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Abstract: Investigation of the swelling pressure of buffer/backfill materials is a critical aspect in
the design of high-level radioactive waste (HLW) disposal repositories. In this study, to clarify the
swelling pressure–suction relation for compacted bentonite upon the hydration path, constant-volume
swelling pressure tests with suction control were conducted. The swelling pressure–suction curves
indicated that the swelling pressure of the specimens increased significantly with increasing dry
density, while the shape of the curves during hydration depended on the dry density. Moreover, the
swelling pressure–suction curves exhibited a distinction between unsaturated and saturated segments
divided by the critical saturated state (CSS) curve, which proves the unique existence of a CSS curve
in the stress space independent of the stress path. With the introduction of the CSS curve into the
s–p space, the conventional stress space of unsaturated soil could expand to that of unsaturated
expansive soil. The results obtained in this study could provide the mechanical parameters for the
construction of disposal repositories. In addition, the stress space with CSS curve proposed in this
study provides a new approach to building constitutive models of bentonite materials.

Keywords: compacted bentonite; swelling pressure–suction curve; CSS curve; stress path

1. Introduction

The development of the nuclear industry has resulted in a large amount of nuclear
waste. The safe disposal of this nuclear waste, especially high-level radioactive waste
(HLW), has become an increasingly urgent environmental issue. Deep geological disposal
is widely accepted for the safe disposal of HLW. In this conceptual design, HLW reposito-
ries are constructed in a stable geological formation located 500–1000 m below the ground
surface. A multiple barrier system consisting of both natural barriers (the geological for-
mation) and artificial barriers (buffer/backfill materials, waste containers, and solidified
waste) are utilized to prevent the leakage and migration of radionuclides, ensuring perma-
nent isolation from the human living environment. Among these barriers, buffer/backfill
materials play a crucial role in maintaining the stability of the disposal facility structure,
preventing groundwater infiltration, blocking the migration of radionuclides, and limiting
the diffusion of radiation and heat.

Compacted bentonite has emerged as a preferred choice for buffer/backfill materials
in the disposal of high-level radioactive waste in numerous countries thanks to its low
hydraulic conductivity, microporous structure, good sorption properties, and swelling
capacity [1–7]. MX-80 bentonite extracted from Wyoming, USA, has been used in many
disposal concepts in Sweden, Finland, Germany, and France. FEBEX bentonite has been
extracted from the Cortiji de Archidona deposit in Spain and has been chosen by the Spanish
Agency for Radioactive Waste Management as a suitable material for backfilling and sealing
HLW repositories. Additionally, Kunigel V1 and FoCa bentonite have been proposed as
potential buffer materials in Japan and France. In China, based on the comprehensive
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comparison of factors such as the location of the deposit, transportation conditions, deposit
reserves, and mining technology, the Gaomiaozi (GMZ) bentonite deposit in Inner Mongolia
has been determined as the preferred deposit for buffer/backfill materials used in the
geological disposal in China [3,4].

The exceptional swelling capacity and self-healing properties of compacted bentonite
make it an ideal candidate to expand and fill voids and fractures in buffer/backfill materials
and surrounding rocks within the repository. This characteristic enables the formation of
robust barriers, effectively safeguarding against ingress of groundwater from the surround-
ing geological formations and potential release of radioactive waste from the canister [8].
Therefore, investigation of the swelling behavior of compacted bentonite upon hydration
assumes significant importance in the design of geological repositories.

The determination of swelling pressure upon hydration is an important aspect of
the research on the swelling behavior of compacted bentonite in geological repositories.
Research suggests that the swelling pressure is influenced by factors such as the mineral
composition, structure, and initial dry density of bentonite. The swelling pressure of
bentonite can be measured through four experimental methods: the constant volume
method, free swelling–compression method, constrained swelling–compression method,
and zero swelling method [9,10]. Among these methods, the constant volume method is
widely used in swelling pressure tests of bentonite due to its relatively simple experimental
equipment and procedures. The constant volume method is commonly employed to
conduct swelling pressure tests on compacted bentonite in laboratory settings, where
the specimens are saturated through water flooding [11–13]. Research has consistently
demonstrated that the final swelling pressure of bentonite is closely related to its dry density.
Wang et al. [10] found that, for the same type and mineral composition of bentonite, the
ultimate swelling pressure exhibits an exponential increase as the dry density increases.

Moreover, suction-controlled swelling pressure tests have been conducted on com-
pacted bentonite to analyze the variation in the swelling pressure under suction.
Lloret et al. [14] and Yigzaw et al. [15] observed a “double-peak” shape on the swelling
pressure–suction curve. First, a significant reduction in suction leads to progressive swelling
pressure development up to the first peak. Then, the swelling pressure is reduced due
to collapse of the soil skeleton. Finally, the swelling pressure shows an upward trend
again. However, different phenomena have been reported as well. Romero et al. (2003) [16]
only reported the first two zones of the curve, while Wang et al. [10] and Agus et al. [17]
observed a continuous increase in swelling pressure during the suction reduction process.
As there have been relatively few swelling pressure tests performed with suction control,
the swelling pressure–suction relationship is not yet fully understood.

In this work, constant volume swelling pressure tests with suction control were carried
out on compacted GMZ01 bentonite specimens. The swelling pressure–suction relationship
of specimens with different dry densities during hydration are analyzed. Then, the existence
of a critical saturated state in the swelling pressure tests is discussed with respect to the
stress path. Finally, the mechanisms of different hydration paths are analyzed in the new
suction–stress space with the CSS curve for expansive soil.

2. Materials and Methods
2.1. Material

The GMZ01 bentonite used in this study was sourced from Inner Mongolia, China,
which has been recognized as the first choice for use as buffer/backfill material for con-
struction of Chinese deep geological repositories [4]. The deposit contains a total of
160 million tons of bentonite, with 120 million tons of Na-bentonite reserves. The mining
area covers approximately 72 km2. The deposit was formed during the later Jurassic period.
The bentonite is characterized by its bedded structure, soapy texture, and waxy appearance.
The mineralization process involved the interaction of initially formed continental volcanic
sediments with groundwater and weathering [18]. The basic properties of the bentonite
are summarized in Table 1 [3]. It is composed of more than 75% montmorillonite with a
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cation exchange capacity (CEC) of 77.3 meq/100 g (43.36% Na+, 29.14% Ca2+, 12.33% Mg2+,
2.51% K+). The liquid limit and plastic limit are 276% and 37%, respectively, and the specific
gravity is 2.66.

Table 1. Basic properties of GMZ01 bentonite.

Property Description

Specific gravity 2.66
Liquid limit (%) 276

Plastic limit 37
Cation-exchange capacity (meq/100 g) 77.3 (43.36% Na+, 29.14% Ca2+, 12.33% Mg2+, 2.51% K+)

Main minerals 75.4% Montmorillonite, 11.7% Quartz,
4.3% Feldspar, 7.3% Cristobalite

In the specimen preparation process, the bentonite powder was initially subjected
to the vapor equilibrium technique, allowing it to reach a suction of 113 MPa, which
corresponds to a water content of 10.2%. Subsequently, a specific amount of powder was
poured into a compaction cell with an internal diameter of 50 mm. The powder was then
compacted statically to achieve the desired approximate dry density of 1.30–1.70 g/cm3.

2.2. Test Apparatus

Figure 1 illustrates the test setup utilized for conducting suction-controlled swelling
pressure tests in this study. It included a constant-volume cell and suction control systems.
The constant-volume cell consisted of a basement with a porous plate and a drainage
system for water circulation, a specimen ring (50 mm in internal diameter) to prevent radial
swelling, a stainless piston with two outlets for air expelling, and a load sensor fixed on the
top for monitoring the swelling pressure during hydration. In the suction control systems,
the vapor phase method [19,20], the osmotic technique [19], and the water circulation
technique (Figure 1b) were employed for controlling a large suction range. To apply the
vapor phase technique, the vapour of a saturated salt solution is circulated in a closed
system and accelerated by a pump (Figure 1a). The relationship between the saturated salt
solution and its corresponding suction proposed by Tang and Cui [20] was employed in
this work. To perform the osmotic technique, a semipermeable membrane is placed under
the specimen and a designed PEG (polyethylene glycol) solution is circulated underneath
the semipermeable membrane (Figure 1b). The relationship between concentration of the
PEG solution and its corresponding suction proposed by Delage et al. [19] was adopted in
this study.
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2.3. Test Procedures

First, a sample with a suction of 113 MPa was installed in the constant-volume cell.
An initial pressure of 0.05 MPa was set to ensure good contact between the specimen and
the load sensor. Subsequently, target suctions were systematically applied along the path
as follows: 113–38–9–4.2–1–0 MPa. For suctions of 38 MPa, 9 MPa, and 4.2 MPa, the vapor
of saturated NaCl, KNO3, or K2SO4 solution was circulated in the specimen utilizing the
vapor equilibrium technique as illustrated in Figure 1a. For suction of 1 MPa, the vapor
equilibrium technique was replaced by the osmotic technique, with PEG (polyethylene
glycol) solution in a corresponding concentration circulated underneath the semi-permeable
membrane (Figure 1b). Finally, to achieve the target suction of 0 MPa, the specimen was
thoroughly infiltrated with distilled water.

The swelling pressure generated during the test process was continuously monitored
and recorded by an automated data logger. The next suction level was applied after the
swelling pressure under the current controlled suction reached a stable state.

Five tests were performed in total (Table 2) on samples with different dry densities.

Table 2. Specifications of the swelling pressure tests.

Tests Dry Density (g/cm3) Suction Paths (MPa)

1 1.30 113–38–9–4.2–1–0
2 1.40 113–38–9–4.2–1–0
3 1.50 113–38–9–4.2–1–0
4 1.60 113–38–9–4.2–1–0
5 1.70 113–38–9–4.2–1–0

All of the tests were performed at an ambient temperature of 20 ± 0.5 ◦C.

3. Results

The variations in swelling pressure over time for samples with different dry densities
are plotted in Figure 2. In the case of the specimen with a dry density of 1.70 g/cm3

(Figure 2a), when suction was applied up to 38 MPa the swelling pressure first increased,
then decreased to 4.04 MPa. When suction was applied up to 9 MPa, the swelling pressure
increased to 5.63 MPa. When suction was further applied to 4.2 and 1 MPa, the swelling
pressure slightly increased to 6.42 and 6.80 MPa, respectively. When suction was finally
applied to 0 MPa, the final swelling pressure was 6.82 MPa. In the case of the specimen
with a dry density of 1.60 g/cm3 (Figure 2b), when suction was applied up to 38 MPa,
the swelling pressure first increased and then decreased to 1.41 MPa. When suction was
applied up to 9 MPa, the swelling pressure increased to 3.08 MPa. When suction was further
applied to 4.2 and 1 MPa, the swelling pressure slightly increased to 3.32 and 3.53 MPa,
respectively. When suction was finally applied to 0 MPa, the final swelling pressure was
3.49 MPa. For the specimen with a dry density of 1.50 g/cm3 (Figure 2c), when suction was
applied up to 38 MPa, the swelling pressure first increased and then decreased to 0.97 MPa.
When suction was applied up to 9 MPa, the swelling pressure increased to 1.62 MPa. When
suction was further applied up to 4.2 MPa, the swelling pressure was slightly reduced
to 1.51 MPa. When suction was finally applied to 1 and 0 MPa, the swelling pressure
slightly increased and the final value was 1.79 MPa. In the case of the specimen with a
dry density of 1.40 g/cm3 (Figure 2d), when suctions of 38 and 9 MPa were applied, the
swelling pressure increased to 0.52 and 0.75 MPa, respectively. When suction was applied
up to 4.2 MPa, the swelling pressure decreased to 0.51 MPa. As suction was further reduced
to 1 and 0 MPa, the swelling pressure showed a slightly increase to 0.73 and 0.76 MPa,
respectively. In the case of the specimen with a dry density of 1.30 g/cm3 (Figure 2e), the
swelling pressure exhibited relatively lower values during the suction reduction process.
When suctions of 38, 9, 4.2, 1, and 0 MPa were successively applied, the respective swelling
pressures were 0.24, 0.23, 0.21, 0.27, and 0.32 MPa.
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The evolution of the swelling pressure with suction are plotted for specimens in
Figure 3. It can be observed that the curve of the specimen with the higher dry density
is always located at a higher point, which indicates that, for the same control suction, the
swelling pressure of specimens increases significantly with increasing dry density. When
the dry density increases from 1.30 to 1.70 g/cm3, the final value of the swelling pressure
after hydration increases from 0.32 to 6.82 MPa. When the dry density is lower, there are
more large pores between the aggregates and the hydration expansion of the aggregates
continuously fills the large pores, resulting in a smaller increase in the swelling pressure.
As the dry density increases, the number of large pores between the aggregates gradually
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decreases, and the swelling space of the aggregate is very limited, resulting in a larger
increase in the swelling pressure.
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semilogarithmic scale.
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In addition, it can be observed in Figure 3 that the shape of curve is dependent on
the dry density of the specimen. For specimens with low dry densities, the swelling
pressure evolution curve exhibits the characteristic that the swelling pressure initially
increases, then decreases, and then increases again, which has been reported by previous
researchers [14,15]. This phenomenon can be attributed to the interplay between the
swelling of aggregates and the collapse of the soil skeleton. When the dry density is
higher, the phenomenon becomes non-obvious, with no significant reduction process in
swelling pressure.

4. Discussion

It can be observed from Figure 3 that the swelling pressure does not vary continuously
with the decrease in suction. In the high suction zone the swelling pressure exhibits a
noticeable variation with suction, whereas in the low suction zone the variation of the
swelling pressure with the suction is relatively small. There seems to exist a threshold with
regard to suction. When the suction reaches this threshold value, the swelling pressure
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no longer changes with suction. The phenomenon is especially obvious for samples with
higher dry densities, such as 1.70 g/cm3. When the suction reaches 4.2 MPa, the swelling
pressure reaches a stable state, and no further changes in swelling pressure occur during
the subsequent process of suction reduction. This observation indicates that the bentonite
reaches its hydration limit when the suction reaches a certain threshold, resulting in the
end of the hydration process.

This phenomenon could be explained by a change in the matric suction of bentonite
during hydration. For bentonite, the adsorption component (physico-chemical effects) is
the dominant component of matric suction, which arises from the presence of a substantial
quantity of active montmorillonite minerals. During wetting, as montmorillonite crystals
gradually become hydrated, adsorption (physico-chemical effects) gradually decreases.
Ideally, complete hydration of all montmorillonite crystals within the bentonite would lead
to the complete elimination of adsorptive suction (physico-chemical effects). Nevertheless,
the confined condition introduces a limitation on the hydration process in which certain
montmorillonite crystals may not undergo complete hydration as the ingress of water
molecules into the bentonite ceases. Consequently, residual adsorption may persist within
the material [23]. In this regard, as the bentonite specimen reaches the saturation state there
may be residual adsorptive suction, indicating that matric suction may not fully dissipate
and reach zero. Afterwards, despite continued decrease in the applied externally controlled
suction, the confined condition prohibits the further hydration of montmorillonite crystals.
As a result, the residual adsorption in bentonite remains unaffected by the application of
externally controlled suction, indicating that further reduction in residual adsorption is not
achievable. Thus, the swelling pressure of the bentonite cannot change further.

The suction threshold value upon hydration (suction decrease) can be defined as the
saturated suction, which represents the residual adsorption suction resulting from the
presence of unhydrated montmorillonite crystals. Wang et al. [23,24] found the existence of
saturated suction during controlled suction compression tests and swelling deformation
tests conducted on GMZ bentonite, the same material used in this study. The relationship
between saturated suction and stress state has been analyzed when bentonite reach satu-
rated state, as shown in Figure 5. The results show that a unique stress–suction relationship
exists when bentonite reaches the saturation state, regardless of the stress path and dry
density of specimen. Wang et al. [23] defined the curve as the critical saturated state (CSS)
curve, which divides the s–p plane into unsaturated and saturated zones.
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The swelling pressure–suction relationship obtained in this work, which represents the
stress path of constant volume swelling pressure tests, is plotted in Figure 5. An obvious
phenomenon can be seen in that the swelling pressure–suction curves seem to be divided
into unsaturated and saturated segments. When the stress path reaches the CSS curve, the
swelling pressure achieves stable state. Therefore, these results indicate that the CSS curve
is unique in the stress space independently of the stress path.

In addition, for the specimen with lower dry density, the final swelling pressure
when saturated is lower, and the corresponding saturated suction is lower. In case of the
sample with lower dry density, there was more space for swelling; thus, montmorillonite
crystals may have experienced relatively adequate hydration with weak adsorptive suction
(physico-chemical effects), resulting in lower saturated suction.

As shown in Figure 6, the CSS curve in the s–p space represents the correlation between
saturation suction (residual adsorption) and the current stress state for saturated bentonite.
The saturation suction is the minimum suction achievable upon the applied load. Therefore,
the stress state of bentonite would not fall under the CSS curve. The rule stress space of
the unsaturated expansive soil is the zone between the s-axis and the CSS curve, which
is different from the conventional stress space of unsaturated soil. The location of the
CSS curve reflects the swelling capability (physico-chemical effect) of the expansive soil.
The larger the mineral content of montmorillonite, the stronger the swelling capability
of the soil, and the more the angle of the CSS curve deviates from the p-axis. In case of
non-expansive soil, the CSS curve coincides with the p-axis, and the stress space degrades
into the conventional one of unsaturated soil.
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The three stress paths in the s–p space are plotted in Figure 6. When the stress state
reaches the CSS curve, irrespective of the path it follows, the initially unsaturated specimen
transitions to saturation. In the case of stress path OAA′ in Figure 6 for the hydration test
under constant applied stress, the real stress path of bentonite is OA. In the case of stress
path OBB′ in Figure 6 for the compression test under constant controlled suction, the actual
stress path of bentonite follows OBB′′. In the case of stress path OCC′ in Figure 6 for the
constant volume swelling pressure test, the real stress path of bentonite is OC.

Therefore, the analysis above shows that with the introduction of the CSS curve
into the s–p space, the conventional constitutive framework of unsaturated soil based on
independent variable approach can be expanded to effectively describe the mechanical
characteristics of expansive soil.

5. Conclusions

In this study, constant volume swelling pressure tests with controlled suction were
conducted on compacted GMZ bentonite. The swelling pressure–suction relationship and
corresponding mechanism for specimens with different dry densities were analyzed during
hydration. The following conclusions can be drawn.
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The swelling pressure of specimens increased significantly with increasing dry density.
A clear linear relation was observed between the final swelling pressure and the dry density
of the specimen, as shown in the semilogarithmic plot.

The shape of the swelling pressure–suction curves during hydration depended on the
dry density. For specimens with low dry densities, the swelling pressure evolution curve
exhibited the characteristic of the swelling pressure initially increasing, then decreasing,
and then increasing again. When the dry density was higher, the phenomenon became
non-obvious.

The swelling pressure–suction curves were observed to be divided into unsaturated
and saturated segments, proving the unique existence of the CSS curve in the stress space
independent of the stress path. By introducing the CSS curve into the s–p space, the
conventional stress space of unsaturated soil can be expanded to that of unsaturated
expansive soil.
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