Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (28,642)

Search Parameters:
Keywords = computing efficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2847 KB  
Article
Pollution-Aware Pedestrian Routing in Thessaloniki, Greece: A Data-Driven Approach to Sustainable Urban Mobility
by Josep Maria Salanova Grau, Thomas Dimos, Eleftherios Pavlou, Georgia Ayfantopoulou, Dimitrios Margaritis, Theodosios Kassandros, Serafim Kontos and Natalia Liora
Smart Cities 2026, 9(2), 24; https://doi.org/10.3390/smartcities9020024 - 26 Jan 2026
Abstract
Urban air pollution remains a critical public health issue, especially in densely populated cities where pedestrians experience direct exposure to traffic-related and environmental emissions. This study develops and tests a pollution-aware pedestrian routing framework for Thessaloniki, Greece, designed to minimize environmental exposure while [...] Read more.
Urban air pollution remains a critical public health issue, especially in densely populated cities where pedestrians experience direct exposure to traffic-related and environmental emissions. This study develops and tests a pollution-aware pedestrian routing framework for Thessaloniki, Greece, designed to minimize environmental exposure while maintaining route efficiency. The framework combines high-resolution air-quality data and computational techniques to represent pollution patterns at pedestrian scale. Air-quality is expressed as a continuous European Air Quality Index (EAQI) and is embedded in a network-based routing engine (OSRM) that balances exposure and distance through a weighted optimization function. Using 3000 randomly sampled origin-destination pairs, exposure-aware routes are compared with conventional shortest-distance paths across short, medium, and long walking trips. Results show that exposure-aware routes reduce cumulative AQI exposure by an average of 4% with only 3% distance increase, while maintaining stable scaling across all route classes. Exposure benefits exceeding 5% are observed for approximately 8% of medium-length routes and 24% of long routes, while short routes present minimal or no detours, but lower exposure benefits. These findings confirm that integrating high-resolution environmental data into pedestrian navigation systems is both feasible and operationally effective, providing a practical foundation for future real-time, pollution-aware mobility services in smart cities. Full article
(This article belongs to the Section Smart Urban Mobility, Transport, and Logistics)
39 pages, 5643 KB  
Article
An AIoT-Based Framework for Automated English-Speaking Assessment: Architecture, Benchmarking, and Reliability Analysis of Open-Source ASR
by Paniti Netinant, Rerkchai Fooprateepsiri, Ajjima Rukhiran and Meennapa Rukhiran
Informatics 2026, 13(2), 19; https://doi.org/10.3390/informatics13020019 - 26 Jan 2026
Abstract
The emergence of low-cost edge devices has enabled the integration of automatic speech recognition (ASR) into IoT environments, creating new opportunities for real-time language assessment. However, achieving reliable performance on resource-constrained hardware remains a significant challenge, especially on the Artificial Internet of Things [...] Read more.
The emergence of low-cost edge devices has enabled the integration of automatic speech recognition (ASR) into IoT environments, creating new opportunities for real-time language assessment. However, achieving reliable performance on resource-constrained hardware remains a significant challenge, especially on the Artificial Internet of Things (AIoT). This study presents an AIoT-based framework for automated English-speaking assessment that integrates architecture and system design, ASR benchmarking, and reliability analysis on edge devices. The proposed AIoT-oriented architecture incorporates a lightweight scoring framework capable of analyzing pronunciation, fluency, prosody, and CEFR-aligned speaking proficiency within an automated assessment system. Seven open-source ASR models—four Whisper variants (tiny, base, small, and medium) and three Vosk models—were systematically benchmarked in terms of recognition accuracy, inference latency, and computational efficiency. Experimental results indicate that Whisper-medium deployed on the Raspberry Pi 5 achieved the strongest overall performance, reducing inference latency by 42–48% compared with the Raspberry Pi 4 and attaining the lowest Word Error Rate (WER) of 6.8%. In contrast, smaller models such as Whisper-tiny, with a WER of 26.7%, exhibited two- to threefold higher scoring variability, demonstrating how recognition errors propagate into automated assessment reliability. System-level testing revealed that the Raspberry Pi 5 can sustain near real-time processing with approximately 58% CPU utilization and around 1.2 GB of memory, whereas the Raspberry Pi 4 frequently approaches practical operational limits under comparable workloads. Validation using real learner speech data (approximately 100 sessions) confirmed that the proposed system delivers accurate, portable, and privacy-preserving speaking assessment using low-power edge hardware. Overall, this work introduces a practical AIoT-based assessment framework, provides a comprehensive benchmark of open-source ASR models on edge platforms, and offers empirical insights into the trade-offs among recognition accuracy, inference latency, and scoring stability in edge-based ASR deployments. Full article
28 pages, 1964 KB  
Article
The Carbon Cost of Intelligence: A Domain-Specific Framework for Measuring AI Energy and Emissions
by Rashanjot Kaur, Triparna Kundu, Kathleen Marshall Park and Eugene Pinsky
Energies 2026, 19(3), 642; https://doi.org/10.3390/en19030642 - 26 Jan 2026
Abstract
The accelerating energy demands from artificial intelligence (AI) deployment introduce systemic challenges for achieving carbon neutrality. Large language models (LLMs) represent a dominant driver of AI energy consumption, with inference operations constituting 80–90% of total energy usage. Current energy benchmarks report aggregate metrics [...] Read more.
The accelerating energy demands from artificial intelligence (AI) deployment introduce systemic challenges for achieving carbon neutrality. Large language models (LLMs) represent a dominant driver of AI energy consumption, with inference operations constituting 80–90% of total energy usage. Current energy benchmarks report aggregate metrics without domain-level breakdowns, preventing accurate carbon footprint estimation for workloadspecific operations. This study addresses this critical gap by introducing a carbon-aware framework centered on the carbon cost of intelligence (CCI), a novel metric enabling workload-specific energy and carbon calculation that balances accuracy and efficiency across heterogeneous domains. This paper presents a comprehensive cross-domain energy benchmark using the massive multitask language understanding (MMLU) dataset, measuring accuracy and energy consumption in five representative domains: clinical knowledge (medicine), professional accounting (finance), professional law (legal), college computer science (technology), and general knowledge. Empirical analysis of GPT-4 across 100 MMLU questions, 20 per domain, reveals substantive variations: legal queries consume 4.3× more energy than general knowledge queries (222 J vs. 52 J per query), while energy consumption varies by domain due to input length differences. Our analysis demonstrates the evolution from simple ratio-based approaches (weighted accuracy divided by weighted energy) to harmonic mean aggregation, showing that the harmonic mean, by preventing bias from extreme values, provides more accurate carbon usage estimates. The CCI metric, calculated using weighted harmonic mean (analogous to P/E ratios in finance, where A/E represents accuracy-to-energy ratio), enables practitioners to accurately estimate energy and carbon emissions for specific workload mixes (e.g., 80% medicine + 15% general + 5% law). Results demonstrate that the domain workload mix significantly impacts carbon footprint: a law firm workload (60% law) consumes 96% more energy per query than a hospital workload (80% medicine), representing 49% potential savings through workload optimization. Carbon footprint analysis using US Northeast grid intensity (320 gCO2e/kWh) shows domain-specific emissions ranging from 0.0046–0.0197 gCO2 per query. CCI is validated through comparison with simple weighted average, demonstrating differences up to 12.1%, confirming that the harmonic mean provides more accurate and conservative carbon estimates essential for carbon reporting and neutrality planning. Our findings provide a novel cross-domain energy benchmark for GPT-4 and establish a practical carbon calculator framework for sustainable AI deployment aligned with carbon neutrality goals. Full article
Show Figures

Figure 1

18 pages, 1928 KB  
Article
Evaluation of Gap and Flush Inspection Algorithms in a Portable Laser Line Triangulation System Through Measurement System Analysis (MSA)
by Guerino Gianfranco Paolini, Sara Casaccia, Matteo Nisi, Cristina Cristalli and Nicola Paone
Instruments 2026, 10(1), 7; https://doi.org/10.3390/instruments10010007 - 26 Jan 2026
Abstract
The shift toward Industry 5.0 places human-centred and digitally integrated metrology at the core of modern manufacturing, particularly in the automotive sector, where portable Laser Line Triangulation (LLT) systems must combine accuracy with operator usability. This study addresses the challenge of operator-induced variability [...] Read more.
The shift toward Industry 5.0 places human-centred and digitally integrated metrology at the core of modern manufacturing, particularly in the automotive sector, where portable Laser Line Triangulation (LLT) systems must combine accuracy with operator usability. This study addresses the challenge of operator-induced variability by evaluating how algorithmic strategies and mechanical support features jointly influence the performance of a portable LLT device derived from the G3F sensor. A comprehensive Measurement System Analysis was performed to compare three feature extraction algorithms—GC, FIR, and Steger—and to assess the effect of a masking device designed to improve mechanical alignment during manual measurements. The results highlight distinct algorithm-dependent behaviours in terms of repeatability, reproducibility, and computational efficiency. More sophisticated algorithms demonstrate improved sensitivity and feature localisation under controlled conditions, whereas simpler gradient-based strategies provide more stable performance and shorter processing times when measurement conditions deviate from the ideal. These differences indicate a trade-off between algorithmic complexity and operational robustness that is particularly relevant for portable, operator-assisted metrology. The presence of mechanical alignment aids was found to contribute to improved measurement consistency across all algorithms. Overall, the findings highlight the need for an integrated co-design of algorithms, calibration procedures, and ergonomic aids to enhance repeatability and support operator-friendly LLT systems aligned with Industry 5.0 principles. Full article
(This article belongs to the Special Issue Instrumentation and Measurement Methods for Industry 4.0 and IoT)
17 pages, 386 KB  
Article
A Multi-Key Homomorphic Scheme Based on Multivariate Polynomial Look-Up Tables Evaluation
by Jiang Shen, Ruwei Huang, Lei Lei, Junjie Wang and Junbin Qiu
Mathematics 2026, 14(3), 430; https://doi.org/10.3390/math14030430 - 26 Jan 2026
Abstract
Multi-key homomorphic encryption (MKHE) is crucial for secure collaborative computing, yet it suffers from high multiplicative depth and computational overhead during Look-Up Table (LUT) evaluations, particularly for large input domains. To address these challenges, this paper proposes an optimized LUT evaluation method based [...] Read more.
Multi-key homomorphic encryption (MKHE) is crucial for secure collaborative computing, yet it suffers from high multiplicative depth and computational overhead during Look-Up Table (LUT) evaluations, particularly for large input domains. To address these challenges, this paper proposes an optimized LUT evaluation method based on multivariate polynomial approximation. Specifically, we partition the high-dimensional input space into several lower-dimensional variables to design low-depth multivariate polynomials. By integrating blockwise encoding and tensor-based transformations, we construct a parallelizable evaluation framework that maps multivariate functions into a high-dimensional polynomial-coefficient space. This approach allows for efficient parallel processing and effective noise management. Theoretical analysis demonstrates that our method significantly reduces the multiplicative depth from O() to O(ℓ/α), indicating its robustness and efficiency in large-scale LUT scenarios. Full article
24 pages, 1526 KB  
Article
EQARO-ECS: Efficient Quantum ARO-Based Edge Computing and SDN Routing Protocol for IoT Communication to Avoid Desertification
by Thair A. Al-Janabi, Hamed S. Al-Raweshidy and Muthana Zouri
Sensors 2026, 26(3), 824; https://doi.org/10.3390/s26030824 - 26 Jan 2026
Abstract
Desertification is the impoverishment of fertile land, caused by various factors and environmental effects, such as temperature and humidity. An appropriate Internet of Things (IoT) architecture, routing algorithms based on artificial intelligence (AI), and emerging technologies are essential to monitor and avoid desertification. [...] Read more.
Desertification is the impoverishment of fertile land, caused by various factors and environmental effects, such as temperature and humidity. An appropriate Internet of Things (IoT) architecture, routing algorithms based on artificial intelligence (AI), and emerging technologies are essential to monitor and avoid desertification. However, the classical AI algorithms usually suffer from falling into local optimum issues and consuming more energy. This research proposed an improved multi-objective routing protocol, namely, the efficient quantum (EQ) artificial rabbit optimisation (ARO) based on edge computing (EC) and a software-defined network (SDN) concept (EQARO-ECS), which provides the best cluster table for the IoT network to avoid desertification. The methodology of the proposed EQARO-ECS protocol reduces energy consumption and improves data analysis speed by deploying new technologies, such as the Cloud, SDN, EC, and quantum technique-based ARO. This protocol increases the data analysis speed because of the suggested iterated quantum gates with the ARO, which can rapidly penetrate from the local to the global optimum. The protocol avoids desertification because of a new effective objective function that considers energy consumption, communication cost, and desertification parameters. The simulation results established that the suggested EQARO-ECS procedure increases accuracy and improves network lifetime by reducing energy depletion compared to other algorithms. Full article
Show Figures

Figure 1

26 pages, 3013 KB  
Article
Advancing ML-Based Thermal Hydrodynamic Lubrication: A Data-Free Physics-Informed Deep Learning Framework Solving Temperature-Dependent Lubricated Contact Simulations
by Faras Brumand-Poor, Georg Michael Puntigam, Marius Hofmeister and Katharina Schmitz
Lubricants 2026, 14(2), 53; https://doi.org/10.3390/lubricants14020053 - 26 Jan 2026
Abstract
Thermo-hydrodynamic (THD) lubrication is a key mechanism in injection pumps, where frictional heating and heat transfer strongly influence lubrication performance. Accurate numerical modeling remains challenging due to the nonlinear coupling of temperature- and pressure-dependent fluid properties and the high computational cost of iterative [...] Read more.
Thermo-hydrodynamic (THD) lubrication is a key mechanism in injection pumps, where frictional heating and heat transfer strongly influence lubrication performance. Accurate numerical modeling remains challenging due to the nonlinear coupling of temperature- and pressure-dependent fluid properties and the high computational cost of iterative solvers. The rising relevance of bio-hybrid fuels, however, demands the investigation of a great number of fuel mixtures and conditions, which is currently infeasible with traditional solvers. Physics-informed neural networks (PINNs) have recently been applied to lubrication problems; existing approaches are typically restricted to stationary cases or rely on data to improve training. This work presents a novel, purely physics-based PINN framework for solving coupled, transient THD lubrication problems in injection pumps. By embedding the Reynolds equation, energy conservation laws, and temperature- and pressure-dependent fluid models directly into the loss function, the proposed approach eliminates the need for any simulation or experimental data. The PINN is trained solely on physical laws and validated against an iterative solver for 16 transient test cases across two fuels and eight operating scenarios. The good agreement of PINN and iterative solver demonstrates the strong potential of PINNs as efficient, scalable surrogate models for transient THD lubrication and iterative design applications. Full article
(This article belongs to the Special Issue Thermal Hydrodynamic Lubrication)
21 pages, 4102 KB  
Article
Study on Gas–Solid Particle Dynamics and Optimal Drilling Parameters in Reverse Circulation DTH Drilling Based on CFD and Machine Learning
by Kunkun Li, Jing Zhou, Peizhi Yu, Hao Wu and Tianhao Xu
Appl. Sci. 2026, 16(3), 1253; https://doi.org/10.3390/app16031253 - 26 Jan 2026
Abstract
The reverse circulation pneumatic down-the-hole (DTH) drilling system employs percussive drilling to achieve high efficiency and strong adaptability across diverse rock formations. However, its cutting removal efficiency remains suboptimal. To enhance reverse circulation performance, a comprehensive understanding of airflow and solid particle dynamics [...] Read more.
The reverse circulation pneumatic down-the-hole (DTH) drilling system employs percussive drilling to achieve high efficiency and strong adaptability across diverse rock formations. However, its cutting removal efficiency remains suboptimal. To enhance reverse circulation performance, a comprehensive understanding of airflow and solid particle dynamics at the borehole bottom is essential. This study investigates rock cutting transportation and distribution under varying drilling parameters and evaluates reverse circulation flow ratio using a Computational Fluid Dynamics (CFD) multiphase flow model, coupled with finite volume analysis of the reverse circulation bit. Simulation results reveal that increasing the input gas flow rate (Q), reducing the equivalent particle diameter (D), and minimizing the borehole enlargement ratio (E) significantly improve cutting removal efficiency, with optimal values identified for each parameter. Additionally, solid volume fraction contours at the borehole bottom indicate that the arrangement of spherical teeth influences the flow field. Optimal values for rock cutting density (ρ), rate of penetration (ROP), and rotational speed (N) were also determined to maximize reverse circulation flow ratio. The Genetic Algorithm–Least Squares Support Vector Machine (GA-LSSVM) method was used to train the response surface data and construct a predictive model, which was then further optimized using Particle Swarm Optimization (PSO) to determine accurate parameter settings. These findings provide operational insights into optimizing drilling parameters to advance efficient drilling performance. Full article
(This article belongs to the Topic Advances in Mining and Geotechnical Engineering)
Show Figures

Figure 1

25 pages, 21577 KB  
Article
Morphological Reconstruction Based on Optical Images for the Seabed Semi-Buried Polymetallic Nodules: A Fusion Model of Elliptic Approximation and Contour Interweaving Methods
by Xiang Meng, Kehong Yang, Mingwei Wang, Qian Yu, Jihong Shang and Ziyin Wu
J. Mar. Sci. Eng. 2026, 14(3), 257; https://doi.org/10.3390/jmse14030257 - 26 Jan 2026
Abstract
Polymetallic nodules enriched in Mn, Ni, Cu, Co, and other metals may be one of the first seabed mineral resources to be exploited. Although optical imagery is crucial for resource evaluation, semi-buried nodules are frequently overlooked. To address this, we propose a framework [...] Read more.
Polymetallic nodules enriched in Mn, Ni, Cu, Co, and other metals may be one of the first seabed mineral resources to be exploited. Although optical imagery is crucial for resource evaluation, semi-buried nodules are frequently overlooked. To address this, we propose a framework that integrates the elliptic approximation method (EAM) and the contour interweaving method (CIM) to reconstruct three types of semi-buried nodules segmented by U-Net: edge-buried, partition-buried, and almost-completely-buried. This strategy introduced a decision-making mechanism based on category fusion, which significantly enhanced the robustness and practicality of the reconstruction. Performance was assessed using four metrics: area ratio, absolute percentage change, intersection-over-union, and Chamfer distance. Among 1785 samples, the EAM recovered up to 41.8% of lost area, which substantially improved the minimum values of area ratio and intersection-over-union, and it performed well on almost-completely-buried nodules. The CIM achieved median area ratio and intersection-over-union values of 99.37% and 93.36%, respectively, and excelled in edge-buried and partition-buried types. Fusion experiments demonstrated the complementary strengths of both approaches: 23.96% of buried area was recovered in large-scale imagery recognized by U-Net. The proposed framework balances accuracy, adaptability, and computational efficiency, which enables real-time nodule identification on platforms with limited resources such as autonomous underwater vehicles. This could provide more direct support for resource evaluation and mining applications. Full article
(This article belongs to the Special Issue Bathymetry and Seafloor Mapping)
Show Figures

Figure 1

45 pages, 15254 KB  
Article
A Cost–Carbon Synergy Adaptive Genetic Algorithm for Unbalanced Transportation Problem
by Zuocheng Li, Yunya Guo and Rongjuan Luo
Sustainability 2026, 18(3), 1238; https://doi.org/10.3390/su18031238 - 26 Jan 2026
Abstract
Traditional vehicle routing problems focus primarily on cost minimization. This paper addresses the unbalanced transportation problem, aiming to minimize both costs and carbon emissions. We propose a Cost–Carbon Emissions Adaptive Genetic Algorithm (CSC-AGA) based on the Cost–Carbon Synergy (CSC) mechanism, which quantifies the [...] Read more.
Traditional vehicle routing problems focus primarily on cost minimization. This paper addresses the unbalanced transportation problem, aiming to minimize both costs and carbon emissions. We propose a Cost–Carbon Emissions Adaptive Genetic Algorithm (CSC-AGA) based on the Cost–Carbon Synergy (CSC) mechanism, which quantifies the marginal cost of carbon emission reduction by comparing intergenerational changes in cost and emissions. This mechanism enables dynamic adjustment of penalty coefficients during the evolutionary process. The algorithm adapts penalty coefficients and search parameters to optimize both objectives within a single framework. Experimental results demonstrate that the proposed algorithm outperforms traditional approaches in both cost control and emission reduction, while also approximating or surpassing the approximate Pareto front of existing multi-objective methods with better computational efficiency. The Generalized Unbalanced Transportation Problem (G-UTP) is an NP-hard optimization problem, inheriting the complexity of classical transportation problems while also balancing economic and environmental objectives. Full article
(This article belongs to the Section Sustainable Transportation)
33 pages, 5373 KB  
Review
Mapping Research on Road Transport Infrastructures and Emerging Technologies: A Bibliometric, Scientometric, and Network Analysis
by Carmen Gheorghe and Adrian Soica
Infrastructures 2026, 11(2), 39; https://doi.org/10.3390/infrastructures11020039 - 26 Jan 2026
Abstract
Research on road transport infrastructures is rapidly evolving as electrification, automation, and digital connectivity reshape how systems are designed, operated, and managed. This study presents a combined bibliometric, scientometric, and network analysis of 2755 publications published between 2021 and 2025 to map the [...] Read more.
Research on road transport infrastructures is rapidly evolving as electrification, automation, and digital connectivity reshape how systems are designed, operated, and managed. This study presents a combined bibliometric, scientometric, and network analysis of 2755 publications published between 2021 and 2025 to map the intellectual structure, main contributors, and dominant technological themes shaping contemporary road transport research. Using data from the Web of Science Core Collection, co-occurrence mapping, thematic analysis, and collaboration networks were generated using Bibliometrix and VOSviewer. The results reveal strong growth in research output, with China, the United States, and Europe forming the core of high-impact publication and collaboration networks. Six bibliometric clusters were identified and consolidated into three overarching domains: road transport systems, emphasizing vehicle dynamics, control, and real-time computational frameworks; energy and efficiency-oriented mobility research, focusing on electrification, optimization, and infrastructure integration; and emerging digital technologies, including IoT, AI, and autonomous vehicles. The analysis highlights persistent research gaps related to interoperability, cybersecurity, large-scale deployment, and governance of intelligent transport infrastructures. Overall, the findings provide a data-driven overview of current research priorities and structural patterns shaping next-generation road transport systems. Full article
(This article belongs to the Section Smart Infrastructures)
16 pages, 3327 KB  
Article
EEMD-TiDE-Based Passenger Flow Prediction for Urban Rail Transit
by Dongcai Cheng, Yuheng Zhang and Haijun Li
Electronics 2026, 15(3), 529; https://doi.org/10.3390/electronics15030529 - 26 Jan 2026
Abstract
Urban rail transit networks in developing countries are rapidly expanding, entering a networked operational phase where accurate passenger flow forecasting is crucial for optimizing vehicle scheduling, resource allocation, and transportation efficiency. In the short term, accurate real-time forecasting enables the dynamic adjustment of [...] Read more.
Urban rail transit networks in developing countries are rapidly expanding, entering a networked operational phase where accurate passenger flow forecasting is crucial for optimizing vehicle scheduling, resource allocation, and transportation efficiency. In the short term, accurate real-time forecasting enables the dynamic adjustment of train headways and crew deployment, reducing average passenger waiting times during peak hours and alleviating platform overcrowding; in the long term, reliable trend predictions support strategic planning, including capacity expansion, station retrofitting, and energy management. This paper proposes a novel hybrid forecasting model, EEMD-TiDE, that combines improved Ensemble Empirical Mode Decomposition (EEMD) with a Time Series Dense Encoder (TiDE) to enhance prediction accuracy. The EEMD algorithm effectively overcomes mode mixing issues in traditional EMD by incorporating white noise perturbations, decomposing raw passenger flow data into physically meaningful Intrinsic Mode Functions (IMFs). At the same time, the TiDE model, a linear encoder–decoder architecture, efficiently handles multi-scale features and covariates without the computational overhead of self-attention mechanisms. Experimental results using Xi’an Metro passenger flow data (2017–2019) demonstrate that EEMD-TiDE significantly outperforms baseline models. This study provides a robust solution for urban rail transit passenger flow forecasting, supporting sustainable urban development. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

32 pages, 2032 KB  
Article
Utilizing AIoT to Achieve Sustainable Agricultural Systems in a Climate-Change-Affected Environment
by Mohamed Naeem, Mohamed A. El-Khoreby, Hussein M. ELAttar and Mohamed Aboul-Dahab
Future Internet 2026, 18(2), 68; https://doi.org/10.3390/fi18020068 - 26 Jan 2026
Abstract
Smart agricultural systems are continually evolving to provide high-quality planting and defend against threats such as climate change, which necessitate improved adaptation and resource allocation. IoT technology offers a cost-effective approach to monitoring and managing system performance. However, this approach faces challenges, including [...] Read more.
Smart agricultural systems are continually evolving to provide high-quality planting and defend against threats such as climate change, which necessitate improved adaptation and resource allocation. IoT technology offers a cost-effective approach to monitoring and managing system performance. However, this approach faces challenges, including connectivity issues and complex decision-making. While researchers have studied these problems individually, no fully automated solution has addressed them simultaneously. There is still a need for an offline solution that manages multiple processes and reduces human error. This paper introduces an AI-powered edge computing system that serves as an early-warning solution for climate impacts. This system enables autonomous management through an Agentic AI model that observes, predicts, decides, and adapts. It provides a low-cost AIoT platform for data forecasting, classification, and decision-making, converting sensor data into actionable insights. The system integrates forecast evaluation with real-time data comparisons to optimize scheduling, efficiency, sustainability, and yields. Moreover, this solution is totally autonomous and independent of internet connectivity. Demonstrating its superior performance, it reduced errors by 50% and achieved an R-squared value of 0.985. Full article
(This article belongs to the Topic Smart Edge Devices: Design and Applications)
27 pages, 49724 KB  
Article
AMSRDet: An Adaptive Multi-Scale UAV Infrared-Visible Remote Sensing Vehicle Detection Network
by Zekai Yan and Yuheng Li
Sensors 2026, 26(3), 817; https://doi.org/10.3390/s26030817 - 26 Jan 2026
Abstract
Unmanned Aerial Vehicle (UAV) platforms enable flexible and cost-effective vehicle detection for intelligent transportation systems, yet small-scale vehicles in complex aerial scenes pose substantial challenges from extreme scale variations, environmental interference, and single-sensor limitations. We present AMSRDet (Adaptive Multi-Scale Remote Sensing Detector), an [...] Read more.
Unmanned Aerial Vehicle (UAV) platforms enable flexible and cost-effective vehicle detection for intelligent transportation systems, yet small-scale vehicles in complex aerial scenes pose substantial challenges from extreme scale variations, environmental interference, and single-sensor limitations. We present AMSRDet (Adaptive Multi-Scale Remote Sensing Detector), an adaptive multi-scale detection network fusing infrared (IR) and visible (RGB) modalities for robust UAV-based vehicle detection. Our framework comprises four novel components: (1) a MobileMamba-based dual-stream encoder extracting complementary features via Selective State-Space 2D (SS2D) blocks with linear complexity O(HWC), achieving 2.1× efficiency improvement over standard Transformers; (2) a Cross-Modal Global Fusion (CMGF) module capturing global dependencies through spatial-channel attention while suppressing modality-specific noise via adaptive gating; (3) a Scale-Coordinate Attention Fusion (SCAF) module integrating multi-scale features via coordinate attention and learned scale-aware weighting, improving small object detection by 2.5 percentage points; and (4) a Separable Dynamic Decoder generating scale-adaptive predictions through content-aware dynamic convolution, reducing computational cost by 48.9% compared to standard DETR decoders. On the DroneVehicle dataset, AMSRDet achieves 45.8% mAP@0.5:0.95 (81.2% mAP@0.5) at 68.3 Frames Per Second (FPS) with 28.6 million (M) parameters and 47.2 Giga Floating Point Operations (GFLOPs), outperforming twenty state-of-the-art detectors including YOLOv12 (+0.7% mAP), DEIM (+0.8% mAP), and Mamba-YOLO (+1.5% mAP). Cross-dataset evaluation on Camera-vehicle yields 52.3% mAP without fine-tuning, demonstrating strong generalization across viewpoints and scenarios. Full article
(This article belongs to the Special Issue AI and Smart Sensors for Intelligent Transportation Systems)
28 pages, 4582 KB  
Article
Quantum-Behaved Loser Reverse-Learning Differential Evolution Algorithm-Based Path Planning for Unmanned Aerial Vehicle
by Zhuoyun Chen, Xiangyin Zhang and Yao Lu
Actuators 2026, 15(2), 74; https://doi.org/10.3390/act15020074 - 26 Jan 2026
Abstract
This paper proposes the Quantum-behaved Loser Reverse-learning Differential Evolution (QLRDE) algorithm to address the inherent limitations of the standard Differential Evolution (DE) algorithm, including slow convergence speed and the premature stagnation in local optima. QLRDE incorporates three innovations: quantum-behaved mutation strategies suppress premature [...] Read more.
This paper proposes the Quantum-behaved Loser Reverse-learning Differential Evolution (QLRDE) algorithm to address the inherent limitations of the standard Differential Evolution (DE) algorithm, including slow convergence speed and the premature stagnation in local optima. QLRDE incorporates three innovations: quantum-behaved mutation strategies suppress premature convergence by leveraging quantum mechanics, the Loser Reverse-Learning Mechanism enhances diversity by reconstructing inferior individuals through opposition-based learning, and an adaptive parameter adjustment mechanism balances exploration and exploitation to improve robustness and convergence efficiency. Experimental evaluations on twelve benchmark functions confirm that QLRDE demonstrates better performance than existing algorithms in terms of search capability and convergence speed. Furthermore, QLRDE is employed for the 3D UAV path planning problem. QLRDE can generate B-Spline-based smooth flight paths and incorporate real-world constraints into the cost function. Simulation results confirm that QLRDE outperforms several competing algorithms with respect to path quality, computational efficiency, and robustness. Full article
Back to TopTop