Advancing ML-Based Thermal Hydrodynamic Lubrication: A Data-Free Physics-Informed Deep Learning Framework Solving Temperature-Dependent Lubricated Contact Simulations
Abstract
Share and Cite
Brumand-Poor, F.; Puntigam, G.M.; Hofmeister, M.; Schmitz, K. Advancing ML-Based Thermal Hydrodynamic Lubrication: A Data-Free Physics-Informed Deep Learning Framework Solving Temperature-Dependent Lubricated Contact Simulations. Lubricants 2026, 14, 53. https://doi.org/10.3390/lubricants14020053
Brumand-Poor F, Puntigam GM, Hofmeister M, Schmitz K. Advancing ML-Based Thermal Hydrodynamic Lubrication: A Data-Free Physics-Informed Deep Learning Framework Solving Temperature-Dependent Lubricated Contact Simulations. Lubricants. 2026; 14(2):53. https://doi.org/10.3390/lubricants14020053
Chicago/Turabian StyleBrumand-Poor, Faras, Georg Michael Puntigam, Marius Hofmeister, and Katharina Schmitz. 2026. "Advancing ML-Based Thermal Hydrodynamic Lubrication: A Data-Free Physics-Informed Deep Learning Framework Solving Temperature-Dependent Lubricated Contact Simulations" Lubricants 14, no. 2: 53. https://doi.org/10.3390/lubricants14020053
APA StyleBrumand-Poor, F., Puntigam, G. M., Hofmeister, M., & Schmitz, K. (2026). Advancing ML-Based Thermal Hydrodynamic Lubrication: A Data-Free Physics-Informed Deep Learning Framework Solving Temperature-Dependent Lubricated Contact Simulations. Lubricants, 14(2), 53. https://doi.org/10.3390/lubricants14020053

