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Abstract: In order to investigate the mechanical properties and permeability characteristics of
sandstone during damage evolution under hydromechanical condition, a series of coupled hydro-
mechanical triaxial tests on sandstone specimens were conducted based on the Rock Top 50HT
full-stress multi-field coupling triaxial test system. Variations in permeability as a function of con-
fining pressure, seepage pressure gradient, and volumetric strain during damage evolution were
obtained. The results show that: (1) When the confining pressure is constant and the specimen
is gradually changed from a dry to a saturated state, the failure mode of sandstone changes from
shear failure to single-slope shear failure. (2) There are four distinctive stages in the permeability
evolution of sandstone: gradual decrease, steady development, gradual increase, and rapid growth.
These stages correspond to the complete stress–strain curve under the respective working conditions.
(3) Employing the Weibull distribution formula, this study investigates the evolution of fracture
damage under varying working conditions and determines the permeability evolution relationships
associated with damage variables. This exploration reveals an intrinsic link between permeabil-
ity and damage variables. These findings enhance our understanding of the interplay between
stress, deformation, permeability, and damage evolution in seepage-stress coupled sandstone. The
results contribute valuable insights to the field of rock mechanics and hold implications for diverse
geotechnical and engineering applications.

Keywords: rock mechanics; permeability; triaxial test; damage evolution

1. Introduction

The expansion of various engineering activities in China, such as transport tunnelling,
water conservation, hydropower projects, and deep mining, has led to a transition from
shallow to deeper underground projects. This shift has introduced new challenges as rocks
in the deep underground are subjected to complex geo-stress and seepage pressure condi-
tions, making the determination of their mechanical parameters and seepage prediction
more intricate. Ensuring stability and safety in deep rock engineering projects requires a
complete knowledge of the mechanical and permeability attributes of rocks under different
seepage pressures and confining pressures. As a result, investigating the coupling between
rock stress and permeability holds significant theoretical and practical importance for deep
rock engineering [1–4]. Therefore, the study of rock under stress-permeability coupling
conditions has important theoretical and applied value for deep rock engineering.

In the past few years, many experimental studies have studied the permeability of
various types of rocks during the triaxial seepage stress process, including high-strength
granite [5,6], low-strength sedimentary rock [7], and sandstone with high porosity [8–10].
These results provide an important reference for further understanding the mechanisms
by which strength and porosity affect rock permeability. Alam et al. [11] carried out
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triaxial hydromechanical tests for three different lithologies and analyzed their permeability
evolution by combining thin section image analysis and micro-focus X-ray computed
tomography of structural changes. Wang et al. [12] explored the evolution of axial strain,
volume strain, and permeability in rock specimens during the failure process by conducted
a hydro-mechanical coupling test on limestone and sandstone. In addition, Wang et al. [13]
formulated a model for the permeability evolution of rocks in the volume compression stage
and volume shearing stage. These results provide an important reference for understanding
the rock deformation and fracture mechanism. Hu et al. [14] studied the variation of the
Biot coefficient and permeability by conducting a hydro-mechanical test. Chen et al. [15]
and Zhang et al. [1] investigated the seepage characteristics of rocks under low pressure and
high pressure, and the correlation between deformation characteristics and permeability
was revealed. This means that the fracture and deformation characteristics of rock have
an important effect on permeability. In addition, some scholars have carried out hydro-
mechanical coupling experiments for fracture rocks, such as Nguyen et al. [16], who
investigated the influence of stress paths on the mechanical properties and permeability
evolution of quartz-filled fracture rock. Yang et al. [17] conducted a series of tests on the
shear–seepage coupling characteristics of a single fractured rock mass under cyclic loading
and unloading.

During the hydromechanical test, energy accumulation, evolution, and dissipation
were measured. Wang et al. [18] conducted a series of compaction-permeability tests
with in situ nuclear magnetic resonance (NMR) measurement; the permeability variation
mechanism and the influence of stress damage on permeability were investigated during
the complete stress–strain process. Zhao et al. [19] investigated the damage characteris-
tics of sandstone during hydromechanical tests by conducting an acoustic emission test,
and the power law relationship between permeability and porosity were determined.
Zou et al. [20] revealed the relationship between damage properties and the permeabil-
ity of granite by conducting hydro-mechanical tests. Gao et al. [21] studied the effects
of pore volume change and seepage pressure on sandstone deformation and defined a
damage variable and established a semi-analytical permeability change model. In addition,
Chen et al. [22] carried out triaxial compression tests under different confining pressures and
seepage pressures and used 3D digital image correlation and scanning electron microscopy
to monitor the strain localization behavior of sandstones under different conditions and its
effect on permeability evolution.

After reviewing the aforementioned research findings, it is evident that there is a
limited amount of research focused on the relationship between the mechanical parameters,
permeability characteristics, and damage state of rocks under hydromechanical conditions.
To address this gap, the present study utilizes a Rock Top multi-field coupled tester and
employs the steady-state permeability testing method to conduct an extensive investigation
into the permeability evolution patterns and mechanical parameters of sandstone subjected
to various hydromechanical conditions during the triaxial compression damage process.
Moreover, a detailed analysis of the rock’s permeability under specific strain thresholds at
each stage of stress–strain was conducted. The results of this study offer valuable insights
into the safeguarding of deep rock engineering.

2. Test Principle and Method
2.1. The Preparation of Tested Sample

The density of the sandstone used for the test was 2.59 g/cm3, and it exhibited a
greyish-white color, as depicted in Figure 1. Table 1 illustrates the main mineral elements
in the content of the sandstone. The cylindrical sandstone samples used in the experiment
have dimensions of φ50 mm×H100 mm, with a height-to-diameter ratio of 2.0. The flatness
of the specimen at both ends is less than 0.05 mm. Scanning electron microscopy (SEM)
was employed on the 2 cm × 2 cm sandstone fragments to analyze the microstructure of
the sandstone. The SEM images at different magnifications are shown in Figure 2. From
the low-magnification image (1000×), it can be seen that the sandstone microscopic fine
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particles are tightly cemented and distributed in layers, and some of the compound particles
are embedded in the surface layer of the cement.
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Once all the specimens were numbered, weighed, and measured, they were subjected
to a high-temperature oven at a constant temperature of 110 ◦C for 24 h. After the drying
process, the specimens were removed and placed in a desiccator to cool to room temperature.
For a hydro-mechanical test, the dried specimens were vacuum-saturated with water using
a vacuum saturator.

2.2. Test Equipment

Figure 3 illustrates the Rock Top 50HT full-stress multi-field coupled triaxial tester
system employed in this research. This system comprises three distinct sets of autonomous
loading modules for an axial pressure loading system, confining pressure loading system,
and seepage pressure loading system, respectively. The generation of both pressures is
accomplished through a precision-oriented brushless servo-electronic controlled high-
pressure pump, thereby allowing for the imposition of maximum axial pressure reaching
750 MPa, a maximum confining pressure of 60 MPa, and a peak seepage pressure of 60 MPa.
Furthermore, this system enables real-time monitoring of both axial and circumferential
deformation of the specimen. Throughout the experimental procedures, comprehensive
data were automatically acquired at intervals of 5 s, subsequently archived within the
computer repository for subsequent analysis and interpretation.
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2.3. Experimental Principle

During this testing, the determination of permeability was carried out by employing
the steady-state method, in accordance with the principles outlined by Darcy’s law. The
expression as shown as follows:

Ki =
µL(Qi+1 −Qi)

A∆Pi∆ti
(1)

where Ki is the mean permeability across a time span (m2); µ is the dynamic viscosity
coefficient of water, which is 1.005 × 10−3 Pa.s under room-temperature conditions; L is
the extent of water flow seepage; A is the cross-sectional area of water flow seepage (m2);
∆P is the disparity in seepage pressure spanning from one terminus of the specimen to the
other, within the temporal interval ∆t (MPa); ∆t is the time span (s); and Qi and Qi+1 are the
seepage quantities recorded at the i-th and i + 1-th data acquisition moments, respectively,
quantified in millilitres (mL). By applying Darcy’s law and using the experimental data
collected at different recording points, the average permeability of the sandstone can be
determined.

2.4. Test Programme and Steps

1. Under dry conditions, the uniaxial compressive strength of sandstone was determined
to be 48.24 MPa, accompanied by a modulus of elasticity measuring 13.22 GPa and
a Poisson’s ratio of 0.25. Conversely, when subjected to saturated conditions, the
sandstone exhibited a reduced uniaxial compressive strength of 38.76 MPa, coupled
with a modulus of elasticity of 15.42 GPa and a Poisson’s ratio slightly increased to 0.26.

2. The sandstone underwent triaxial compression tests in both dry and saturated states,
along with different gradients of confining pressure, which provided a blank control
group for the subsequent hydromechanical tests under saturation conditions. The
following four gradients of confining pressure were utilized: 5, 10, 15, and 20 MPa.

3. Hydromechanical tests were carried out on sandstone, encompassing various mag-
nitudes of confining pressure gradients and seepage pressure gradients. Confining
pressure gradients of 5, 10, 15, and 20 MPa were established, while seepage pressure
gradients of 2, 4, and 8 MPa were implemented, the test programme is shown in
Table 2. The ensuing hydromechanical test procedures were executed according to
the subsequent steps:

• Firstly, the sandstone was secured in the triaxial pressure chamber and then the
installation of the circumferential and axial sensors began in sequence.

• Secondly, the confining pressure was applied to the sandstone automatically
using a control system, gradually ramping it up from 0 MPa to the designated
target value at a controlled rate of 1 MPa/min. Following the stabilization of the
confining pressure, the seepage pressure was applied from the upper chamber,
incrementally increasing from 0 MPa to the intended value at a controlled pace
of 1 MPa/min. It is important to note that the seepage pressure within the lower
chamber was maintained at atmospheric pressure throughout this process.
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• Thirdly, subsequent to achieving the targeted seepage pressure and ensuring its
stability, the next step is to proceed to apply the deviatoric stress. This should be
executed by applying a loading rate of 0.01 mm/min until the point of specimen
failure is reached.

Table 2. Test programme.

Seepage Pressure/MPa Confining Pressure/MPa

2 5, 10, 15, 20
4 15
8 15

3. Analysis of Test Results
3.1. Stress–Strain Curve and Damage Characterization

The whole stress–strain behaviour of sandstone is the basis for studying its mechanical
deformation characteristics, which show different physical significances in different yield
stages. Figure 4 depicts the whole set of stress–strain curves of sandstone specimens
under hydromechanical conditions. Observing Figure 4a–f, a distinct brittle behaviour is
evident in the sandstone samples. As the confining pressure increases, a transition from
brittle failure to ductile failure is discernible in the sandstone. This effect becomes notably
pronounced, particularly under high confining pressures, accompanied by a noteworthy
augmentation in the failure strength. At low confining pressures, the compression degree
of fissures within the sandstone remains minimal. At this time, the crack tip area easily
receives a high concentration of stress, which leads to the rapid development of cracks,
and the sandstone is easily destroyed. Under elevated confining pressures, a substantial
closure of micro-cracks is observed, the crack propagation is difficult, and the failure
strength is larger. Under water-saturated conditions, the peak strength is reduced due to
the weakening of water.

According to the crack volumetric strain method [23,24], the correlation between
volume strain (εv) and axial strain (ε1) can been examined, along with the relationship
between crack strain (εcv) and axial strain (ε1). The precise values of volume strain (εv) and
crack strain (εcv) can be computed using the following equations:

εv = ε1 + 2ε3 (2)

εcv = εv −
(1− 2µ)(σ1 − σ3)

E
(3)

where ε1, ε3, and εev represent axial strain, circumferential strain, and elastic volume
strain, respectively; σ1 and σ3 correspond to major and minor principal stress, respectively.
Additionally, E and µ denote the elastic modulus and Poisson’s ratio, respectively.

The technique employed for determining the fracture closure stress of the rock in-
volved the utilization of the axial strain difference approach. This method identifies the
stress level at which the primary microfractures within the specimen achieve complete
closure. The methodology is described by the following equations:

∆ε1 = ε1 −
εcd
σcd

(σ1 − σ3) (4)

where ∆ε1 represents the axial strain difference and εcd is the axial strain associated with
the threshold of crack damage stress σcd.
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According to different stress thresholds, the full stress–strain curve of sandstone can
be segmented into five distinct stages as follows:
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1. Stage I (microcrack closure stage): The internal primary pores and microcracks are
closed in a compression manner, which is mainly the deformation of the weakest
portion of the rock’s internal bearing capacity, and the deviatoric stress–axial strain
curve at this stage has no obvious upward-concave characteristics. The relationship
between deviatoric stress and axial strain appears as an approximately linear trend,
characterized by an upper limit stress value which corresponds to the rock’s crack
closure stress σcc.

2. Stage II (linear elastic deformation stage): As deviatoric stress progressively escalates,
the primary pores and microcracks within the rock continue to close and compact.
During this phase, the stress–axial strain curve maintains a linear trend, with the
upper stress limit signifying the onset of rock fracturing.

3. Stage III (stable crack expansion stage): The deviatoric stress–axial strain curve main-
tains an approximate linear pattern. However, the deviatoric stress–circumferential
strain curve begins to exhibit nonlinear behavior as new cracks emerge within the
specimen and gradually propagate in a stable fashion. The upper stress limit aligns
with the crack damage stress.

4. Stage IV (cracks non-stationary expansion stage): The microfracture increases rapidly,
and progressive damage occurs within the rock sample. As the volumetric strain
enters an expansion phase, the stress–strain curve demonstrates pronounced nonlin-
earity. The upper stress value in this context corresponds to the peak strength of the
sandstone σc.

5. Stage V (post-peak strain and damage stage): At the point where the deviatoric stress
reaches its maximum, the internal structure undergoes complete disruption. Fissures
rapidly propagate, culminating in the formation of a macroscopic fracture surface.
The overall deformation is primarily characterized by shear-slip damage along this
fracture surface. Subsequently, stress diminishes progressively with the augmentation
of strain.

Based on the findings presented by Zhao et al. [19] and Yang et al. [25], it is known that
the fracture modes of rocks are single shear, conjugate shear, shear–tension combination,
and cleavage. The damage patterns of sandstone under various combinations of confining
pressures and seepage pressures were obtained, as shown in Figures 5–8. Most of them are
monoclinic shear damage throughout the whole sandstone, while it is tensile splitting at
uniaxial compression. In summary, it can be deduced that the damage pattern exhibited
by sandstone is notably characterized by brittleness, with minimal evidence of volumetric
expansion. The shear damage surface appears sleek, while an abundance of granular
fragments is observable.
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3.2. Strength Characteristics

Researchers have explored the strength characteristics of rocks from various perspec-
tives. Zhang et al. [26] examined the evolutionary attributes of sandstone’s peak strength
concerning confining pressure or effective confining pressure across both dry and saturated
conditions. Zhang et al. [27] investigated the impact of intermediate principal stresses on
rock strength by utilizing the M-C strength criterion. The research explores the strength
parameters of sandstone under dry and saturated conditions, such as cohesion and internal
friction, as determined by the following Equations (5) and (6), the result as shown in Table 3.

c =
n

2
√

m
(5)

ϕ = tan−1(
m− 1
2
√

m
) (6)

where c and ϕ represent the cohesion and the angle of internal friction, respectively. m and
n denote fitting parameters.

Table 3. Mechanical parameters of sandstone under different working conditions.

Seepage
Pressure/MPa Condition Cohesion/MPa The Angle of

Internal Friction/◦

/ Dry 7.4 59.5
0 Saturated 8.3 53.8
2 Saturated 7.9 54.4

As depicted in Figure 9, an evident linear growth pattern in the peak strength of
sandstone is observed with escalating confining pressures across distinct conditions. It
is discernible that the strength characteristics of sandstone are significantly influenced
by variations in the confining pressure. When comparing saturated sandstone to its dry
counterpart, the cohesion of the former experiences a notable increase of 12.2%, while the
angle of internal friction undergoes a reduction of 9.6%. Furthermore, under saturated con-
ditions, the osmotic pressure effect on sandstone strength is apparent due to the weakening
influence of water. Specifically, in contrast to a seepage pressure of 0 MPa, the cohesion of
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saturated sandstone under a seepage pressure of 2 MPa displays a reduction of 4.8%, while
the angle of internal friction registers a marginal increase of 1.1%.
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3.3. Permeability Characteristics
3.3.1. Relationship between Permeability and Axial Stress–Strain

During the triaxial compression process, permeability is closely associated with var-
ious deformation stages within the rock sample, such as initiation, propagation, and
connection of internal fractures. To further investigate the evolution of the axial stress–
strain-permeability response under the coupling of fluid flow and stress, this investigation
undertakes an exhaustive analysis of the axial strain, volumetric strain, and permeability
reactions exhibited throughout the complete deformation progression of sandstone under
varying conditions. The distinctive correlation between permeability and axial stress–strain
is visually represented in Figure 10.
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Within the permeability evolution curve of sandstone, six critical permeability values
are identified: (1) initial permeability under static hydrostatic pressure (k0); (2) minimum
permeability (kmin); (3) permeability at the maximum volumetric compression point (kc);
(4) permeability at the zero volumetric strain point (kz); (5) permeability at the peak stress
point (ks); (6) maximum permeability (kmax).

In accordance with the insights gleaned from Figure 11 and Table 4, a discernible trend
emerges in permeability evolution during the deformation phases of sandstone specimens
under diverse conditions. This trend unfolds in four distinctive stages: gradual decrease,
steady development, gradual increase, and rapid growth. These stages showcase a marked
correspondence with the micro-fracture closure phase, linear elastic deformation phase,
fracture development and propagation phase, and post-peak strain and failure phase, as
discerned from the corresponding sandstone deviatoric stress–axial strain curves. For
instance, in the case of a pore pressure of 2 MPa and a confining pressure of 10 MPa, the
permeability of the sandstone sample gradually decreases from the initial permeability K0
of 1.21 × 10−17 m2 to the minimum permeability Kmin of 0.79 × 10−17 m2, then stabilizes
and gradually increases to a Kc of 1.89 × 10−17 m2, and finally rapidly increases to a Ks of
5.27 × 10−17 m2, reaching the maximum permeability Kmax of 13.8 × 10−17 m2 at the post-
peak stage. Comparing Kmax and Kmin, there is a two-order-of-magnitude difference, and,
compared with K0, there is a one-order-of-magnitude difference. This effect becomes more
pronounced with lower confining pressures under the same pore pressure, for instance,
at a pore pressure of 2 MPa and confining pressures of 15 MPa, the initial permeability
K0 significantly increases compared with the state with a confining pressure of 10 MPa,
primarily due to variations in the degree of development of inherent microcracks within
the rock.

Prior to the commencement of deviatoric stress loading, elevated confining pressures
result in a reduction of the initial permeability, denoted as K0. Notably, the permeability of
sandstone is predominantly influenced by the confining pressure, which corresponds to
the disparity between the actual confining pressure and the pore pressure. As the confining
pressure increases, the radial inhibitory effect on the rock sample intensifies, leading
to densification of inherent micro-fractures within the sandstone, resulting in reduced
openness of these fractures. This phenomenon induces a constriction and diminishment
of fluid flow pathways, consequently yielding a gradual decline in permeability. The
connection between fracture advancement and permeability across distinct loading stages
can be delineated as follows:

(1) With the initial loading of deviatoric stress, the combined effect of confining pressure
and deviatoric stress leads to further closure of pores and micro-fractures within
the rock. As new fluid flow pathways have yet to establish, a gradual decrease in
permeability ensues until the point of minimum permeability Kmin becomes evident.

(2) During the linear elastic deformation stage, the sandstone approaches an elastic
behaviour, where the fracture aperture remains approximately unchanged or slightly
decreases. Fluid flow channels remain relatively constant or narrow in width, leading
to a near-constant or slightly reduced permeability.

(3) In the phase of stable crack propagation, the newly formed fractures within the
sandstone have minimal aperture and connectivity. The rock undergoes a shift from
volume compression to volume expansion. This phase corresponds to the maximum
volumetric compression point permeability Kc, where the inhibitory effect of confining
pressure weakens and permeability gradually increases.

(4) During the phase characterized by unstable crack propagation, the interconnection
of internal fractures intensifies, thereby leading to a substantial augmentation in
the count of fluid flow pathways and the rapid escalation of permeability. The
permeability Ks is observed at the peak stress point. Upon complete failure of the
sandstone, macroscopic interconnected fractures form, leading to shear failure along
these interconnected fractures, resulting in the maximum permeability Kmax.
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Table 4. Six key permeability values of sandstone during the whole stress–strain process under
different conditions.

Seepage Pressure/MPa Confining Pressure/MPa K0 Kmin Kc Kz Ks Kmax

2
5 1.37 0.48 12.3 17.3 23.5 28.8

10 1.21 0.79 1.89 3.75 5.27 13.8

2
15

1.27 0.43 1.79 3.36 3.68 8.26
4 2.03 1.37 2.67 5.56 5.83 9.46
8 3.52 2.56 4.03 11.1 16.6 27.1

2 20 1.20 0.77 1.43 3.09 2.32 3.23

To comprehensively dissect the permeability evolution pattern within sandstone, this
study proceeds to delve into the analysis of permeability at distinct stress thresholds, as
delineated in Table 5. The permeability associated with the closure stress of rock fractures,
denoted as Kcc, and the permeability corresponding to the initiation of fracturing stress,
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denoted as Kci, are analysed in depth. Combining Tables 4 and 5 reveals that the difference
between Kcc and the minimum permeability Kmin for different conditions is negligible.
During the micro-fracture closure and linear elastic deformation phases, the permeability
Kcc can be considered as equivalent to the minimum permeability Kmin. The permeability
Kci, associated with the initial state of rock fracturing, is lower than the value of Kc due to
the relatively underdeveloped nature of fluid flow pathways.

Table 5. Two key permeability values of sandstone during whole stress–strain process under
different conditions.

Seepage Pressure/MPa Confining Pressure/MPa Kcc/(10−17/m2) Kci/(10−17/m2)

2
5 0.53 3.22

10 1.17 1.32

2
15

0.49 1.46
4 1.37 1.73
8 2.64 3.11

2 20 0.78 0.99

3.3.2. Relationship between Permeability and Volumetric Strain

Throughout the experimental procedure, the evolution of volumetric strain in sand-
stone unfolds in two discernible stages: volumetric compaction and volumetric expansion.
The transitional periods of permeability closely align with these volumetric strain stages.
Figure 12 presents the permeability–volumetric strain curves spanning the entirety of the
stress–strain progression under varied conditions. Throughout the deformation process of
sandstone, the permeability exhibits a distinct pattern of gradual decrease, steady develop-
ment, gradual increase, and rapid growth, which correlates well with the four stages of
sandstone deformation: slow volumetric compression, rapid volumetric compression, rapid
volumetric expansion, and slow volumetric expansion. For instance, under conditions of a
pore pressure of 2 MPa and a confining pressure of 15 MPa, during the stage of volumetric
compaction, due to the weaker radial expansion of the sandstone compared to axial com-
pression, the sandstone undergoes micro-fracture closure, linear elastic deformation, and
stable fracture expansion. The predominant deformation in this stage is axial compression,
leading to a gradual transition of internal pores and micro-fractures from slow compression
to slow expansion. Consequently, the fluid flow pathways within the sandstone expand
slowly, yielding a progressive increase in permeability.

Interestingly, the rock sample’s minimum permeability does not coincide with the
moment of peak volumetric compaction (which is the inflection point between the compres-
sion stage and the expansion stage), but rather precedes the inflection point of volumetric
strain. Under the same pore pressure, with an increase in confining pressure, the minimum
permeability Kmin and the permeability at the maximum volumetric compression point Kc
gradually approach each other. After the point of compaction (in the stage of rapid volu-
metric expansion), as the sandstone undergoes rapid volumetric expansion, the aperture of
newly formed fractures within the rock increases, resulting in an augmented number of
fluid flow pathways and a rapid increase in permeability. It is evident from Figure 12 that
the maximum permeability Kmax of the sandstone is achieved only subsequent to the rock
reaching its peak strength, displaying a distinct lag effect.

Indeed, the preceding discussion highlights the intricate interrelationship between
rock permeability and volumetric strain. To further advance the analysis of fluid flow–
stress coupling, the variation in permeability with volumetric strain during the stages of
volumetric compression and expansion, with a confining pressure of 15 MPa and differing
pore pressure differentials of 2, 4, and 8 MPa, was subjected to fitting. The volumetric strain
during the expansion stage is considered as a relative value of volumetric expansion:

εv1 = εvr − εv0 (7)
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where εv1 is the relative value of the volumetric expansion strain, εvr is the maximum
volumetric compression strain, and εv0 is the volumetric expansion.
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In the volumetric compression stage, the evolution of sandstone permeability is de-
picted in Figure 13a. At a pore pressure of 2 MPa, the relationship between permeability
and volumetric strain is described using a cubic polynomial:

K = Aε3
v + Bε2

v + Cεv + 1 (8)

where, A, B, and C are fitting parameters.
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For pore pressures of 4 and 8 MPa, as well as the volumetric expansion stage, the perme-
ability evolution patterns with volumetric strain are illustrated in Figure 13b. The relation-
ship between permeability and volumetric strain is modeled using an exponential function:

K = exp
(

Eε2
v + Fεv + G

)
(9)

where, E, F, and G are fitting parameters.
Table 6 demonstrates the equation coefficients of the relationship between permeability

and volumetric strain at different void pressures. As can be seen from the table, the
permeability of sandstones is affected by stress during both the volumetric compression
and expansion phases, but there is some variation in the manner and extent of this effect.

Table 6. The fitting parameters for the relationship between permeability and volumetric strain of
sand-stone under different seepage pressure.

Item Confining Pressure Seepage Pressure Volumetric Compression Stage Volumetric Expansion Stage

1 15 2 −121.11ε3
v + 84.59ε2

v − 12.83εv + 1
(R2 = 0.992)

exp
(
0.03ε2

v + 0.08εv + 0.74
)

(R2 = 0.963)

2 15 4
exp

(
13.37ε2

v − 3.79εv + 0.62
)

(R2 = 0.986)
exp

(
−0.01ε2

v − 0.27εv + 1.13
)

(R2 = 0.945)

3 15 8
exp

(
16.71ε2

v − 3.92εv + 1.22
)

(R2 = 0.981)
exp

(
−0.006ε2

v − 0.29εv + 1.55
)

(R2 = 0.980)

3.4. Analysis of Rock Damage Evolution

Throughout the failure process, a considerable number of newly generated fractures
exist within the rock, accompanied by evolving damage within the sample. The introduc-
tion of the damage variable D is paramount. Assuming that the microstructural strength
of the rock follows the Weibull distribution, the amalgamation of statistical theory and
damage mechanics gives rise to a statistical damage expression:

D = 1− exp
[

1−
(

ε

ε0

)s]
(10)

where D represents the damage variable, ε is the strain, and s and ε0 are parameters of the
Weibull distribution.

The Weibull distribution parameters are predicated on the distinctive features exhib-
ited by the peak of the deviatoric stress–axial strain curve:

s =
1

ln
(

Eεc
σc−2µσ3

) (11)
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ε0 = εcs
1
s (12)

where E is the elastic modulus, µ is the Poisson’s ratio of the sandstone, σ3 is the confining
pressure, and σc and εp are the peak stress and peak strain, respectively.

The evolution curves of axial strain, the damage variable, and permeability under
different conditions are shown in Figure 14a–f. During the stages of micro-fracture closure
and linear elastic deformation, where new voids and micro-fractures have yet to form,
and due to the increased circumferential confinement experienced by the rock sample,
both permeability and damage variable changes are relatively gradual, with the damage
variable nearly approaching zero. In the phase of crack propagation, with increasing
loads, newly generated fractures emerge, causing the damage variable to increase slowly,
leading to a corresponding increase in permeability. The change rate of the damage
variable demonstrates a strong correlation with the corresponding alteration in permeability,
revealing that the variation in the damage variable mirrors the development of internal
fractures within the rock specimen. The evolution of rock permeability is closely linked to
the development of its internal cracks and fractures. Hence, a higher damage rate within
the specimen corresponds to a swifter alteration in permeability.
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4. Conclusions

To explore the deformation behavior, permeability attributes, and damage progression
of sandstone in both dry and saturated conditions, a series of hydromechanical tests were
conducted. The following conclusions were drawn:

(1) Different stress thresholds correspond to distinct stages of rock deformation, namely
the micro-fracture closure stage, linear elastic deformation stage, stable crack expan-
sion stage, crack non-stationary expansion stage, and post-peak strain and damage
stage. Under dry conditions, with increasing confining pressure, the failure mode
shifts from macroscopic multi-crack failure to shear failure. In saturation conditions,
the predominant failure mode is inclined plane shear failure.

(2) Throughout the rock specimen’s deformation and failure process, the evolution of
sandstone permeability exhibits four characteristic stages: gradual decrease, steady
development, gradual increase, and rapid growth. This pattern correlates well with
the micro-fracture closure, linear elastic deformation, crack development and expan-
sion, and post-peak strain and failure stages. Key permeability values increase as pore
pressure increases, but decrease as confining pressure increases. The permeability kcc
can be approximated as the minimum permeability kmin.

(3) The permeability adheres to a distinct four-stage pattern of gradual decrease, steady
development, gradual increase, and rapid growth. This trend corresponds to the four
phases of slow volumetric compression, rapid volumetric compression, rapid volu-
metric expansion, and slow volumetric expansion observed during rock deformation.
The correlation between permeability and volumetric strain during the compression
and expansion stages can be adequately described by the corresponding equations.

(4) The propagation of internal cracks in sandstone under different conditions leads to
evolving fracture damage. A correlation curve depicting the relationship between per-
meability and the damage variable was constructed, shedding light on the underlying
mechanisms that govern the evolution of permeability in response to alterations in
rock damage.
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