environmental impact, and avoid product defects. Conventional CoF monitoring techniques pose a number of problems, including the difficulty in identifying the features of force signals that are sensitive to the variation in the coefficient of friction. To overcome these difficulties, this paper proposes a new approach to apply unsupervised artificial intelligence techniques with unbalanced data to classify the CoF of DP780 (HCT780X acc. to EN 10346:2015 standard) steel sheets in strip-drawing tests. During sheet metal forming (SMF), the CoF changes owing to the evolution of the contact conditions at the tool–sheet metal interface. The surface topography, the contact loads, and the material behaviour affect the phenomena in the contact zone. Therefore, classification is required to identify possible disturbances in the friction process causing the change in the CoF, based on the analysis of the friction process parameters and the change in the sheet metal’s surface roughness. The Kohonen self-organising map (SOM) was created based on the surface topography parameters collected and used for CoF classification. The CoF determinations were performed in the strip-drawing test under different lubrication conditions, contact pressures, and sliding speeds. The results showed that it is possible to classify the CoF using an SOM for unbalanced data, using only the surface roughness parameter Sq and selected friction test parameters, with a classification accuracy of up to 98%. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

19 pages, 7541 KB  
Article
Design and Performance Verification of Bionic Octopus Sucker Sealing Structure for Solenoid Valves
by Zhihong Wang, Xinbin Zhang, Zhengzhi Mu, Xiang Guan, Junchi Liu, Zhipeng Pan, Junchong Wang, Xiangrui Ye, Zhenghai Qi, Jianyang Dong, Yongming Yao and Liucheng Zhou
Biomimetics 2025, 10(7), 425; https://doi.org/10.3390/biomimetics10070425 - 1 Jul 2025
Viewed by 719
Abstract
Aiming at the problem of the insufficient sealing performance of the solenoid valve poppet under a high working load and inspired by the multilevel groove structure of the octopus sucker and the adaptive sealing mechanism, a bionics-based design scheme for an annular groove [...] Read more.
Aiming at the problem of the insufficient sealing performance of the solenoid valve poppet under a high working load and inspired by the multilevel groove structure of the octopus sucker and the adaptive sealing mechanism, a bionics-based design scheme for an annular groove sealing structure is proposed. By extracting the microscopic groove morphology features of the octopus sucker, we designed a multilayer rectangular cross-section groove structure at the annular interface, combined the designed structure with the Abaqus cohesive model to simulate the interface stripping behavior, and verified its mechanical properties by the pull-out test. The results show that the bionic groove structure significantly improves the bearing capacity of the sealing ring by enhancing the interface contact stress distribution and delaying the crack extension. Under the same working condition, the bionic structure increases the pull-out force by 46.1% compared with the traditional planar sealing ring. This study provides bionic theoretical support and an engineering practice reference for the design of sealing structures in complex working conditions, such as the solenoid valve poppet. Full article
(This article belongs to the Section Biomimetics of Materials and Structures)
Show Figures

Figure 1

26 pages, 9313 KB  
Article
Investigating Resulting Surface Topography and Residual Stresses in Bending DC01 Sheet Under Tension Friction Test
by Krzysztof Szwajka, Tomasz Trzepieciński, Marek Szewczyk, Joanna Zielińska-Szwajka and Marek Barlak
Lubricants 2025, 13(6), 255; https://doi.org/10.3390/lubricants13060255 - 9 Jun 2025
Cited by 2 | Viewed by 823
Abstract
This article presents the results of experimental studies aimed at determining the values of residual stresses and coefficient of friction (CoF) in bending under tension friction test, which simulates friction conditions in sheet metal forming. The influence of surface modification of the countersample [...] Read more.
This article presents the results of experimental studies aimed at determining the values of residual stresses and coefficient of friction (CoF) in bending under tension friction test, which simulates friction conditions in sheet metal forming. The influence of surface modification of the countersample and CoFs between the countersample and DC01 steel sheet on the residual stress were analysed. This study also focused on the influence of surface modification of countersamples on the change of the main parameters of DC01 steel sheets. The hole-drilling method was used to determine residual stresses. Electron beam melting, lead-ion implantation and a combination of these two techniques were used to modify the surface layer of 145Cr6 steel countersamples. The maximum value of the CoF, about 0.31, was found for the electron beam melted countersample. As a result of the surface modification process, this countersample was characterised by the lowest value of average roughness, which directly influenced the increase in the real contact area. The occurrence of residual tensile stresses was observed near the surface layer of the sheet strip in contact with the countersample. With the increase of the considered depth of residual stress measurement, the residual tensile stresses were transformed into compressive residual stresses with a value between −75 and −50 MPa, depending on the type of friction pair. SEM analyses allowed us to identify two main friction mechanisms for all friction pairs: adhesion and abrasive wear. Full article
Show Figures

Figure 1

22 pages, 5110 KB  
Article
Impact of Soil Preparation Techniques on Emergence and Early Establishment of Larix sibirica Seedlings
by Yingying Xie, Amannisa Kuerban, Abdul Waheed, Yeernazhaer Yiremaikebayi, Hailiang Xu, Jie Yang and Cui Zhang
Sustainability 2025, 17(11), 5016; https://doi.org/10.3390/su17115016 - 30 May 2025
Viewed by 1024
Abstract
Xinjiang larch (Larix sibirica Ledeb.) is a keystone species in the Altay Mountains, playing a vital role in maintaining ecosystem stability. This study investigates how different soil preparation techniques (ring, strip, and burrow) influence seed germination and seedling establishment by mitigating apomictic [...] Read more.
Xinjiang larch (Larix sibirica Ledeb.) is a keystone species in the Altay Mountains, playing a vital role in maintaining ecosystem stability. This study investigates how different soil preparation techniques (ring, strip, and burrow) influence seed germination and seedling establishment by mitigating apomictic allelopathy. Experimental plots were established using artificial seeding and natural seed dispersal at soil depths of 5 cm, 10 cm, and 15 cm. Seedling survival and development were monitored in June, July, and August 2023. The results demonstrated that sod removal significantly enhanced seed germination by reducing allelopathic inhibition, improving seed–soil contact, and increasing moisture retention. Among the techniques, the ring method yielded the highest rates of seedling establishment, particularly when artificial seeding was combined with natural seed dispersal. Although seedling numbers tended to increase with soil depth, the differences were not statistically significant. Temporal dynamics revealed a peak in seedling survival in July, followed by a subsequent decline. These findings highlight the critical role of optimized soil preparation techniques in promoting successful seedling development. The study offers practical guidance for ecological restoration and sustainable forest management in degraded larch ecosystems of the Altay Mountains. Full article
Show Figures

Figure 1

Back to TopTop