Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = constant drying curve

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 10442 KiB  
Article
Exploring Convective Drying Behavior of Hydroxide Sludges Through Micro-Drying Systems
by Azeddine Fantasse, Sergio Luis Parra-Angarita, El Khadir Lakhal, Ali Idlimam, El Houssayne Bougayr and Angélique Léonard
Appl. Sci. 2025, 15(7), 3470; https://doi.org/10.3390/app15073470 - 21 Mar 2025
Viewed by 410
Abstract
The drying of hydroxide sludge is a critical step in its valorization process in drinking water treatment plants (WWTPs), due to the high energy requirements associated with this operation. This study investigates the convective drying behavior of hydroxide sludge using a convective micro-dryer, [...] Read more.
The drying of hydroxide sludge is a critical step in its valorization process in drinking water treatment plants (WWTPs), due to the high energy requirements associated with this operation. This study investigates the convective drying behavior of hydroxide sludge using a convective micro-dryer, with air heated to temperatures between 70 °C and 110 °C, velocities ranging from 1 m/s to 3 m/s, and constant absolute humidity of 0.005 kg of water per kg of dry air. The process was continuously monitored through X-ray microtomography, allowing the nondestructive observation of external surface texture evolution, shrinkage, and crack formation. A significant shrinkage, with a volume reduction ranging from 30% to 45%, was observed as the moisture content decreased. The experimental data were used to develop a characteristic drying curve specific to hydroxide sludge, which remained consistent across different operational conditions. The results showed that increasing air temperature and velocity enhanced the drying flux and reduced drying time, while higher air humidity produced the opposite effect. Additionally, the crack formation observed towards the end of the drying process was associated with internal moisture transfer limitations. Effective diffusivity increased with air temperature, highlighting the significant impact of temperature on the activation energy of the drying process. These findings provide valuable insights for optimizing the energy efficiency of sludge-drying operations. Full article
(This article belongs to the Special Issue New Approaches to Water Treatment: Challenges and Trends)
Show Figures

Figure 1

26 pages, 10234 KiB  
Article
Salinity Stress Responses and Adaptation Mechanisms of Zygophyllum propinquum: A Comprehensive Study on Growth, Water Relations, Ion Balance, Photosynthesis, and Antioxidant Defense
by Bilquees Gul, Sumaira Manzoor, Aysha Rasheed, Abdul Hameed, Muhammad Zaheer Ahmed and Hans-Werner Koyro
Plants 2024, 13(23), 3332; https://doi.org/10.3390/plants13233332 - 28 Nov 2024
Viewed by 1126
Abstract
Zygophyllum propinquum (Decne.) is a leaf succulent C4 perennial found in arid saline areas of southern Pakistan and neighboring countries, where it is utilized as herbal medicine. This study investigated how growth, water relations, ion content, chlorophyll fluorescence, and antioxidant system of [...] Read more.
Zygophyllum propinquum (Decne.) is a leaf succulent C4 perennial found in arid saline areas of southern Pakistan and neighboring countries, where it is utilized as herbal medicine. This study investigated how growth, water relations, ion content, chlorophyll fluorescence, and antioxidant system of Z. propinquum change as salinity levels increase (0, 150, 300, 600, and 900 mM NaCl). Salinity increments inhibited total plant fresh weight, whereas dry weight remained constant at moderate salinity and decreased at high salinity. Leaf area, succulence, and relative water content decreased as salinity increased. Similarly, the sap osmotic potential of both roots and shoots declined as NaCl concentrations increased. Except for a transitory increase in roots at 300 mM NaCl, sodium concentrations in roots and shoots increased constitutively to more than five times higher under saline conditions than in non-saline controls. Root potassium increased briefly at 300 mM NaCl but did not respond to NaCl treatments in the leaf. Photosynthetic pigments increased with 300 and 600 mM NaCl compared to non-saline treatments, although carotenoids appeared unaffected by NaCl treatments. Except for very high NaCl concentration (900 mM), salinity showed no significant effect on the maximum efficiency of photosystem II photochemistry (Fv/Fm). Light response curves demonstrated reduced absolute (ETR*) and maximum electron transport rates (ETRmax) for the 600 and 900 mM NaCl treatments. The alpha (α), which indicates the maximum yield of photosynthesis, decreased with increasing NaCl concentrations, reaching its lowest at 900 mM NaCl. Non-photochemical quenching (NPQ) values were significantly higher under 150 and 300 mM NaCl treatments than under non-saline and higher NaCl treatments. Electrolyte leakage, malondialdehyde (MDA), and hydrogen peroxide (H2O2) peaked only at 900 mM NaCl. Superoxide dismutase and glutathione reductase activities and glutathione content in both roots and shoots increased progressively with increasing salinity. Hence, growth reduction under low to moderate (150–600 mM NaCl) salinity appeared to be an induced response, while high (900 mM NaCl) salinity was injurious. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

14 pages, 1326 KiB  
Article
Microwave and Ultrasound Assisted Rotary Drying of Carrot: Analysis of Process Kinetics and Energy Intensity
by Dominik Mierzwa and Grzegorz Musielak
Appl. Sci. 2024, 14(22), 10676; https://doi.org/10.3390/app142210676 - 19 Nov 2024
Viewed by 1011
Abstract
Convective drying is one of the most commonly employed preservation techniques for food. However, the use of high temperatures and extended drying times often leads to a reduction in product quality and increased energy consumption. To address these issues, hybrid processes combining convective [...] Read more.
Convective drying is one of the most commonly employed preservation techniques for food. However, the use of high temperatures and extended drying times often leads to a reduction in product quality and increased energy consumption. To address these issues, hybrid processes combining convective drying with more efficient methods are frequently employed. This study investigates the convective rotary drying of carrot (cv. Nantes), assisted by microwaves and ultrasound, using a hybrid rotary dryer. In total, four distinct drying programs—comprising one convective and three hybrid approaches—were evaluated. The study assessed drying kinetics, energy consumption, and product quality. The use of ultrasound increased the drying rate by 13%, microwaves by 112%, and microwaves and ultrasound together by 140%. The use of microwaves reduced energy consumption by 30%, whereas ultrasound resulted in a slight increase. All processes resulted in a significant reduction in water activity. Ultrasound decreased the color difference index, while microwaves increased it compared to convective drying. Full article
Show Figures

Figure 1

18 pages, 3314 KiB  
Article
Impact of Wetting and Drying Cycles on the Hydromechanical Properties of Soil and Implications on Slope Stability
by Syed Samran Ali Shah, Kanishka Sauis Turrakheil and Muhammad Naveed
Atmosphere 2024, 15(11), 1368; https://doi.org/10.3390/atmos15111368 - 13 Nov 2024
Cited by 4 | Viewed by 2108
Abstract
The soil-based infrastructure is the backbone of the global economy, connecting people, enhancing quality of life, and promoting health and safety. However, its vulnerabilities are becoming apparent due to climate change, mainly through frequent wetting and drying (wd) cycles. Despite few studies in [...] Read more.
The soil-based infrastructure is the backbone of the global economy, connecting people, enhancing quality of life, and promoting health and safety. However, its vulnerabilities are becoming apparent due to climate change, mainly through frequent wetting and drying (wd) cycles. Despite few studies in the past, research showing the stability of flood embankments in the long term, incorporating the impact of wetting and drying cycles on the hydromechanical characteristics of soil, is scarce. This study aimed to assess the impact of controlled wd cycles on the hydromechanical properties of clay and silty sand soils and its implications for the stability of a typical flood embankment. Volumetric changes were monitored during the wd cycles. The soil water characteristic curve (SWCC), saturated hydraulic conductivity (ksat), effective cohesion (c′), and effective angle of internal friction (ϕ′) were measured at 1 and 10 wd cycles. The results indicated that the 10 wd cycles decreased the saturated moisture content and resulted in a flatter SWCC compared to the 1 wd cycle for clayey soil. The ksat value was also significantly higher at 10 wd cycles than 1 wd cycle for clayey soil. An insignificant difference was found in both the SWCC and ksat at 1 and 10 wd cycles for silty sand soil. The ϕ′ value for the clayey soil decreased from 28.5 to 20.1 as the wd cycles increased from 1 to 10, while c′ remained unchanged at 10 kN/m2. On the other hand, for the silty sand soil, ϕ′ increased from 34.6 to 37.5 with an increase in wd cycles from 1 to 10, and c′ remained constant at 1 kN/m2. Numerical modelling of transient water flow coupled with a slope stability analysis revealed that the stability of a flood embankment depends on the evolution of soil hydromechanical properties due to wd cycles and the duration of flooding. These findings underscore the need for proactive measures to mitigate landslide risks in regions prone to frequent wd cycles, thereby ensuring the safety and resilience of slopes and associated infrastructure. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

22 pages, 8608 KiB  
Article
Modeling Bibb Lettuce Nitrogen Uptake and Biomass Productivity in Vertical Hydroponic Agriculture
by Andrew Sharkey, Asher Altman, Abigail R. Cohen, Teagan Groh, Thomas K. S. Igou, Rhuanito Soranz Ferrarezi and Yongsheng Chen
Agriculture 2024, 14(8), 1358; https://doi.org/10.3390/agriculture14081358 - 14 Aug 2024
Viewed by 2257
Abstract
Global fertilizer production and mismanagement significantly contribute to many harmful environmental impacts, revealing the need for a greater understanding of crop growth and nutrient uptake, which can be used to optimize fertilizer management. This study experimentally adapts first-principles microbial modeling techniques to the [...] Read more.
Global fertilizer production and mismanagement significantly contribute to many harmful environmental impacts, revealing the need for a greater understanding of crop growth and nutrient uptake, which can be used to optimize fertilizer management. This study experimentally adapts first-principles microbial modeling techniques to the hydroponic cultivation of Bibb lettuce (Lactuca sativa) under nitrogen-limited conditions. Monod and Michaelis–Menten’s approaches are applied to predict biomass productivity and nutrient uptake and to evaluate the feasibility of reclaimed wastewater as a nutrient source of nitrogen. Experimental and modeling results reveal significantly different kinetic saturation constants (Ks = 1.331 and Km = 17.887 mg L−1) and a corresponding cell yield strongly dependent on nutrient concentration, producing visually and compositionally distinct tissue between treatments receiving 26.2 and 41.7 mgN L−1. The resulting Monod model overestimates dry mass predictions during low nutrient conditions, and the collective results support the development of a dynamic Monod curve that is temporally dependent during the plants’ lifecycle. Despite this shortcoming, these results support the feasibility of reclaiming nitrogen from wastewater in hydroponic agriculture, expecting to produce lesser biomass lettuce exhibiting healthy tissue. Furthermore, this study provides a mathematical foundation for agricultural simulations and nutrient management. Full article
(This article belongs to the Special Issue Innovative Hydroponic Systems for Sustainable Agriculture)
Show Figures

Figure 1

20 pages, 8623 KiB  
Article
Injection 3D Printing of Doubly Curved Ceramic Shells in Non-Synthetic Particle Suspensions
by Vesela Tabakova, Christina Klug and Thomas H. Schmitz
Materials 2024, 17(16), 3955; https://doi.org/10.3390/ma17163955 - 9 Aug 2024
Cited by 2 | Viewed by 1314
Abstract
This paper examines the application of non-synthetic particle suspensions as a support medium for the additive manufacturing of complex doubly curved ceramic shells with overhangs between 0° and 90° using clay paste. In this method, the build-up material is injected within a constant [...] Read more.
This paper examines the application of non-synthetic particle suspensions as a support medium for the additive manufacturing of complex doubly curved ceramic shells with overhangs between 0° and 90° using clay paste. In this method, the build-up material is injected within a constant volume of air-permeable particle suspension. As the used clay paste does not solidify right after injection, the suspension operates like a support medium and enables various print path strategies. Different non-synthetic suspension mixtures, including solid and flexible components such as quartz sand, refractory clay, various types of wood shavings, and cotton flocks, were evaluated for their ability to securely hold the injected material while allowing drying of the water-based clay body and its shrinkage. The balance between grain composition, added water, and the compressibility of the mixture during printing and drying played a pivotal role in the particle suspension design and assessment. Furthermore, the moisture absorption of the particle suspension and the structural integrity of the layer bond of the fired ceramics were also assessed. The examined additive manufacturing process not only enables the production of meso-scale doubly curved ceramic shells with average overhang of 56° but also introduces a new practice for designing specialized surfaces and constructions. Full article
(This article belongs to the Special Issue Additive Manufacturing of Ceramics and Composites)
Show Figures

Figure 1

14 pages, 2075 KiB  
Article
Determination of Variable Humidity Profile for Lactic Acid Maximization in Fungal Solid-State Fermentation
by María Carla Groff, Sandra Edith Noriega, María Eugenia Díaz Meglioli, Laura Rodríguez, Benjamín Kuchen and Gustavo Scaglia
Fermentation 2024, 10(8), 406; https://doi.org/10.3390/fermentation10080406 - 7 Aug 2024
Cited by 1 | Viewed by 1319
Abstract
Solid-state fermentation (SSF) is the bioprocess where microorganisms are cultivated in the absence of free water under controlled conditions. Lactic acid can be produced by Rhizopus oryzae SSF of grape stalks. During the microorganism’s growth, the temperature and water content of the solid [...] Read more.
Solid-state fermentation (SSF) is the bioprocess where microorganisms are cultivated in the absence of free water under controlled conditions. Lactic acid can be produced by Rhizopus oryzae SSF of grape stalks. During the microorganism’s growth, the temperature and water content of the solid bed fluctuate, leading to areas of either dry or excessive moisture in the solid substrate. Therefore, it is crucial to control the water supply to the matrix. In this work, we obtain lactic acid through SSF of grape stalks using Rhizopus oryzae NCIM 1299. The SSF was conducted at a fixed temperature of 35 °C, with five constant relative humidity (RH) levels: 50, 57, 65, 72, and 80%RH. Mathematical models, including the Logistic and First-Order Plus Dead-Time models for fungal biomass growth and the Luedeking and Piret with Delay Time model for lactic acid production, were adjusted to kinetic curves. Growth kinetic parameters (Xmax, μmax, Tp, T0, Yp/x, and td) were determined for all conditions. These kinetic parameters were then correlated with relative humidity using a second-degree polynomial relationship. We observed a decrease in Xmax with an increasing %RH, while the value of Yp/x increased at a higher %RH. Finally, the optimal variable relative humidity profile was obtained by applying the dynamic optimization technique, resulting in a 16.63% increase in lactic acid production. Full article
(This article belongs to the Special Issue Solid State Fermentation for Microbial Synthesis)
Show Figures

Figure 1

16 pages, 4231 KiB  
Article
Fractal Analysis on the Crushing Characteristics of Soil-Soft Rock Mixtures under Compaction
by Fengyun Hu, Keneng Zhang, Kaofei Zhu, Bintian Li, Zhao Zhang and Yong He
Fractal Fract. 2024, 8(2), 90; https://doi.org/10.3390/fractalfract8020090 - 30 Jan 2024
Cited by 1 | Viewed by 1846
Abstract
Soil-rock mixtures (SRM) are extensively utilized as filling materials in engineering slopes and roadbeds. A comprehensive understanding of the crushing characteristics of SRM during compaction is essential for precisely controlling its mechanical properties, particularly when dealing with SRM comprising soft rock blocks. This [...] Read more.
Soil-rock mixtures (SRM) are extensively utilized as filling materials in engineering slopes and roadbeds. A comprehensive understanding of the crushing characteristics of SRM during compaction is essential for precisely controlling its mechanical properties, particularly when dealing with SRM comprising soft rock blocks. This study conducted heavy compaction and screening tests to investigate the crushing and compaction behaviors of soil-soft rock mixture (SSRM) with varying coarse particle content (P5 content), the primary focus was primarily on analyzing the double fractal characteristics of coarse and fine particles. The research findings are as follows: with the increase of P5 content, the maximum dry density of SSRM initially rises and then declines, reaching its peak when P5 content is 70%. Soft rock blocks in SSRM exhibit extreme fragility during compaction, the crushing index of coarse particles exhibits a linear increase with the rise in P5 content, whereas the crushing index of fine particles displays a “double peak” characteristic. After compaction, a linear positive correlation is observed between the fractal dimension and the crushing index of coarse and fine particles. With the increase in P5 content, the slope of the relationship curve between the fractal dimension and the crushing index of coarse particles remains relatively constant, while the intercept gradually decreases. Moreover, the fractal dimension of fine particles effectively reflects the compaction characteristics of SSRM, and the relationship between the fractal dimension of fine particles and dry density aligns with the compaction curve of SSRM. Full article
Show Figures

Figure 1

17 pages, 5846 KiB  
Article
Experimental Study on Permeability Evolution of Sandstone during Triaxial Compression Damage
by Lide Wei, Zhinan Lin, Haifeng Long and Qiongyao Ye
Appl. Sci. 2023, 13(20), 11579; https://doi.org/10.3390/app132011579 - 23 Oct 2023
Cited by 1 | Viewed by 1564
Abstract
In order to investigate the mechanical properties and permeability characteristics of sandstone during damage evolution under hydromechanical condition, a series of coupled hydro-mechanical triaxial tests on sandstone specimens were conducted based on the Rock Top 50HT full-stress multi-field coupling triaxial test system. Variations [...] Read more.
In order to investigate the mechanical properties and permeability characteristics of sandstone during damage evolution under hydromechanical condition, a series of coupled hydro-mechanical triaxial tests on sandstone specimens were conducted based on the Rock Top 50HT full-stress multi-field coupling triaxial test system. Variations in permeability as a function of confining pressure, seepage pressure gradient, and volumetric strain during damage evolution were obtained. The results show that: (1) When the confining pressure is constant and the specimen is gradually changed from a dry to a saturated state, the failure mode of sandstone changes from shear failure to single-slope shear failure. (2) There are four distinctive stages in the permeability evolution of sandstone: gradual decrease, steady development, gradual increase, and rapid growth. These stages correspond to the complete stress–strain curve under the respective working conditions. (3) Employing the Weibull distribution formula, this study investigates the evolution of fracture damage under varying working conditions and determines the permeability evolution relationships associated with damage variables. This exploration reveals an intrinsic link between permeability and damage variables. These findings enhance our understanding of the interplay between stress, deformation, permeability, and damage evolution in seepage-stress coupled sandstone. The results contribute valuable insights to the field of rock mechanics and hold implications for diverse geotechnical and engineering applications. Full article
(This article belongs to the Special Issue Rock Mechanics: Current Challenges and Novel Technologies)
Show Figures

Figure 1

15 pages, 6545 KiB  
Article
Effects of Drying and Wetting Process on the Tensile Strength of Granite Residual Soil
by Liansheng Tang, Zihua Cheng, Hao Wang and Yang Chen
Water 2023, 15(15), 2801; https://doi.org/10.3390/w15152801 - 2 Aug 2023
Cited by 2 | Viewed by 1842
Abstract
The tensile strength of granite residual soil has different changing laws during the wetting and drying process which often appears after rainfall. The microscopic relationship between tensile strength, bond force, and absorbed suction was studied using a self-developed soil tensile strength tester. The [...] Read more.
The tensile strength of granite residual soil has different changing laws during the wetting and drying process which often appears after rainfall. The microscopic relationship between tensile strength, bond force, and absorbed suction was studied using a self-developed soil tensile strength tester. The results show the following. (1) The change in tensile strength with saturation is a convex curve with a peak; according to the drying and wetting path, there are differences in peak value and amplitude of variation. (2) The sample with a higher fine particle content has a structure that is denser and has fewer pores, while an increase in gravel content will significantly reduce the tensile strength of the soil. (3) Absorbed suction and bond forces are important factors that control tensile strength in the drying process. The bond force contributes more than 70%, the tensile strength is in invariable constant saturation, and the wetting process is mainly controlled by absorbed suction. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

10 pages, 3242 KiB  
Article
Insight on the Swelling Pressure–Suction Relationship of Compacted Bentonite during Hydration
by Yang Wang, Jun Teng, Qi Huang, Wei Wang and Yong Zhong
Materials 2023, 16(15), 5403; https://doi.org/10.3390/ma16155403 - 1 Aug 2023
Cited by 1 | Viewed by 1341
Abstract
Investigation of the swelling pressure of buffer/backfill materials is a critical aspect in the design of high-level radioactive waste (HLW) disposal repositories. In this study, to clarify the swelling pressure–suction relation for compacted bentonite upon the hydration path, constant-volume swelling pressure tests with [...] Read more.
Investigation of the swelling pressure of buffer/backfill materials is a critical aspect in the design of high-level radioactive waste (HLW) disposal repositories. In this study, to clarify the swelling pressure–suction relation for compacted bentonite upon the hydration path, constant-volume swelling pressure tests with suction control were conducted. The swelling pressure–suction curves indicated that the swelling pressure of the specimens increased significantly with increasing dry density, while the shape of the curves during hydration depended on the dry density. Moreover, the swelling pressure–suction curves exhibited a distinction between unsaturated and saturated segments divided by the critical saturated state (CSS) curve, which proves the unique existence of a CSS curve in the stress space independent of the stress path. With the introduction of the CSS curve into the s–p space, the conventional stress space of unsaturated soil could expand to that of unsaturated expansive soil. The results obtained in this study could provide the mechanical parameters for the construction of disposal repositories. In addition, the stress space with CSS curve proposed in this study provides a new approach to building constitutive models of bentonite materials. Full article
Show Figures

Figure 1

25 pages, 7340 KiB  
Article
Conceptual Model of Expansive Rock or Soil Swelling
by Boris Kavur, Nataša Štambuk Cvitanović, Jasmin Jug and Ivan Vrkljan
Geosciences 2023, 13(5), 141; https://doi.org/10.3390/geosciences13050141 - 11 May 2023
Cited by 1 | Viewed by 2228
Abstract
The paper presents a simple yet efficient way to track the void ratio, the water content, and the degree of saturation of a swelling material during saturation. The research aimed to quantitatively describe the drying and wetting processes of the swelling material, which [...] Read more.
The paper presents a simple yet efficient way to track the void ratio, the water content, and the degree of saturation of a swelling material during saturation. The research aimed to quantitatively describe the drying and wetting processes of the swelling material, which should enable their better understanding and easier modelling. Two identical tall samples, named “twins”, were formed by consolidating the paste prepared from the swelling material in which montmorillonite is the dominant mineral. The twins were together exposed to one-dimensional drying. After drying, lasting for 40 days, one twin was dissected to determine its water content profile. The other twin was subjected to 1D wetting (ponded infiltration experiment) with a constant water column for a period of 21 days and then dissected to determine the moisture profile. The sample preparation reduces uncertainties about the initial state. The results show that during wetting, the material follows a path in the e-w plot which is parallel to the full saturation curve. After reaching some degree of saturation, the path becomes parallel to the residual (shrinking) line. The proposed model predicts the primary and secondary phases of swelling, and under appropriate conditions, it assumes the tertiary phase. Full article
(This article belongs to the Topic Support Theory and Technology of Geotechnical Engineering)
Show Figures

Figure 1

14 pages, 5032 KiB  
Article
Drying Process of Waterborne Paint Film on Bamboo Laminated Lumber for Furniture
by Jie Chen, Ying Zhao, Shaofei Yuan, Jian Zhang, Qin Li and Hongyan Wang
Polymers 2023, 15(5), 1288; https://doi.org/10.3390/polym15051288 - 3 Mar 2023
Cited by 4 | Viewed by 2305
Abstract
In this study, bamboo laminated lumber for furniture was coated with waterborne acrylic paints. The effects of different environmental conditions (including temperature, humidity and wind speed) on the drying rate and performance of the waterborne paint film were investigated. Then, the drying process [...] Read more.
In this study, bamboo laminated lumber for furniture was coated with waterborne acrylic paints. The effects of different environmental conditions (including temperature, humidity and wind speed) on the drying rate and performance of the waterborne paint film were investigated. Then, the drying process was optimized using the response surface methodology, and the curve model of drying rate was established, which can provide a theoretical basis for the drying process of the waterborne paint film for furniture. The results showed that the drying rate of the paint film changed with the drying condition. With an increase in temperature, the drying rate increased, and the surface and solid drying time of the film decreased. Meanwhile, with an increase in humidity, the drying rate decreased and the surface and solid drying time increased. Moreover, the wind speed can influence the drying rate, but the wind speed does not significantly affect the surface and solid drying time. The adhesion and hardness of the paint film were unaffected by the environmental conditions, but the wear resistance of the paint film was affected by the environmental conditions. Based on the response surface optimisation, the fastest drying rate was realised at a temperature of 55 °C, humidity of 25% and wind speed of 1 m/s, and the optimal wear resistance was realised at a temperature of 47 °C, humidity of 38% and wind speed of 1 m/s. The paint film drying rate reached the maximum value in 2 min and tended to remain constant after the film was completely dried. Full article
(This article belongs to the Special Issue Processing and Manufacturing of Wood-Based Composites)
Show Figures

Figure 1

12 pages, 3570 KiB  
Article
Predicting the Impact of Climate Change on the Distribution of Rhipicephalus sanguineus in the Americas
by Marcos Sánchez Pérez, Teresa Patricia Feria Arroyo, Crystian Sadiel Venegas Barrera, Carolina Sosa-Gutiérrez, Javier Torres, Katherine A. Brown and Guadalupe Gordillo Pérez
Sustainability 2023, 15(5), 4557; https://doi.org/10.3390/su15054557 - 3 Mar 2023
Cited by 11 | Viewed by 3265
Abstract
Climate change may influence the incidence of infectious diseases including those transmitted by ticks. Rhipicephalus sanguineus complex has a worldwide distribution and transmits Rickettsial infections that could cause high mortality rates if untreated. We assessed the potential effects of climate change on the [...] Read more.
Climate change may influence the incidence of infectious diseases including those transmitted by ticks. Rhipicephalus sanguineus complex has a worldwide distribution and transmits Rickettsial infections that could cause high mortality rates if untreated. We assessed the potential effects of climate change on the distribution of R. sanguineus in the Americas in 2050 and 2070 using the general circulation model CanESM5 and two shared socioeconomic pathways (SSPs), SSP2-4.5 (moderate emissions) and SSP2-8.5 (high emissions). A total of 355 occurrence points of R. sanguineus and eight uncorrelated bioclimatic variables were entered into a maximum entropy algorithm (MaxEnt) to produce 50 replicates per scenario. The area under the curve (AUC) value for the consensus model (>0.90) and the partial ROC value (>1.28) indicated a high predictive capacity. The models showed that the geographic regions currently suitable for R. sanguineus will remain stable in the future, but also predicted increases in habitat suitability in the Western U.S., Venezuela, Brazil and Bolivia. Scenario 4.5 showed an increase in habitat suitability for R. sanguineus in tropical and subtropical regions in both 2050 and 2070. Habitat suitability is predicted to remain constant in moist broadleaf forests and deserts but is predicted to decrease in flooded grasslands and savannas. Using the high emissions SSP5-8.5 scenario, habitat suitability in tropical and subtropical coniferous forests and temperate grasslands, savannas, and shrublands was predicted to be constant in 2050. In 2070, however, habitat suitability was predicted to decrease in tropical and subtropical moist broadleaf forests and increase in tropical and subtropical dry broadleaf forests. Our findings suggest that the current and potential future geographic distributions can be used in evidence-based strategies in the design of control plans aimed at reducing the risk of exposure to zoonotic diseases transmitted by R. sanguineus. Full article
Show Figures

Figure 1

24 pages, 6089 KiB  
Article
A Systematical Rheological Study of Maize Kernel
by Shaoyang Sheng, Aimin Shi and Junjie Xing
Foods 2023, 12(4), 738; https://doi.org/10.3390/foods12040738 - 8 Feb 2023
Cited by 3 | Viewed by 1890
Abstract
In this study, the rheological behavior of maize kernel was systematically investigated using a dynamic mechanical analyzer. The loss in toughness caused by drying resulted in a downward shift in the relaxation curve and an upward shift in the creep curve. The long [...] Read more.
In this study, the rheological behavior of maize kernel was systematically investigated using a dynamic mechanical analyzer. The loss in toughness caused by drying resulted in a downward shift in the relaxation curve and an upward shift in the creep curve. The long relaxation behavior became obvious when the temperature was above 45 °C, resulting from the weakening of hydrogen bonds with temperature. The maize kernel relaxed more rapidly at high temperatures, caused by a reduction in the cell wall viscosity and polysaccharide tangles. The Deborah numbers were all much smaller than one, suggesting that the Maxwell elements showed viscous behavior. Maize kernel, as a viscoelastic material, showed a dominant viscous property at high temperatures. The decline in β with increasing drying temperature indicated an increase in the width of the relaxation spectrum. A Hookean spring elastic portion made up the majority of the maize kernel creep strain. The order–disorder transformation zone of maize kernel was about 50–60 °C. Due to the complexity of maize kernel, the William–Landel–Ferry constants differed from the universal values; these constants should be ascertained through experiments. Time-temperature superposition was successfully used to describe the rheological behavior. The results show that maize kernel is a thermorheologically simple material. The data acquired in this study can be used for maize processing and storage. Full article
Show Figures

Figure 1

Back to TopTop