Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,601)

Search Parameters:
Keywords = connective index

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 976 KiB  
Article
Derivatives, Integrals, and Polynomials Arising from the Inhomogeneous Airy Equation
by M. S. Abu Zaytoon and M. H. Hamdan
Symmetry 2025, 17(8), 1180; https://doi.org/10.3390/sym17081180 - 23 Jul 2025
Abstract
The various forms of Airy’s differential equation are discussed in this work, together with the special functions that arise in the processes of their solutions. Further properties of the arising integral functions are discussed, and their connections to existing special functions are derived. [...] Read more.
The various forms of Airy’s differential equation are discussed in this work, together with the special functions that arise in the processes of their solutions. Further properties of the arising integral functions are discussed, and their connections to existing special functions are derived. A generalized form of the Scorer function is obtained and expressed in terms of the generalized Airy and Nield–Kuznetsov functions. Higher derivatives of all generalized functions arising in this work are obtained together with their associated generalized Airy polynomials. A computational procedure for the generalized Scorer function is introduced and applied to computing and graphing it for different values of its index. The solution of an initial value problem involving the generalized Scorer function is obtained. Full article
28 pages, 2298 KiB  
Article
Spatial Correlation of Agricultural New Productive Forces and Strong Agricultural Province in Anhui Province of China
by Xingmei Jia, Mengting Yang and Tingting Zhu
Sustainability 2025, 17(15), 6719; https://doi.org/10.3390/su17156719 - 23 Jul 2025
Abstract
Developing agricultural new productive forces (ANPF) according to local conditions is a key strategy for agricultural modernization. Using panel data from 16 prefecture-level cities in Anhui Province from 2010 to 2022, this study constructed indicator systems for ANPF and the construction of a [...] Read more.
Developing agricultural new productive forces (ANPF) according to local conditions is a key strategy for agricultural modernization. Using panel data from 16 prefecture-level cities in Anhui Province from 2010 to 2022, this study constructed indicator systems for ANPF and the construction of a strong agricultural province (CSAP). The entropy-weight TOPSIS method was used to calculate the levels of ANPF and the SAP index. This study employed a modified gravity model and social network analysis (SNA) to investigate the spatial correlation and evolutionary characteristics of these networks. Geographical detectors were also used to identify the driving factors behind agricultural transformation. The findings indicate that both ANPF and CSAP showed an upward trend during the study period, with significant regional heterogeneity, with Central Anhui being the most prominent. This study revealed spatial spillover effects and strong network correlations between ANPF and CSAP, with the spatial network structure exhibiting characteristics of multi-core, multi-association, and multidimensional connections. The entities within the network are tightly connected, with no “isolated island” phenomenon, and Hefei, as the central hub, showed the highest number of connections. Laborer quality, tangible means of production, and new-quality industries emerged as the core driving forces, working in synergy to propel CSAP. This study contributes new insights into the spatial network dynamics of agricultural development and offers actionable recommendations for policymakers to enhance agricultural modernization globally. Full article
Show Figures

Figure 1

24 pages, 2496 KiB  
Article
Zinc and Selenium Biofortification Modulates Photosynthetic Performance: A Screening of Four Brassica Microgreens
by Martina Šrajer Gajdošik, Vesna Peršić, Anja Melnjak, Doria Ban, Ivna Štolfa Čamagajevac, Zdenko Lončarić, Lidija Kalinić and Selma Mlinarić
Agronomy 2025, 15(8), 1760; https://doi.org/10.3390/agronomy15081760 - 23 Jul 2025
Abstract
Microgreens, having short growth cycles and efficient nutrient uptake, are ideal candidates for biofortification. This study investigated the effects of selenium (Se) and zinc (Zn) on photosynthetic performance in four hydroponically grown Brassica microgreens (broccoli, pak choi, kohlrabi, and kale), using direct and [...] Read more.
Microgreens, having short growth cycles and efficient nutrient uptake, are ideal candidates for biofortification. This study investigated the effects of selenium (Se) and zinc (Zn) on photosynthetic performance in four hydroponically grown Brassica microgreens (broccoli, pak choi, kohlrabi, and kale), using direct and modulated chlorophyll a fluorescence and chlorophyll-to-carotenoid ratios (Chl/Car). The plants were treated with Na2SeO4 at 0 (control), 2, 5, and 10 mg/L or ZnSO4 × 7H2O at 0 (control), 5, 10, and 20 mg/L. The results showed species-specific responses with Se or Zn uptake. Selenium enhanced photosynthetic efficiency in a dose-dependent manner for most species (8–26% on average compared to controls). It increased the plant performance index (PItot), particularly in pak choi (+62%), by improving both primary photochemistry and inter-photosystem energy transfer. Kale and kohlrabi exhibited high PSII-PSI connectivity for efficient energy distribution, with increased cyclic electron flow around PSI and reduced Chl/Car up to 8.5%, while broccoli was the least responsive. Zinc induced variable responses, reducing PItot at lower doses (19–23% average decline), with partial recovery at 20 mg/L (9% average reduction). Broccoli exhibited higher susceptibility, with inhibited QA re-oxidation, low electron turnover due to donor-side restrictions, and increased pigment ratio (+3.6%). Kohlrabi and pak choi tolerated moderate Zn levels by redirecting electron flow, but higher Zn levels impaired PSII and PSI function. Kale showed the highest tolerance, maintaining stable photochemical parameters and total electron flow, with increased pigment ratio (+4.5%) indicating better acclimation. These results highlight the beneficial stimulant role of Se and the dual essential/toxic nature of Zn, thus emphasizing genotype and dose-specific optimizations for effective biofortification. Full article
Show Figures

Figure 1

29 pages, 8280 KiB  
Article
Constructing an Ecological Spatial Network Optimization Framework from the Pattern–Process–Function Perspective: A Case Study in Wuhan
by An Tong, Yan Zhou, Tao Chen and Zihan Qu
Remote Sens. 2025, 17(15), 2548; https://doi.org/10.3390/rs17152548 - 22 Jul 2025
Abstract
Under the continuous disturbance of ecosystems driven by urbanization, landscape fragmentation and the disruption of ecological processes and functions are key challenges in optimizing ecological networks (EN). This study aims to examine the spatiotemporal evolution of topological patterns, ecological processes, and ecosystem services [...] Read more.
Under the continuous disturbance of ecosystems driven by urbanization, landscape fragmentation and the disruption of ecological processes and functions are key challenges in optimizing ecological networks (EN). This study aims to examine the spatiotemporal evolution of topological patterns, ecological processes, and ecosystem services (ES) in Wuhan from the “pattern–process–function” perspective. To overcome the lag in research concerning the coupling of ecological processes, functions, and spatial patterns, we explore the long-term dynamic evolution of ecosystem structure, process, and function by integrating multi-source data, including remote sensing, enabling comprehensive spatiotemporal analysis from 2000 to 2020. Addressing limitations in current EN optimization approaches, we integrate morphological spatial pattern analysis (MSPA), use circuit theory to identify EN components, and conduct spatial optimization accurately. We further assess the effectiveness of two scenario types: “pattern–function” and “pattern–process”. The results reveal a distinct “increase-then-decrease” trend in EN structural attributes: from 2000 to 2020, source areas declined from 39 (900 km2) to 37 (725 km2), while corridor numbers fluctuated before stabilizing at 89. Ecological processes and functions exhibited phased fluctuations. Among water-related indicators, water conservation (as a core function), and modified normalized difference water index (MNDWI, as a key process) predominantly drive positive correlations under the “pattern–function” and “pattern–process” scenarios, respectively. The “pattern–function” scenario strengthens core area connectivity (24% and 4% slower degradation under targeted/random attacks, respectively), enhancing resistance to general disturbances, whereas the “pattern–process” scenario increases redundancy in edge transition zones (21% slower degradation under targeted attacks), improving resilience to targeted disruptions. This complementary design results in a gradient EN structure characterized by core stability and peripheral resilience. This study pioneers an EN optimization framework that systematically integrates identification, assessment, optimization, and validation into a closed-loop workflow. Notably, it establishes a quantifiable, multi-objective decision basis for EN optimization, offering transferable guidance for green infrastructure planning and ecological restoration from a pattern–process–function perspective. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Landscape Ecology)
Show Figures

Figure 1

24 pages, 4108 KiB  
Article
Examination of the Coordination and Impediments of Rural Socio-Economic-Spatial Coupling in Western Hunan from the Standpoint of Sustainable Development
by Chengjun Tang, Tian Qiu, Shaoyao He, Wei Zhang, Huizi Zeng and Yiling Li
Sustainability 2025, 17(15), 6691; https://doi.org/10.3390/su17156691 - 22 Jul 2025
Abstract
Clarifying the coordination and impediments of social, economic, and spatial connection in rural areas is essential for advancing rural revitalization, urban-rural integration, and regional coordinated development. Utilizing the 24 counties and districts in western Hunan as case studies, we developed an evaluation index [...] Read more.
Clarifying the coordination and impediments of social, economic, and spatial connection in rural areas is essential for advancing rural revitalization, urban-rural integration, and regional coordinated development. Utilizing the 24 counties and districts in western Hunan as case studies, we developed an evaluation index system for sustainable rural development across three dimensions: social, economic, and spatial. We employed the coupling model, coordination model, and obstacle factor model to investigate the comprehensive development level, coupling and coordination status, and obstacle factors of the villages in the study area at three temporal points: 2002, 2012, and 2022. The findings indicate the following: (1) The degree of rural development in western Hunan has escalated swiftly throughout the study period, transitioning from relative homogeneity to a heterogeneous developmental landscape, accompanied by issues such as inadequate development and regional polarization. (2) The overall rural social, economic, and spatial indices are low, and the degree of coupling has increased variably across different study periods; the average coordination degree has gradually improved over time, yet the level of coordination remains low, and spatial development is unbalanced. (3) The criterion-level impediments hindering the sustainable development of rural society, economy, and space are, in descending order, social factors, spatial factors, and economic factors. The urbanization rate, total fixed investment rate, and arable land change rate are the primary impediments in most counties and cities. The study’s findings will inform the planning of rural development in ethnic regions, promote sustainable social and spatial advancement in the countryside, and serve as a reference for rural revitalization efforts. Full article
Show Figures

Figure 1

21 pages, 7734 KiB  
Article
Dynamic Evaluation for Subway–Bus Transfer Quality Referring to Benefits, Convenience, and Reliability
by Hui Jin, Jingxing Gao, Zhehao Shen, Miao Cai, Xiang Zhu and Junhao Wu
Sustainability 2025, 17(15), 6684; https://doi.org/10.3390/su17156684 - 22 Jul 2025
Abstract
The integration of urban bus and subway services is critical for attracting passengers and for the sustainable development of public transit, as it helps to boost ridership with an extensive service that combines the attractions of buses and subways. To identify barriers in [...] Read more.
The integration of urban bus and subway services is critical for attracting passengers and for the sustainable development of public transit, as it helps to boost ridership with an extensive service that combines the attractions of buses and subways. To identify barriers in transferring from bus to subway or vice versa at different periods of the day, this research develops the popular evaluation indices found in the literature and revises them to reflect the most critical attributes of transfer quality. Thus, the deficiencies of transferring from subway to bus or vice versa are independently examined. Motivated by the changes in the indices at different periods, the day is divided into multiple periods. Then, dynamic transfer-volume-based TOPSIS is developed, instead of assigning index weights based on period sequence. The index weight is revised to emphasize the peak periods. Taking a case study in Suzhou, the barriers to inter-modal transfer are identified between subways and buses. It is found that subway-to-bus transfer quality is only one-third of that of bus-to-subway transfers due to the great changes in bus runs (19–45 vs. 14–26), lower bus coverage rates (0.42–0.47 vs. 0.50–0.55), and larger deviation of connected POIs (9.0–9.4 vs. 1.1–1.8), as well as the lower reliability of connected bus lines (0.3–0.47 beyond peaks vs. 0.58 and 0.96). Multi-faceted implementations are recommended for inter-modal subway-to-bus transfers and bus-to-subway transfers, respectively. The research provides insights on enhancing bus–subway transfer quality with finer detail into different periods, to encourage the loyalty of transit passengers with more stable and reliable bus as well as transit service. Full article
Show Figures

Figure 1

26 pages, 4918 KiB  
Article
Is Bitcoin a Safe-Haven Asset During U.S. Presidential Transitions? A Time-Varying Analysis of Asset Correlations
by Pathairat Pastpipatkul and Htwe Ko
Int. J. Financial Stud. 2025, 13(3), 134; https://doi.org/10.3390/ijfs13030134 - 22 Jul 2025
Abstract
Amid the growing debate over how cryptocurrencies are reshaping global finance, this study explores the nexus between Bitcoin, Brent Crude Oil, Gold and the U.S. Dollar Index. We used a time-varying vector autoregressive (tvVAR) model to examine the connection among these four assets [...] Read more.
Amid the growing debate over how cryptocurrencies are reshaping global finance, this study explores the nexus between Bitcoin, Brent Crude Oil, Gold and the U.S. Dollar Index. We used a time-varying vector autoregressive (tvVAR) model to examine the connection among these four assets during the Trump (2017–2020) and Biden (2021–2024) governments. The 48-week return forecast of the Bitcoin–Gold correlation was also conducted by using the Bayesian Structural Time Series (BSTS) model. Results indicate that Bitcoin was the most volatile asset, while the U.S. Dollar remained the least volatile under both regimes. Under Trump, U.S. Dollar significantly influenced Oil and Bitcoin while Bitcoin and Gold were negatively linked to Oil and positively associated with U.S. Dollar. An inverse relationship between Bitcoin and Gold also emerged. Under Biden, Bitcoin, Gold, and U.S. Dollar all significantly affected Oil with Bitcoin showing a positive impact. Bitcoin and Gold remained negatively correlated though not significantly, and the Dollar maintained positive ties with both. Forecasts show a positive link between Bitcoin and Gold in the coming year. However, Bitcoin does not exhibit consistent characteristics of a safe-haven asset during the U.S. presidential transitions examined, largely due to its high volatility and unstable correlations with a traditional safe-haven asset, Gold. This study contributes to the understanding of shifting relationships between digital and traditional assets across political regimes. Full article
Show Figures

Figure 1

17 pages, 2836 KiB  
Article
Estimating Heart Rate from Inertial Sensors Embedded in Smart Eyewear: A Validation Study
by Sarah Solbiati, Federica Mozzini, Jean Sahler, Paul Gil, Bruno Amir, Niccolò Antonello, Diana Trojaniello and Enrico Gianluca Caiani
Sensors 2025, 25(15), 4531; https://doi.org/10.3390/s25154531 - 22 Jul 2025
Viewed by 38
Abstract
Smart glasses are promising alternatives for the continuous, unobtrusive monitoring of heart rate (HR). This study validates HR estimates obtained with the “Essilor Connected Glasses” (SmartEW) during sedentary activities. Thirty participants wore the SmartEW, equipped with an IMU sensor for HR estimation, a [...] Read more.
Smart glasses are promising alternatives for the continuous, unobtrusive monitoring of heart rate (HR). This study validates HR estimates obtained with the “Essilor Connected Glasses” (SmartEW) during sedentary activities. Thirty participants wore the SmartEW, equipped with an IMU sensor for HR estimation, a commercial smartwatch (Garmin Venu 3), and an ECG device (Movesense Flash). The protocol included six static tasks performed under controlled laboratory conditions. The SmartEW algorithm analyzed 22.5 s signal windows using spectral analysis to estimate HR and provide a quality index (QI). Statistical analyses assessed agreement with ECG and the impact of QI on HR accuracy. SmartEW showed high agreement with ECG, especially with QI threshold equal to 70, as a trade-off between accuracy, low error, and acceptable data coverage (80%). Correlation for QI ≥ 70 was high across all the experimental phases (r2 up to 0.96), and the accuracy within ±5 bpm reached 95%. QI ≥ 70 also allowed biases to decrease (e.g., from −1.83 to −0.19 bpm while standing), with narrower limits of agreement, compared to ECG. SmartEW showed promising HR accuracy across sedentary activities, yielding high correlation and strong agreement with ECG and Garmin. SmartEW appears suitable for HR monitoring in static conditions, particularly when data quality is ensured. Full article
(This article belongs to the Special Issue IMU and Innovative Sensors for Healthcare)
Show Figures

Figure 1

18 pages, 617 KiB  
Article
From Perceived to Measurable: A Fuzzy Logic Index of Authenticity in Rural Tourism
by Carina Dobre, Elena Toma, Andreea-Cristiana Linca, Adina Magdalena Iorga, Iuliana Zaharia, Gina Fintineru, Paula Stoicea and Irina Chiurciu
Sustainability 2025, 17(15), 6667; https://doi.org/10.3390/su17156667 - 22 Jul 2025
Viewed by 78
Abstract
Choosing a rural destination today often comes down to one thing: how authentic it feels. In countries like Romania, where tradition is still woven into daily life, travelers are looking for something real and sustainable—but what exactly does that mean? And how can [...] Read more.
Choosing a rural destination today often comes down to one thing: how authentic it feels. In countries like Romania, where tradition is still woven into daily life, travelers are looking for something real and sustainable—but what exactly does that mean? And how can we measure it? This study takes a different approach. We created an Authenticity Index using fuzzy logic, a method that makes space for in-between answers and soft boundaries. It helped us capture how people actually perceive things like local food, architecture, and natural scenery—without forcing their opinions into rigid categories. We tested the index with real guest feedback from rural accommodation. The results showed that guests consistently valued sensory experiences—like nature and food—more than activities that required deeper cultural involvement, such as workshops or folk demonstrations. Instead of just producing a number, the index turned out to be a guide. It gives hosts a better idea of what really matters to their guests—even when those preferences are not always easy to define. More than that, it brings together what theory says with what visitors actually feel, supporting more sustainable tourism practices. And in rural tourism, that connection can make all the difference. Full article
(This article belongs to the Special Issue Sustainable Heritage Tourism)
Show Figures

Figure 1

15 pages, 1980 KiB  
Article
Circulating Biomarkers as Potential Risk Factors for Inguinal Hernia
by Enke Baldini, Salvatore Sorrenti, Eleonora Lori, Luigi Palla, Silvia Cardarelli, Daniele Pironi, Domenico Tripodi, Antonio Pavan, Azis Fakeri, Vilma Cobo, Chiara Pellegrini, Priscilla Nardi, Valerio Rinaldi, Salvatore Ulisse and Piergaspare Palumbo
Int. J. Mol. Sci. 2025, 26(15), 7032; https://doi.org/10.3390/ijms26157032 - 22 Jul 2025
Viewed by 121
Abstract
Independent studies reported metabolic alterations in connective tissues of hernia patients, especially involving collagen fibers, compared to healthy controls. In the present work, we evaluated plasma concentrations of metalloproteinases (MMPs) and lysyl oxidase (LOX), enzymes involved in collagen metabolism, and peptides produced during [...] Read more.
Independent studies reported metabolic alterations in connective tissues of hernia patients, especially involving collagen fibers, compared to healthy controls. In the present work, we evaluated plasma concentrations of metalloproteinases (MMPs) and lysyl oxidase (LOX), enzymes involved in collagen metabolism, and peptides produced during collagen biosynthesis (PINP, PIIINP, and PIVNP) as potential biomarkers for the estimation of hernia risk. Zymography and ELISA assays were performed with plasma samples of 51 patients with primary or recurrent inguinal hernia and 42 healthy controls. A reduction in PINP (p = 0.007) and a concomitant increase in PIIINP (p < 0.001) were observed in patients. In controls, PINP levels were inversely related to age, whereas in patients PIIINP levels increased with age. Body mass index (BMI) showed a strong positive correlation with PIIINP plasma levels in controls but not in patients (p < 0.001). Moreover, patients with larger lesions had the lowest PINP/PIIINP ratio (p = 0.003). PIVNP collagen did not differ between controls and hernia patients. Plasma MMP-9 was reduced in patients (p = 0.015), while MMP-2 and LOX were unchanged. However, MMP-2 concentrations appeared lower in patients with familial history of hernia compared to those without. In regression analysis, the PINP/PIIINP ratio was inversely related to hernia risk, and a cut-off value of 0.948 was found by ROC analysis which classified hernia patients with a sensitivity of 82.9% and a specificity of 77.1%. In conclusion, our findings identified the PINP/PIIINP ratio as the most relevant molecular predictor of inguinal hernia risk. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

28 pages, 3894 KiB  
Review
Where Business Meets Location Intelligence: A Bibliometric Analysis of Geomarketing Research in Retail
by Cristiana Tudor, Aura Girlovan and Cosmin-Alin Botoroga
ISPRS Int. J. Geo-Inf. 2025, 14(8), 282; https://doi.org/10.3390/ijgi14080282 - 22 Jul 2025
Viewed by 207
Abstract
We live in an era where digitalization and omnichannel strategies significantly transform retail landscapes, and accurate spatial analytics from Geographic Information Systems (GIS) can deliver substantial competitive benefits. Nonetheless, despite evident practical advantages for specific targeting strategies and operational efficiency, the degree of [...] Read more.
We live in an era where digitalization and omnichannel strategies significantly transform retail landscapes, and accurate spatial analytics from Geographic Information Systems (GIS) can deliver substantial competitive benefits. Nonetheless, despite evident practical advantages for specific targeting strategies and operational efficiency, the degree of GIS integration into academic marketing literature remains ambiguous. Clarifying this uncertainty is beneficial for advancing theoretical understanding and ensuring retail strategies fully leverage robust, data-driven spatial intelligence. To examine the intellectual development of the field, co-occurrence analysis, topic mapping, and citation structure visualization were performed on 4952 peer-reviewed articles using the Bibliometrix R package (version 4.3.3) within R software (version 4.4.1). The results demonstrate that although GIS-based methods have been effectively incorporated into fields like site selection and spatial segmentation, traditional marketing research has not yet entirely adopted them. One of the study’s key findings is the distinction between “author keywords” and “keywords plus,” where researchers concentrate on novel topics like omnichannel retail, artificial intelligence, and logistics. However, “Keywords plus” still refers to more traditional terms such as pricing, customer satisfaction, and consumer behavior. This discrepancy presents a misalignment between current research trends and indexed classification practices. Although the mainstream retail research lacks terminology connected to geomarketing, a theme evolution analysis reveals a growing focus on technology-driven and sustainability-related concepts associated with the Retail 4.0 and 5.0 paradigms. These findings underscore a conceptual and structural deficiency in the literature and indicate the necessity for enhanced integration of GIS and spatial decision support systems (SDSS) in retail marketing. Full article
Show Figures

Figure 1

35 pages, 10235 KiB  
Article
GIS-Driven Spatial Planning for Resilient Communities: Walkability, Social Cohesion, and Green Infrastructure in Peri-Urban Jordan
by Sara Al-Zghoul and Majd Al-Homoud
Sustainability 2025, 17(14), 6637; https://doi.org/10.3390/su17146637 - 21 Jul 2025
Viewed by 206
Abstract
Amman’s rapid population growth and sprawling urbanization have resulted in car-centric, fragmented neighborhoods that lack social cohesion and are vulnerable to the impacts of climate change. This study reframes walkability as a climate adaptation strategy, demonstrating how pedestrian-oriented spatial planning can reduce vehicle [...] Read more.
Amman’s rapid population growth and sprawling urbanization have resulted in car-centric, fragmented neighborhoods that lack social cohesion and are vulnerable to the impacts of climate change. This study reframes walkability as a climate adaptation strategy, demonstrating how pedestrian-oriented spatial planning can reduce vehicle emissions, mitigate urban heat island effects, and enhance the resilience of green infrastructure in peri-urban contexts. Using Deir Ghbar, a rapidly developing marginal area on Amman’s western edge, as a case study, we combine objective walkability metrics (street connectivity and residential and retail density) with GIS-based spatial regression analysis to examine relationships with residents’ sense of community. Employing a quantitative, correlational research design, we assess walkability using a composite objective walkability index, calculated from the land-use mix, street connectivity, retail density, and residential density. Our results reveal that higher residential density and improved street connectivity significantly strengthen social cohesion, whereas low-density zones reinforce spatial and socioeconomic disparities. Furthermore, the findings highlight the potential of targeted green infrastructure interventions, such as continuous street tree canopies and permeable pavements, to enhance pedestrian comfort and urban ecological functions. By visualizing spatial patterns and correlating built-environment attributes with community outcomes, this research provides actionable insights for policymakers and urban planners. These strategies contribute directly to several Sustainable Development Goals (SDGs), particularly SDG 11 (Sustainable Cities and Communities) and SDG 13 (Climate Action), by fostering more inclusive, connected, and climate-resilient neighborhoods. Deir Ghbar emerges as a model for scalable, GIS-driven spatial planning in rural and marginal peri-urban areas throughout Jordan and similar regions facing accelerated urban transitions. By correlating walkability metrics with community outcomes, this study operationalizes SDGs 11 and 13, offering a replicable framework for climate-resilient urban planning in arid regions. Full article
Show Figures

Figure 1

19 pages, 4056 KiB  
Article
Ecological and Geochemical Characteristics of the Content of Heavy Metals in Steppe Ecosystems of the Akmola Region, Kazakhstan
by Gataulina Gulzira, Mendybaev Yerbolat, Aikenova Nuriya, Berdenov Zharas, Ataeva Gulshat, Saginov Kairat, Dukenbayeva Assiya, Beketova Aidana and Almurzaeva Saltanat
Sustainability 2025, 17(14), 6576; https://doi.org/10.3390/su17146576 - 18 Jul 2025
Viewed by 211
Abstract
Soil quality assessment plays a critical role in promoting sustainable land management, particularly in fragile steppe ecosystems. This study provides a comprehensive geoecological evaluation of heavy metal contamination (Pb, Cd, Zn, Cu, Co, Ni, Fe, and Mn) in soils across five districts of [...] Read more.
Soil quality assessment plays a critical role in promoting sustainable land management, particularly in fragile steppe ecosystems. This study provides a comprehensive geoecological evaluation of heavy metal contamination (Pb, Cd, Zn, Cu, Co, Ni, Fe, and Mn) in soils across five districts of the Akmola region, Kazakhstan. The assessment incorporates multiple integrated pollution indices, including the geochemical pollution index (Igeo), pollution coefficient (CF), ecological risk index (Er), pollution load index (PLI), and integrated pollution index (Zc). Spatial analysis combined with multivariate statistical techniques (PCA and clustering analysis) was used to identify pollutant distribution patterns and differentiate areas by risk levels. The findings reveal generally low to moderate contamination, with cadmium (Cd) posing the highest environmental risk due to its elevated toxic response coefficient, despite its low concentration. The study also explores the connection between current soil conditions and historical land-use changes, particularly those associated with the Virgin Lands Campaign of the mid-20th century. The highest PLI values were recorded in the Yesil and Atbasar districts (7.88 and 7.54, respectively), likely driven by intensive agricultural activity and lithological factors. PCA and cluster analysis revealed distinct spatial groupings, reflecting heterogeneity in both the sources and distribution of soil pollutants. Full article
(This article belongs to the Special Issue Soil Pollution, Soil Ecology and Sustainable Land Use)
Show Figures

Figure 1

40 pages, 4319 KiB  
Review
Biophilic Design in the Built Environment: Trends, Gaps and Future Directions
by Bekir Hüseyin Tekin, Gizem Izmir Tunahan, Zehra Nur Disci and Hatice Sule Ozer
Buildings 2025, 15(14), 2516; https://doi.org/10.3390/buildings15142516 - 17 Jul 2025
Viewed by 253
Abstract
Biophilic design has emerged as a multidimensional response to growing concerns about health, well-being, and ecological balance in the built environment. Despite its rising prominence, research on the topic remains fragmented across building typologies, user groups, and geographic contexts. This study presents a [...] Read more.
Biophilic design has emerged as a multidimensional response to growing concerns about health, well-being, and ecological balance in the built environment. Despite its rising prominence, research on the topic remains fragmented across building typologies, user groups, and geographic contexts. This study presents a comprehensive review of the biophilic design literature, employing a hybrid methodology combining structured content analysis and bibliometric mapping. All peer-reviewed studies indexed in the Web of Science and Scopus were manually screened for architectural relevance and systematically coded. A total of 435 studies were analysed to identify key trends, thematic patterns, and research gaps in the biophilic design discipline. This review categorises the literature by methodological strategies, building typologies, spatial scales, population groups, and specific biophilic design parameters. It also examines geographic and cultural dimensions, including climate responsiveness, heritage buildings, policy frameworks, theory development, pedagogy, and COVID-19-related research. The findings show a strong emphasis on institutional contexts, particularly workplaces, schools, and healthcare, and a reliance on perception-based methods such as surveys and experiments. In contrast, advanced tools like artificial intelligence, simulation, and VR are notably underused. Few studies engage with neuroarchitecture or neuroscience-informed approaches, despite growing recognition of how spatial design can influence cognitive and emotional responses. Experimental and biometric methods remain scarce among the few relevant contributions, revealing a missed opportunity to connect biophilic strategies with empirical evidence. Regarding biophilic parameters, greenery, daylight, and sensory experience are the most studied parameters, while psychological parameters remain underexplored. Cultural and climate-specific considerations appear in relatively few studies, and many fail to define a user group or building typology. This review highlights the need for more inclusive, context-responsive, and methodologically diverse research. By bridging macro-scale bibliometric patterns with fine-grained thematic insights, this study provides a replicable review model and valuable reference for advancing biophilic design as an evidence-based, adaptable, and human-centred approach to sustainable architecture. Full article
Show Figures

Figure 1

23 pages, 2859 KiB  
Article
Air Quality Prediction Using Neural Networks with Improved Particle Swarm Optimization
by Juxiang Zhu, Zhaoliang Zhang, Wei Gu, Chen Zhang, Jinghua Xu and Peng Li
Atmosphere 2025, 16(7), 870; https://doi.org/10.3390/atmos16070870 - 17 Jul 2025
Viewed by 194
Abstract
Accurate prediction of Air Quality Index (AQI) concentrations remains a critical challenge in environmental monitoring and public health management due to the complex nonlinear relationships among multiple atmospheric factors. To address this challenge, we propose a novel prediction model that integrates an adaptive-weight [...] Read more.
Accurate prediction of Air Quality Index (AQI) concentrations remains a critical challenge in environmental monitoring and public health management due to the complex nonlinear relationships among multiple atmospheric factors. To address this challenge, we propose a novel prediction model that integrates an adaptive-weight particle swarm optimization (AWPSO) algorithm with a back propagation neural network (BPNN). First, the random forest (RF) algorithm is used to scree the influencing factors of AQI concentration. Second, the inertia weights and learning factors of the standard PSO are improved to ensure the global search ability exhibited by the algorithm in the early stage and the ability to rapidly obtain the optimal solution in the later stage; we also introduce an adaptive variation algorithm in the particle search process to prevent the particles from being caught in local optima. Finally, the BPNN is optimized using the AWPSO algorithm, and the final values of the optimized particle iterations serve as the connection weights and thresholds of the BPNN. The experimental results show that the RFAWPSO-BP model reduces the root mean square error and mean absolute error by 9.17 μg/m3, 5.7 μg/m3, 2.66 μg/m3; and 9.12 μg/m3, 5.7 μg/m3, 2.68 μg/m3 compared with the BP, PSO-BP, and AWPSO-BP models, respectively; furthermore, the goodness of fit of the proposed model was 14.8%, 6.1%, and 2.3% higher than that of the aforementioned models, respectively, demonstrating good prediction accuracy. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

Back to TopTop