Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,031)

Search Parameters:
Keywords = comprehensive water management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8248 KiB  
Article
The Stabilization Mechanism of a Stable Landslide Dam on the Eastern Margin of the Tibetan Plateau, China: Insights from Field Investigation and Numerical Simulation
by Liang Song, Yanjun Shang, Yunsheng Wang, Tong Li, Zhuolin Xiao, Yuchao Zhao, Tao Tang and Shicheng Liu
Appl. Sci. 2025, 15(15), 8745; https://doi.org/10.3390/app15158745 - 7 Aug 2025
Abstract
As a globally renowned alpine gorge region and seismically active zone, the eastern margin of the Qinghai–Tibet Plateau (QTP) is highly prone to landslide dam formation. Considering unstable landslide dams often pose catastrophic risks to downstream areas, current research on landslide dams along [...] Read more.
As a globally renowned alpine gorge region and seismically active zone, the eastern margin of the Qinghai–Tibet Plateau (QTP) is highly prone to landslide dam formation. Considering unstable landslide dams often pose catastrophic risks to downstream areas, current research on landslide dams along QTP primarily focuses on the breach mechanisms of unstable dams, while studies on the formation mechanisms of stable landslide dams—which can provide multiple benefits to downstream regions—remain limited. This paper selected the Conaxue Co landslide dam on the eastern margin of the QTP as one case example. Field investigation, sampling, numerical simulation, and comprehensive analysis were carried out to disclose its formation mechanisms. Field investigation shows that the Conaxue Co landslide dam was formed by a high-speed long-runout landslide blocking the river, with its structure exhibiting a typical inverse grading pattern characterized by coarse-grained rock overlying fine-grained layers. The inverse grading structure plays a critical role in the stability of the Conaxue Co landslide dam. On one hand, the coarse, hard rock boulders in the upper dam mitigate fluvial erosion of the lower fine-grained sediments. On the other hand, the fine-grained layer in the lower dam acts as a relatively impermeable aquitard, preventing seepage of dammed lake water. Additionally, the step-pool system formed in the spillway of the Conaxue Co landslide dam contributes to the protection of the dam structure by dissipating 68% of the river’s energy (energy dissipation rate η = 0.68). Understanding the formation mechanisms of the Conaxue Co landslide dam can provide critical insights into managing future landslide dams that may form in the QTP, both in emergency response and long-term strategies. Full article
19 pages, 9248 KiB  
Article
Irrigation Suitability and Interaction Between Surface Water and Groundwater Influenced by Agriculture Activities in an Arid Plain of Central Asia
by Chenwei Tu, Wanrui Wang, Weihua Wang, Farong Huang, Minmin Gao, Yanchun Liu, Peiyao Gong and Yuan Yao
Agriculture 2025, 15(15), 1704; https://doi.org/10.3390/agriculture15151704 - 7 Aug 2025
Abstract
Agricultural activities and dry climatic conditions promote the evaporation and salinization of groundwater in arid areas. Long-term irrigation alters the groundwater circulation and environment in arid plains, as well as its hydraulic connection with surface water. A comprehensive assessment of groundwater irrigation suitability [...] Read more.
Agricultural activities and dry climatic conditions promote the evaporation and salinization of groundwater in arid areas. Long-term irrigation alters the groundwater circulation and environment in arid plains, as well as its hydraulic connection with surface water. A comprehensive assessment of groundwater irrigation suitability and its interaction with surface water is essential for water–ecology–agriculture security in arid areas. This study evaluates the irrigation water quality and groundwater–surface water interaction influenced by agricultural activities in a typical arid plain region using hydrochemical and stable isotopic data from 51 water samples. The results reveal that the area of cultivated land increases by 658.9 km2 from 2000 to 2023, predominantly resulting from the conversion of bare land. Groundwater TDS (total dissolved solids) value exhibits significant spatial heterogeneity, ranging from 516 to 2684 mg/L. Cl, SO42−, and Na+ are the dominant ions in groundwater, with a widespread distribution of brackish water. Groundwater δ18O values range from −9.4‰ to −5.4‰, with the mean value close to surface water. In total, 86% of the surface water samples are good and suitable for agricultural irrigation, while 60% of shallow groundwater samples are marginally suitable or unsuitable for irrigation at present. Groundwater hydrochemistry is largely controlled by intensive evaporation, water–rock interaction, and agricultural activities (e.g., cultivated land expansion, irrigation, groundwater exploitation, and fertilizers). Agricultural activities could cause shallow groundwater salinization, even confined water deterioration, with an intense and frequent exchange between groundwater and surface water. In order to sustainably manage groundwater and maintain ecosystem stability in arid plain regions, controlling cultivated land area and irrigation water amount, enhancing water utilization efficiency, limiting groundwater exploitation, and fully utilizing floodwater resources would be the viable ways. The findings will help to deepen the understanding of the groundwater quality evolution mechanism in arid irrigated regions and also provide a scientific basis for agricultural water management in the context of extreme climatic events and anthropogenic activities. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

23 pages, 3193 KiB  
Perspective
The First Thirty Years of Green Stormwater Infrastructure in Portland, Oregon
by Michaela Koucka, Cara Poor, Jordyn Wolfand, Heejun Chang, Vivek Shandas, Adrienne Aiona, Henry Stevens, Tim Kurtz, Svetlana Hedin, Steve Fancher, Joshua Lighthipe and Adam Zucker
Sustainability 2025, 17(15), 7159; https://doi.org/10.3390/su17157159 - 7 Aug 2025
Abstract
Over the past 30 years, the City of Portland, Oregon, USA, has emerged as a national leader in green stormwater infrastructure (GSI). The initial impetus for implementing sustainable stormwater infrastructure in Portland stemmed from concerns about flooding and water quality in the city’s [...] Read more.
Over the past 30 years, the City of Portland, Oregon, USA, has emerged as a national leader in green stormwater infrastructure (GSI). The initial impetus for implementing sustainable stormwater infrastructure in Portland stemmed from concerns about flooding and water quality in the city’s two major rivers, the Columbia and the Willamette. Heavy rainfall often led to combined sewer overflows, significantly polluting these waterways. A partial solution was the construction of “The Big Pipe” project, a large-scale stormwater containment system designed to filter and regulate overflow. However, Portland has taken a more comprehensive and long-term approach by integrating sustainable stormwater management into urban planning. Over the past three decades, the city has successfully implemented GSI to mitigate these challenges. Low-impact development strategies, such as bioswales, green streets, and permeable surfaces, have been widely adopted in streetscapes, pathways, and parking areas, enhancing both environmental resilience and urban livability. This perspective highlights the history of the implementation of Portland’s GSI programs, current design and performance standards, and challenges and lessons learned throughout Portland’s recent history. Innovative approaches to managing runoff have not only improved stormwater control but also enhanced green spaces and contributed to the city’s overall climate resilience while addressing economic well-being and social equity. Portland’s success is a result of strong policy support, effective integration of green and gray infrastructure, and active community involvement. As climate change intensifies, cities need holistic, adaptive, and community-centered approaches to urban stormwater management. Portland’s experience offers valuable insights for cities seeking to expand their GSI amid growing concerns about climate resilience, equity, and aging infrastructure. Full article
Show Figures

Figure 1

41 pages, 4303 KiB  
Article
Land Use–Future Climate Coupling Mechanism Analysis of Regional Agricultural Drought Spatiotemporal Patterns
by Jing Wang, Zhenjiang Si, Tao Liu, Yan Liu and Longfei Wang
Sustainability 2025, 17(15), 7119; https://doi.org/10.3390/su17157119 - 6 Aug 2025
Abstract
This study assesses future agricultural drought risk in the Ganjiang River Basin under climate change and land use change. A coupled analysis framework was established using the SWAT hydrological model, the CMIP6 climate models (SSP1-2.6, SSP2-4.5, SSP5-8.5), and the PLUS land use simulation [...] Read more.
This study assesses future agricultural drought risk in the Ganjiang River Basin under climate change and land use change. A coupled analysis framework was established using the SWAT hydrological model, the CMIP6 climate models (SSP1-2.6, SSP2-4.5, SSP5-8.5), and the PLUS land use simulation model. Key methods included the Standardized Soil Moisture Index (SSMI), travel time theory for drought event identification and duration analysis, Mann–Kendall trend test, and the Pettitt change-point test to examine soil moisture dynamics from 2027 to 2100. The results indicate that the CMIP6 ensemble performs excellently in temperature simulations, with a correlation coefficient of R2 = 0.89 and a root mean square error of RMSE = 1.2 °C, compared to the observational data. The MMM-Best model also performs well in precipitation simulations, with R2 = 0.82 and RMSE = 15.3 mm, compared to observational data. Land use changes between 2000 and 2020 showed a decrease in forestland (−3.2%), grassland (−2.8%), and construction land (−1.5%), with an increase in water (4.8%) and unused land (2.7%). Under all emission scenarios, the SSMI values fluctuate with standard deviations of 0.85 (SSP1-2.6), 1.12 (SSP2-4.5), and 1.34 (SSP5-8.5), with the strongest drought intensity observed under SSP5-8.5 (minimum SSMI = −2.8). Drought events exhibited spatial and temporal heterogeneity across scenarios, with drought-affected areas ranging from 25% (SSP1-2.6) to 45% (SSP5-8.5) of the basin. Notably, abrupt changes in soil moisture under SSP5-8.5 occurred earlier (2045–2050) due to intensified land use change, indicating strong human influence on hydrological cycles. This study integrated the CMIP6 climate projections with high-resolution human activity data to advance drought risk assessment methods. It established a framework for assessing agricultural drought risk at the regional scale that comprehensively considers climate and human influences, providing targeted guidance for the formulation of adaptive water resource and land management strategies. Full article
(This article belongs to the Special Issue Sustainable Future of Ecohydrology: Climate Change and Land Use)
Show Figures

Figure 1

32 pages, 3972 KiB  
Article
A Review and Case of Study of Cooling Methods: Integrating Modeling, Simulation, and Thermal Analysis for a Model Based on a Commercial Electric Permanent Magnet Synchronous Motor
by Henrry Gabriel Usca-Gomez, David Sebastian Puma-Benavides, Victor Danilo Zambrano-Leon, Ramón Castillo-Díaz, Milton Israel Quinga-Morales, Javier Milton Solís-Santamaria and Edilberto Antonio Llanes-Cedeño
World Electr. Veh. J. 2025, 16(8), 437; https://doi.org/10.3390/wevj16080437 - 4 Aug 2025
Viewed by 159
Abstract
The efficiency of electric motors is highly dependent on their operating temperature, with lower temperatures contributing to enhanced performance, reliability, and extended service life. This study presents a comprehensive review of state-of-the-art cooling technologies and evaluates their impact on the thermal behavior of [...] Read more.
The efficiency of electric motors is highly dependent on their operating temperature, with lower temperatures contributing to enhanced performance, reliability, and extended service life. This study presents a comprehensive review of state-of-the-art cooling technologies and evaluates their impact on the thermal behavior of a commercial motor–generator system in high-demand applications. A baseline model of a permanent magnet synchronous motor (PMSM) was developed using MotorCAD 2023® software, which was supported by reverse engineering techniques to accurately replicate the motor’s physical and thermal characteristics. Subsequently, multiple cooling strategies were simulated under consistent operating conditions to assess their effectiveness. These strategies include conventional axial water jackets as well as advanced oil-based methods such as shaft cooling and direct oil spray to the windings. The integration of these systems in hybrid configurations was also explored to maximize thermal efficiency. Simulation results reveal that hybrid cooling significantly reduces the temperature of critical components such as stator windings and permanent magnets. This reduction in thermal stress improves current efficiency, power output, and torque capacity, enabling reliable motor operation across a broader range of speeds and under sustained high-load conditions. The findings highlight the effectiveness of hybrid cooling systems in optimizing both thermal management and operational performance of electric machines. Full article
Show Figures

Figure 1

18 pages, 3421 KiB  
Article
Bisphenol E Neurotoxicity in Zebrafish Larvae: Effects and Underlying Mechanisms
by Kaicheng Gu, Lindong Yang, Yi Jiang, Zhiqiang Wang and Jiannan Chen
Biology 2025, 14(8), 992; https://doi.org/10.3390/biology14080992 - 4 Aug 2025
Viewed by 163
Abstract
As typical environmental hormones, endocrine-disrupting chemicals (EDCs) have become a global environmental health issue of high concern due to their property of interfering with the endocrine systems of organisms. As a commonly used substitute for bisphenol A (BPA), bisphenol E (BPE) has been [...] Read more.
As typical environmental hormones, endocrine-disrupting chemicals (EDCs) have become a global environmental health issue of high concern due to their property of interfering with the endocrine systems of organisms. As a commonly used substitute for bisphenol A (BPA), bisphenol E (BPE) has been frequently detected in environmental matrices such as soil and water in recent years. Existing research has unveiled the developmental and reproductive toxicity of BPE; however, only one in vitro cellular experiment has preliminarily indicated potential neurotoxic risks, with its underlying mechanisms remaining largely unelucidated in the current literature. Potential toxic mechanisms and action targets of BPE were predicted using the zebrafish model via network toxicology and molecular docking, with RT-qPCRs being simultaneously applied to uncover neurotoxic effects and associated mechanisms of BPE. A significant decrease (p < 0.05) in the frequency of embryonic spontaneous movements was observed in zebrafish at exposure concentrations ≥ 0.01 mg/L. At 72 hpf and 144 hpf, the larval body length began to shorten significantly from 0.1 mg/L to 1 mg/L, respectively (p < 0.01), accompanied by a reduced neuronal fluorescence intensity and a shortened neural axon length (p < 0.01). By 144 hpf, the motor behavior in zebrafish larvae was inhibited. Through network toxicology and molecular docking, HSP90AB1 was identified as the core target, with the cGMP/PKG signaling pathway determined to be the primary route through which BPE induces neurotoxicity in zebrafish larvae. BPE induces neuronal apoptosis and disrupts neurodevelopment by inhibiting the cGMP/PKG signaling pathway, ultimately suppressing the larval motor behavior. To further validate the experimental outcomes, we measured the expression levels of genes associated with neurodevelopment (elavl3, mbp, gap43, syn2a), serotonergic synaptic signaling (5-ht1ar, 5-ht2ar), the cGMP/PKG pathway (nos3), and apoptosis (caspase-3, caspase-9). These results offer crucial theoretical underpinnings for evaluating the ecological risks of BPE and developing environmental management plans, as well as crucial evidence for a thorough comprehension of the toxic effects and mechanisms of BPE on neurodevelopment in zebrafish larvae. Full article
(This article belongs to the Special Issue Advances in Aquatic Ecological Disasters and Toxicology)
Show Figures

Graphical abstract

18 pages, 3354 KiB  
Article
Hydrological Modeling of the Chikugo River Basin Using SWAT: Insights into Water Balance and Seasonal Variability
by Francis Jhun Macalam, Kunyang Wang, Shin-ichi Onodera, Mitsuyo Saito, Yuko Nagano, Masatoshi Yamazaki and Yu War Nang
Sustainability 2025, 17(15), 7027; https://doi.org/10.3390/su17157027 - 2 Aug 2025
Viewed by 293
Abstract
Integrated hydrological modeling plays a crucial role in advancing sustainable water resource management, particularly in regions facing seasonal and extreme precipitation events. However, comprehensive studies that assess hydrological variability in temperate river basins remain limited. This study addresses this gap by evaluating the [...] Read more.
Integrated hydrological modeling plays a crucial role in advancing sustainable water resource management, particularly in regions facing seasonal and extreme precipitation events. However, comprehensive studies that assess hydrological variability in temperate river basins remain limited. This study addresses this gap by evaluating the performance of the Soil and Water Assessment Tool (SWAT) in simulating streamflow, water balance, and seasonal hydrological dynamics in the Chikugo River Basin, Kyushu Island, Japan. The basin, originating from Mount Aso and draining into the Ariake Sea, is subject to frequent typhoons and intense rainfall, making it a critical case for sustainable water governance. Using the Sequential Uncertainty Fitting Version 2 (SUFI-2) approach, we calibrated the SWAT model over the period 2007–2021. Water balance analysis revealed that baseflow plays dominant roles in basin hydrology which is essential for agricultural and domestic water needs by providing a stable groundwater contribution despite increasing precipitation and varying water demand. These findings contribute to a deeper understanding of hydrological behavior in temperate catchments and offer a scientific foundation for sustainable water allocation, planning, and climate resilience strategies. Full article
Show Figures

Figure 1

21 pages, 2557 KiB  
Article
Coupling Patterns Between Urbanization and the Water Environment: A Case Study of Neijiang City, Sichuan Province, China
by Xiaofan Min, Jirong Liu, Yanlin Liu, Jie Zhou and Jiangtao Zhao
Sustainability 2025, 17(15), 6993; https://doi.org/10.3390/su17156993 - 1 Aug 2025
Viewed by 184
Abstract
The ongoing advancement of urbanization has significantly amplified its impacts on the water environment. Understanding the coupling relationships between urbanization and the water environment (UAWE) is crucial for Chinese policymakers aiming to promote sustainable urban development. In this study, a comprehensive UAWE evaluation [...] Read more.
The ongoing advancement of urbanization has significantly amplified its impacts on the water environment. Understanding the coupling relationships between urbanization and the water environment (UAWE) is crucial for Chinese policymakers aiming to promote sustainable urban development. In this study, a comprehensive UAWE evaluation model was developed to examine the development trajectories in Neijiang City from 2012 to 2022. Methodologically, a comprehensive evaluation approach was applied to assess urbanization and water resource trends over this period, followed by the development of a Coupling Coordination Degree Model (CCDM) to quantify their synergistic relationship. The results showed that the coupling between the comprehensive urbanization index and the water environment system evolved over time, as reflected in the following key findings: (1) Neijiang underwent three distinct stages from 2012 to 2022 in terms of coupling and coordination between urbanization and the water environment: Basic Coordination (2012–2015), Good Coordination (2016–2020), and Excellent Coordination (2020–2022). (2) Urbanization exerted varying impacts on subsystems of the water environment, with the pressure-response subsystems exhibiting marked volatility from 2012 to 2022. The impact intensity followed the order spatial urbanization > economic urbanization > social urbanization > population urbanization. These findings offer valuable theoretical and practical insights for aligning urban sustainability goals with effective water environment protection measures. This study provides essential guidance for policymakers in Neijiang and similar regions, enabling the development of tailored strategies for sustainable urbanization and enhanced water management. Full article
Show Figures

Figure 1

36 pages, 2676 KiB  
Review
Research Activities on Acid Mine Drainage Treatment in South Africa (1998–2025): Trends, Challenges, Bibliometric Analysis and Future Directions
by Tumelo M. Mogashane, Johannes P. Maree, Lebohang Mokoena and James Tshilongo
Water 2025, 17(15), 2286; https://doi.org/10.3390/w17152286 - 31 Jul 2025
Viewed by 286
Abstract
Acid mine drainage (AMD) remains a critical environmental challenge in South Africa due to its severe impact on water quality, ecosystems and public health. Numerous studies on AMD management, treatment and resource recovery have been conducted over the past 20 years. This study [...] Read more.
Acid mine drainage (AMD) remains a critical environmental challenge in South Africa due to its severe impact on water quality, ecosystems and public health. Numerous studies on AMD management, treatment and resource recovery have been conducted over the past 20 years. This study presents a comprehensive review of research activities on AMD in South Africa from 1998 to 2025, highlighting key trends, emerging challenges and future directions. The study reveals a significant focus on passive and active treatment methods, environmental remediation and the recovery of valuable resources, such as iron, rare earth elements (REEs) and gypsum. A bibliometric analysis was conducted to identify the most influential studies and thematic research areas over the years. Bibliometric tools (Biblioshiny and VOSviewer) were used to analyse the data that was extracted from the PubMed database. The findings indicate that research production has increased significantly over time, with substantial contributions from top academics and institutions. Advanced treatment technologies, the use of artificial intelligence and circular economy strategies for resource recovery are among the new research prospects identified in this study. Despite substantial progress, persistent challenges, such as scalability, economic viability and policy implementation, remain. Furthermore, few technologies have moved beyond pilot-scale implementation, underscoring the need for greater investment in field-scale research and technology transfer. This study recommends stronger industry–academic collaboration, the development of standardised treatment protocols and enhanced government policy support to facilitate sustainable AMD management. The study emphasises the necessity of data-driven approaches, sustainable technology and interdisciplinary cooperation to address AMD’s socioeconomic and environmental effects in the ensuing decades. Full article
Show Figures

Figure 1

18 pages, 1583 KiB  
Article
Heat Transfer Characteristics of Thermosyphons Used in Vacuum Water Heaters
by Zied Lataoui, Adel M. Benselama and Abdelmajid Jemni
Fluids 2025, 10(8), 199; https://doi.org/10.3390/fluids10080199 - 31 Jul 2025
Viewed by 110
Abstract
A two-phase closed thermosyphon (TPCT), a gravity-assisted heat pipe, is a highly efficient heat transmitter involving liquid–vapor phase change. It is used in many applications, including heat spreading, thermal management and control, and energy saving. The main objective of this study is to [...] Read more.
A two-phase closed thermosyphon (TPCT), a gravity-assisted heat pipe, is a highly efficient heat transmitter involving liquid–vapor phase change. It is used in many applications, including heat spreading, thermal management and control, and energy saving. The main objective of this study is to investigate the effects of the operating conditions for a thermosyphon used in solar water heaters. The study particularly focuses on the influence of the inclination angle. Thus, a comprehensive simulation model is developed using the volume of fluid (VOF) approach. Complex and related phenomena, including two-phase flow, phase change, and heat exchange, are taken into account. To implement the model, an open-source CFD toolbox based on finite volume formulation, OpenFOAM, is used. The model is then validated by comparing numerical results to the experimental data from the literature. The obtained results show that the simulation model is reliable for investigating the effects of various operating conditions on the transient and steady-state behavior of the thermosyphon. In fact, bubble creation, growth, and advection can be tracked correctly in the liquid pool at the evaporator. The effects of the designed operating conditions on the heat transfer parameters are also discussed. In particular, the optimal tilt angle is shown to be 60° for the intermediate saturation temperature (<50 °C) and 90° for the larger saturation temperature (>60 °C). Full article
(This article belongs to the Special Issue Convective Flows and Heat Transfer)
Show Figures

Figure 1

20 pages, 3578 KiB  
Article
Performance Improvement of Proton Exchange Membrane Fuel Cell by a New Coupling Channel in Bipolar Plate
by Qingsong Song, Shuochen Yang, Hongtao Li, Yunguang Ji, Dajun Cai, Guangyu Wang and Yuan Liufu
Energies 2025, 18(15), 4068; https://doi.org/10.3390/en18154068 - 31 Jul 2025
Viewed by 148
Abstract
The geometric design of flow channels in bipolar plates is one of the critical features of proton exchange membrane fuel cells (PEMFCs), as it determines the power output of the fuel cell and has a significant impact on its performance and durability. The [...] Read more.
The geometric design of flow channels in bipolar plates is one of the critical features of proton exchange membrane fuel cells (PEMFCs), as it determines the power output of the fuel cell and has a significant impact on its performance and durability. The function of the bipolar plate is to guide the transfer of reactant gases to the gas diffusion layer and catalytic layer inside the PEMFC, while removing unreacted gases and gas–liquid byproducts. Therefore, the design of the bipolar plate flow channel is directly related to the water and thermal management of the PEMFC. In order to improve the comprehensive performance of PEMFCs and ensure their safe and stable operation, it is necessary to design the flow channels in bipolar plates rationally and effectively. This study addresses the limitations of existing bipolar plate flow channels by proposing a new coupling of serpentine and radial channels. The distribution of oxygen, water concentrations, and temperature inside the channel is simulated using the multi-physics simulation software COMSOL Multiphysics 6.0. The performance of this novel design is compared with conventional flow channels, with a particular focus on the pressure drop and current density to evaluate changes in the output performance of the PEMFC. The results show that the maximum current density of this novel design is increased by 67.36% and 10.43% compared to straight channel and single serpentine channels, respectively. The main contribution of this research is the innovative design of a new coupling of serpentine and radial channels in bipolar plates, which improves the overall performance of the PEMFC. This study provides theoretical support for the design of bipolar plate flow channels in PEMFCs and holds significant importance for the green development of energy. Full article
(This article belongs to the Special Issue Advanced Energy Storage Technologies)
Show Figures

Figure 1

26 pages, 3711 KiB  
Article
Probability Characteristics of High and Low Flows in Slovakia: A Comprehensive Hydrological Assessment
by Pavla Pekárová, Veronika Bačová Mitková and Dana Halmová
Hydrology 2025, 12(8), 199; https://doi.org/10.3390/hydrology12080199 - 31 Jul 2025
Viewed by 259
Abstract
Frequency analysis is essential for designing hydraulic structures and managing water resources, as it helps assess hydrological extremes. However, changes in river basins can impact their accuracy, complicating the link between discharge and return periods. This study aims to comprehensively assess the probability [...] Read more.
Frequency analysis is essential for designing hydraulic structures and managing water resources, as it helps assess hydrological extremes. However, changes in river basins can impact their accuracy, complicating the link between discharge and return periods. This study aims to comprehensively assess the probability characteristics of long-term M-day maximum/minimum discharges in the Carpathian region of Slovakia. We analyze the long-term data from 26 gauging stations covering 90 years of observation. Slovak rivers show considerable intra-annual variability, especially between the summer–autumn (SA) and winter–spring (WS) seasons. To allow consistent comparisons, we apply a uniform methodology to estimate T-year daily maximum and minimum specific discharges over durations of 1 and 7 days for both seasons. Our findings indicate that 1-day maximum specific discharges are generally higher during the SA season compared to the WS season. The 7-day minimum specific discharges are lower during the WS season compared to the SA season. Slovakia’s diverse orographic and climatic conditions cause significant spatial variability in extreme discharges. However, the estimated T-year 7-day minimum and 1-day maximum specific discharges, based on the mean specific discharge and the altitude of the water gauge, exhibit certain nonlinear dependences. These relationships could support the indirect estimation of T-year M-day discharges in regions with similar runoff characteristics. Full article
(This article belongs to the Section Water Resources and Risk Management)
Show Figures

Figure 1

25 pages, 2893 KiB  
Review
Ecosystem Services in Urban Blue-Green Infrastructure: A Bibliometric Review
by Xuefei Wang, Qi Hu, Run Zhang, Chuanhao Sun and Mo Wang
Water 2025, 17(15), 2273; https://doi.org/10.3390/w17152273 - 30 Jul 2025
Viewed by 293
Abstract
Urban blue-green infrastructure (UBGI) is a comprehensive solution that balances environmental, social, and economic development objectives and has emerged as a critical approach for fostering urban resilience and sustainable development. This paper conducts a systematic bibliometric analysis of 975 academic articles published between [...] Read more.
Urban blue-green infrastructure (UBGI) is a comprehensive solution that balances environmental, social, and economic development objectives and has emerged as a critical approach for fostering urban resilience and sustainable development. This paper conducts a systematic bibliometric analysis of 975 academic articles published between 2000 and 2023 in the Web of Science Core Collection, focusing specifically on the ecosystem services associated with UBGI. Employing CiteSpace visualization technology, this study elucidates the major research trends, thematic clusters, and international collaboration patterns shaping this field. The research delves into the diverse range of ecosystem services provided by blue-green infrastructure and analyzes their contributions to urban well-being. Findings indicate that regulatory services—particularly climate regulation, biodiversity enhancement, and water resource management—have become central research foci within the contexts of urban green infrastructure (UGI), urban blue infrastructure (UBI), and UBGI. Co-citation and keyword analyses reveal that nature-based solutions, hybrid green–gray infrastructure, and the application of urban resilience frameworks are gaining increasing scholarly attention. By summarizing the evolutionary trajectory and priority directions of UBGI research, this study provides significant insights for future interdisciplinary research aimed at enhancing the supply of urban environmental ecosystem services. Full article
Show Figures

Figure 1

30 pages, 13783 KiB  
Article
Daily Reference Evapotranspiration Derived from Hourly Timestep Using Different Forms of Penman–Monteith Model in Arid Climates
by A A Alazba, Mohamed A. Mattar, Ahmed El-Shafei, Farid Radwan, Mahmoud Ezzeldin and Nasser Alrdyan
Water 2025, 17(15), 2272; https://doi.org/10.3390/w17152272 - 30 Jul 2025
Viewed by 261
Abstract
In arid and semi-arid climates, where water scarcity is a persistent challenge, accurately estimating reference evapotranspiration (ET) becomes essential for sustainable water management and agricultural planning. The objectives of this study are to compare hourly ET among P–M ASCE, P–M FAO, and P–M [...] Read more.
In arid and semi-arid climates, where water scarcity is a persistent challenge, accurately estimating reference evapotranspiration (ET) becomes essential for sustainable water management and agricultural planning. The objectives of this study are to compare hourly ET among P–M ASCE, P–M FAO, and P–M KSA mathematical models. In addition to the accuracy assessment of daily ET derived from hourly timestep calculations for the P–M ASCE, P–M FAO, and P–M KSA. To achieve these goals, a total of 525,600-min data points from the Riyadh region, KSA, were used to compute the reference ET at multiple temporal resolutions: hourly, daily, hourly averaged over 24 h, and daily as the sum of 24 h values, across all selected Penman–Monteith (P–M) models. For hourly investigation, the comparison between reference ET computed as average hourly values and as daily/24 h values revealed statistically and practically significant differences. The Wilcoxon test confirmed a statistically significant difference (p < 0.0001) with R2 of 94.75% for ASCE, 94.87% for KSA at hplt = 50 cm, 92.41% for FAO, and 92.44% for KSA at hplt = 12 cm. For daily investigation, comparing the sum of 24 h ET computations to daily ET measurements revealed an underestimation of daily ET values. The Wilcoxon test confirmed a statistically significant difference (p < 0.0001), with R2 exceeding 90% for all studied reference ET models. This comprehensive approach enabled a rigorous evaluation of reference ET dynamics under hyper-arid climatic conditions, which are characteristic of central Saudi Arabia. The findings contribute to the growing body of literature emphasizing the importance of high-frequency meteorological data for improving ET estimation accuracy in arid and semi-arid regions. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

28 pages, 6962 KiB  
Article
Mapping Drought Incidents in the Mediterranean Region with Remote Sensing: A Step Toward Climate Adaptation
by Aikaterini Stamou, Aikaterini Bakousi, Anna Dosiou, Zoi-Eirini Tsifodimou, Eleni Karachaliou, Ioannis Tavantzis and Efstratios Stylianidis
Land 2025, 14(8), 1564; https://doi.org/10.3390/land14081564 - 30 Jul 2025
Viewed by 482
Abstract
The Mediterranean region, identified by scientists as a ‘climate hot spot’, is experiencing warmer and drier conditions, along with an increase in the intensity and frequency of extreme weather events. One such extreme phenomena is droughts. The recent wildfires in this region are [...] Read more.
The Mediterranean region, identified by scientists as a ‘climate hot spot’, is experiencing warmer and drier conditions, along with an increase in the intensity and frequency of extreme weather events. One such extreme phenomena is droughts. The recent wildfires in this region are a concerning consequence of this phenomenon, causing severe environmental damage and transforming natural landscapes. However, droughts involve a two-way interaction: On the one hand, climate change and various human activities, such as urbanization and deforestation, influence the development and severity of droughts. On the other hand, droughts have a significant impact on various sectors, including ecology, agriculture, and the local economy. This study investigates drought dynamics in four Mediterranean countries, Greece, France, Italy, and Spain, each of which has experienced severe wildfire events in recent years. Using satellite-based Earth observation data, we monitored drought conditions across these regions over a five-year period that includes the dates of major wildfires. To support this analysis, we derived and assessed key indices: the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Normalized Difference Drought Index (NDDI). High-resolution satellite imagery processed within the Google Earth Engine (GEE) platform enabled the spatial and temporal analysis of these indicators. Our findings reveal that, in all four study areas, peak drought conditions, as reflected in elevated NDDI values, were observed in the months leading up to wildfire outbreaks. This pattern underscores the potential of satellite-derived indices for identifying regional drought patterns and providing early signals of heightened fire risk. The application of GEE offered significant advantages, as it allows efficient handling of long-term and large-scale datasets and facilitates comprehensive spatial analysis. Our methodological framework contributes to a deeper understanding of regional drought variability and its links to extreme events; thus, it could be a valuable tool for supporting the development of adaptive management strategies. Ultimately, such approaches are vital for enhancing resilience, guiding water resource planning, and implementing early warning systems in fire-prone Mediterranean landscapes. Full article
(This article belongs to the Special Issue Land and Drought: An Environmental Assessment Through Remote Sensing)
Show Figures

Figure 1

Back to TopTop