Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (99)

Search Parameters:
Keywords = composite steel girders

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 9220 KiB  
Article
Investigation of Stress Intensity Factors in Welds of Steel Girders Within Steel–Concrete Composite Structures
by Da Wang, Pengxin Zhao, Yuxin Shao, Wenping Peng, Junxin Yang, Chenggong Zhao and Benkun Tan
Buildings 2025, 15(15), 2653; https://doi.org/10.3390/buildings15152653 - 27 Jul 2025
Viewed by 348
Abstract
Fatigue damage in steel–concrete composite structures frequently initiates at welded joints due to stress concentrations and inherent defects. This study investigates the stress intensity factors (SIFs) associated with fatigue cracks in the welds of steel longitudinal beams, employing the FRANC3D–ABAQUS interactive technique. A [...] Read more.
Fatigue damage in steel–concrete composite structures frequently initiates at welded joints due to stress concentrations and inherent defects. This study investigates the stress intensity factors (SIFs) associated with fatigue cracks in the welds of steel longitudinal beams, employing the FRANC3D–ABAQUS interactive technique. A finite element model was developed and validated against experimental data, followed by the insertion of cracks at both the weld root and weld toe. The influences of stud spacing, initial crack size, crack shape, and lack-of-penetration defects on Mode I SIFs were systematically analyzed. Results show that both weld root and weld toe cracks are predominantly Mode I in nature, with the toe cracks exhibiting higher SIF values. Increasing the stud spacing, crack depth, or crack aspect ratio significantly raises the SIFs. Lack of penetration defects further amplifies the SIFs, especially at the weld root. Based on the computed SIFs, fatigue life predictions were conducted using a crack propagation approach. These findings highlight the critical roles of crack geometry and welding quality in fatigue performance, providing a numerical foundation for optimizing welded joint design in composite structures. Full article
Show Figures

Figure 1

24 pages, 4306 KiB  
Article
Structural Behavior Analyses and Simple Calculation of Asynchronous-Pouring Construction in PC Composite Girder Bridges with Corrugated Webs for Sustainability
by Bo Gan, Jun He, Sidong Feng, Baojun Guo, Bo Liu and Weisheng Lu
Buildings 2025, 15(14), 2434; https://doi.org/10.3390/buildings15142434 - 11 Jul 2025
Viewed by 301
Abstract
Asynchronous-pouring construction (APC) technology employs a suspended hanging basket directly supported by corrugated steel webs (CSWs) with high shear strength, significantly enhancing construction efficiency. To further elucidate the characteristics of APC and promote its application in prestressed concrete (PC) composite box girder bridges [...] Read more.
Asynchronous-pouring construction (APC) technology employs a suspended hanging basket directly supported by corrugated steel webs (CSWs) with high shear strength, significantly enhancing construction efficiency. To further elucidate the characteristics of APC and promote its application in prestressed concrete (PC) composite box girder bridges with CSWs, this study analyzes the sustainable development of APC from two aspects, including environmental impact and economic performance. Finite element models of APC and traditional balanced cantilever construction (TBCC) were established for the case bridge with a main span of 105 m. The stress distribution and deflection of the main girder in the cantilever construction state are compared with field measurements, and the variations in stress and deflection in typical sections during construction are analyzed. Additionally, a simplified theoretical method is proposed for calculating stress and deflection in PC composite girder bridges during the cantilever construction stage using APC. Results demonstrate that APC demonstrates significant advantages in reducing economic costs and minimizing long-term environmental impacts. Furthermore, this method ensures acceptable stress and deflection throughout construction. The proposed simplified formula for CSW deflection in the maximum segment agrees well with both measured data and finite element results, providing a valuable reference for deflection calculation in APC applications. Full article
Show Figures

Figure 1

16 pages, 2504 KiB  
Article
Thermal Field and High-Temperature Performance of Epoxy Resin System Steel Bridge Deck Pavement
by Rui Mao, Xingyu Gu, Jiwang Jiang, Zhu Zhang and Kaiwen Lei
Materials 2025, 18(13), 3109; https://doi.org/10.3390/ma18133109 - 1 Jul 2025
Viewed by 334
Abstract
Epoxy Resin System (ERS) steel bridge pavement, which comprises a resin asphalt (RA) base layer and a modified asphalt wearing course, offers cost efficiency and rapid installation. However, the combined effects of traffic loads and environmental conditions pose significant challenges, requiring greater high-temperature [...] Read more.
Epoxy Resin System (ERS) steel bridge pavement, which comprises a resin asphalt (RA) base layer and a modified asphalt wearing course, offers cost efficiency and rapid installation. However, the combined effects of traffic loads and environmental conditions pose significant challenges, requiring greater high-temperature stability than conventional pavements. The thermal sensitivity of resin materials and the use of conventional asphalt mixtures may weaken deformation resistance under elevated temperature conditions. This study investigates the thermal field distribution and high-temperature performance of ERS pavements under extreme conditions and explores temperature reduction strategies. A three-dimensional thermal field model developed using finite element analysis software analyzes interactions between the steel box girder and pavement layers. Based on simulation results, wheel tracking and dynamic creep tests confirm the superior performance of the RA05 mixture, with dynamic stability reaching 23,318 cycles/mm at 70 °C and a 2.1-fold improvement in rutting resistance in Stone Mastic Asphalt (SMA)-13 + RA05 composites. Model-driven optimization identifies that enhancing internal airflow within the steel box girder is possible without compromising its structural integrity. The cooling effect is particularly significant when the internal airflow aligns with ambient wind speeds (open-girder configuration). Surface peak temperatures can be reduced by up to 20 °C and high-temperature durations can be shortened by 3–7 h. Full article
Show Figures

Figure 1

16 pages, 2054 KiB  
Article
Study on the Deflection Calculation of a Steel Truss Web–Concrete Composite Beam Under Pre-Stress
by Chunmei Ni, Xiaowei Liu, Zhilong Wang and Sheng Li
Buildings 2025, 15(13), 2202; https://doi.org/10.3390/buildings15132202 - 23 Jun 2025
Viewed by 398
Abstract
The aim of this study is to establish an accurate calculation method for the deflection caused by the effect of pre-stress in a steel truss web–concrete composite girder bridge based on the energy variational principle, considering the influence of shear deformation and the [...] Read more.
The aim of this study is to establish an accurate calculation method for the deflection caused by the effect of pre-stress in a steel truss web–concrete composite girder bridge based on the energy variational principle, considering the influence of shear deformation and the shear lag effect of the steel truss web member on the accuracy of the deflection calculation. The pre-stress effect is determined by the equivalent load method, and the deflection analytical solution for a composite girder bridge under straight-line, broken-line, and curve pre-stressing tendon arrangements is established. The reliability of the formula is verified using ANSYS 2022 finite element numerical simulation. At the same time, the influence of shear deformation, the shear lag effect, and their combined (dual) effect on the deflection calculation accuracy is analyzed under different linear pre-stressed reinforcement arrangements and comprehensive arrangements of pre-stressed reinforcement. The analysis of the example shows that the analytical solution for the deflection of the steel truss web–concrete composite beam, when considering only the shear deformation and the dual effect, is more consistent with the finite element numerical solution. The shear deformation of the steel truss web member under the eccentric straight-line arrangement alone does not cause additional deflection, and the additional deflection caused by the shear lag effect can be ignored. The influence of shear deformation on deflection is higher than that of the shear lag effect. The contribution ratio of the additional deflection caused by the dual effect is greater than 14%, and the influence of the dual effect on deflection is more obvious under a broken-line arrangement. Under the comprehensive arrangement of pre-stressing tendons, the contribution rate of shear deformation to the total deflection is about 3.5 times that of shear lag. Compared with the deflection value of the primary beam, the mid-span deflection is increased by 3.0%, 11.0%, and 13.9% when only considering the shear lag effect, only considering shear deformation, and considering the dual effect, respectively. Therefore, shear deformation and the shear lag effect should be considered when calculating the camber of a steel truss web–concrete composite girder bridge to improve the calculation accuracy. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

30 pages, 20596 KiB  
Article
Critical Review and Benchmark Proposal on FE Modeling for Patch Loading Resistance of Slender Steel Plate Girders in Launched Bridges
by Marck Anthony Mora Quispe
Buildings 2025, 15(13), 2153; https://doi.org/10.3390/buildings15132153 - 20 Jun 2025
Viewed by 427
Abstract
The patch loading resistance of slender steel plate girders is a critical factor in the design of launched steel and composite steel–concrete bridges. Traditional design methods enhance patch loading resistance through various stiffening techniques, with contributions typically estimated via code expressions calibrated on [...] Read more.
The patch loading resistance of slender steel plate girders is a critical factor in the design of launched steel and composite steel–concrete bridges. Traditional design methods enhance patch loading resistance through various stiffening techniques, with contributions typically estimated via code expressions calibrated on experimental data that do not always reflect the complexities of full-scale bridge applications. Finite Element (FE) modeling offers a more realistic alternative, though its practical application is often hindered by modeling uncertainties and nonlinearities. To bridge this gap, this paper introduces an advanced FE modeling approach. It provides a comprehensive description of an FE model that accurately predicts both the load–displacement behavior and the patch loading resistance. The model is benchmarked against a broad set of experimental tests and systematically investigates the effects of key modeling parameters and their interactions—material stress–strain law, boundary condition representation, stiffness of the load introduction area, initial geometric imperfections, and solving algorithms. Key findings demonstrate that a bilinear elastoplastic material model with hardening is sufficient for estimating ultimate resistance, and kinematic constraints can effectively replace rigid transverse stiffeners. The stiffness of the load application zone significantly influences the response, especially in launched bridge scenarios. Initial imperfections notably affect both stiffness and strength, with standard fabrication tolerances offering suitable input values. The modified Riks algorithm is recommended for its efficiency and stability in nonlinear regimens. The proposed methodology advances the state of practice by providing a simple yet reliable FE modeling approach for predicting patch loading resistance in real-world bridge applications, leading to safer and more reliable structural designs. Full article
(This article belongs to the Special Issue Advanced Analysis and Design for Steel Structure Stability)
Show Figures

Figure 1

20 pages, 5088 KiB  
Article
Study on the Temperature Model and Influence Effect of Uncovered Steel Box Girder with Large Height–Width Ratio and Straight Web Plate
by Zengwu Liu, Shuai Luo and Menglin Jiang
Buildings 2025, 15(11), 1818; https://doi.org/10.3390/buildings15111818 - 26 May 2025
Viewed by 431
Abstract
While building the steel–concrete composite girder bridge by means of the incremental launching method, the steel box is directly in the sunlight, and the temperature impact should not be neglected. However, the existing specifications fail to offer the temperature gradient pattern applicable to [...] Read more.
While building the steel–concrete composite girder bridge by means of the incremental launching method, the steel box is directly in the sunlight, and the temperature impact should not be neglected. However, the existing specifications fail to offer the temperature gradient pattern applicable to the steel box featuring a significant height–width ratio and straight web. This paper, relying on the Fenshui River Bridge situated in the southwest region of China, carried out a temperature test. By analyzing the experimental data, the rules of temperature changes at the measuring points in various positions of the steel box were studied, and the temperature disparities of the steel box across different seasons were contrasted. Through the analysis of the test data, the rule governing temperature distribution across the height dimension of the cross-section and its change with time were studied, and a model designed to represent the temperature gradient within the steel box was put forward. By utilizing the numerical model, the effect of the temperature gradient on the force acting on the structure in the process of incremental launching was analyzed. The findings indicate that the temperature of the top plate of the steel box is the highest from 14:00 to 16:00. There is a lag phenomenon in the temperature rise in the bottom plate. The greatest temperature disparity between the upper and lower plates of the steel box is not always present in the season when the temperature is comparatively high. The curve of temperature gradient change exhibits nonlinear features, and the variation in temperature is considerable within the scope of 1 m. In this article, a double-broken line temperature gradient model is put forward, with the corresponding temperature gradient of 17.8 °C. The temperature gradient obviously affects the structural stress, changing the stress distribution, and it notably impacts the deformation. The deformation generated on the guide beam due to the temperature gradient makes up 39% of the total deformation. The temperature gradient is not a fixed value. When the steel box girder is under the jacking process, especially while the structure remains in its maximum cantilever condition and is about to cross the pier, the time should be avoided when the temperature gradient is at its highest. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

30 pages, 9452 KiB  
Article
Influence of Girder Flaring on Load Effect in Girders of Composite Steel Bridges
by Faress Hraib and Sami W. Tabsh
Appl. Sci. 2025, 15(9), 4674; https://doi.org/10.3390/app15094674 - 23 Apr 2025
Viewed by 414
Abstract
A flared or splayed girder bridge is a structure made up of a concrete slab on girders with linearly varying spacing along the length. For such an irregular bridge, the girder distribution factors in the AASHTO LRFD Bridge Design Specifications are not applicable. [...] Read more.
A flared or splayed girder bridge is a structure made up of a concrete slab on girders with linearly varying spacing along the length. For such an irregular bridge, the girder distribution factors in the AASHTO LRFD Bridge Design Specifications are not applicable. In lieu of using a refined method of analysis, the study at hand proposes a simple approach for computing the dead and live load effect in the girders. To do so, fifteen composite steel girder bridges are analyzed by the finite element method to determine the influence of the girder flaring angle, girder spacing, number of girders, deck slab thickness, span length, girder stiffness, and presence of cross-bracing on the load distribution within the bridge. This study showed that the tributary width concept is a reliable approach for determining the dead load effect on the splayed girders, especially for the case of shored construction. The girder distribution factors for flexure in the AASHTO specifications can be reasonably utilized for such irregular bridges if the girder spacing at the location of each truck axle is considered, leading to a maximum of 14% difference on the conservative side between the AASHTO approach and the finite element analysis. On the other hand, the lever rule can provide a good estimate of the live load distribution among the splayed girders when subjected to shear, as the maximum safe deviation from the finite element outcome in this situation is less than 10%. Full article
Show Figures

Figure 1

21 pages, 9680 KiB  
Article
Flexural Performance of an Innovative Girder-to-Pier Joint for Composite Bridges with Integral Piers: Full-Scale Test
by Wei Xie, Binju Zhang, Litao Yu, Qingtian Su and Fawas O. Matanmi
Materials 2025, 18(5), 1157; https://doi.org/10.3390/ma18051157 - 5 Mar 2025
Viewed by 642
Abstract
To reduce the maintenance requirements during the service life of highway bridges and enhance the cracking resistance of concrete slabs in the hogging moment zone of continuous composite girders, this paper proposes an innovative girder-to-pier joint for composite bridges with integral piers. Compared [...] Read more.
To reduce the maintenance requirements during the service life of highway bridges and enhance the cracking resistance of concrete slabs in the hogging moment zone of continuous composite girders, this paper proposes an innovative girder-to-pier joint for composite bridges with integral piers. Compared to the existing ones, this new joint has structural differences. The middle part of the embedded web is hollowed out to facilitate the construction, and the upper and bottom flanges of the steel girder within this joint are widened. Moreover, cast-in-place ultra-high-performance concrete (UHPC) is applied instead of normal concrete (NC) only on the top surface of the pier. A full-scale test was carried out for this new joint to evaluate the load–displacement relationship, load–strain relationship, crack initiation, and crack propagation. Compared with the numerical simulation results of the reference engineering, the test results demonstrated that the proposed joint exhibited excellent flexural performance and cracking resistance. This paper also proposes a calculation method for the elastic flexural capacity of the girder-to-pier joint incorporating the tensile strength of UHPC, and the calculated result was in good agreement with the experimental result. Full article
Show Figures

Figure 1

24 pages, 5436 KiB  
Article
Static Behavior of Post-Installed High-Strength Large-Bolt Shear Connector with Fabricated Hybrid Fiber-Reinforced Concrete/Ordinary Concrete Deck
by Yuliang He, Junjie Li, Wujian He, Qiangqiang Wu, Yiqiang Xiang and Ying Yang
Materials 2025, 18(5), 1091; https://doi.org/10.3390/ma18051091 - 28 Feb 2025
Viewed by 494
Abstract
Recent research indicates that high-strength bolts could be more effectively and efficiently used to connect steel girders and fabricated decks or retrofit existing composite girders than headed studs. To reduce the number of bolt shear connectors and, thus, further accelerate the construction of [...] Read more.
Recent research indicates that high-strength bolts could be more effectively and efficiently used to connect steel girders and fabricated decks or retrofit existing composite girders than headed studs. To reduce the number of bolt shear connectors and, thus, further accelerate the construction of composite girders, high-strength large bolts could be an excellent alternative, resulting in greater concrete stress below the bolt. Also, hybrid fiber-reinforced concrete (HFRC) has better tensile ductility and strength than that of ordinary concrete (OC). Therefore, this study tried to design eighteen push-out test specimens, including different configurations of bolt shear connectors, to investigate the static properties of post-installed, high-strength, large-bolt shear connectors with fabricated HFRC/OC slabs. The experimental results indicated that the capacity and initial stiffness of a high-strength large through-bolt shear connector was the smallest. The fiber might enhance the capacity and initial stiffness of bolt shear connectors. Increasing the bolt diameter can significantly enhance the initial stiffness and load-bearing capacity, while the clearance of the bolt hole had a great influence on the capacity, initial stiffness, and slippage of the post-installed high-strength large-bolt shear connector. Finally, the capacity equation and slip behavior of post-installed, high-strength, large-bolt shear connector with fabricated HFRC deck were obtained using the regression method, which could provide the reference for their design. Full article
Show Figures

Figure 1

21 pages, 11193 KiB  
Article
An Improved Shear Lag Analysis Method for Composite Box Girders with Corrugated Steel Webs
by Meihua Bian, Xingsen Zhang, Junhua Li, Jianing Peng and Songlin Qin
Buildings 2024, 14(12), 4087; https://doi.org/10.3390/buildings14124087 - 23 Dec 2024
Viewed by 1107
Abstract
Composite box girders with corrugated steel webs (CBGCWs) have attracted increasing attention in bridge engineering. However, the shear lag effect has an impact on the mechanical behavior of thin-walled box girders and the impact of transverse deformation on this effect is usually neglected. [...] Read more.
Composite box girders with corrugated steel webs (CBGCWs) have attracted increasing attention in bridge engineering. However, the shear lag effect has an impact on the mechanical behavior of thin-walled box girders and the impact of transverse deformation on this effect is usually neglected. In this study, a modified energy variational method is proposed to quantify the shear lag effect on CBGCWs. The shear deformations of each flange are analyzed based on the mechanical properties of the corrugated steel webs. A shear-lag warpage displacement function is introduced for each flange to account for the shear lag effect due to transverse deformation of the top flange. The formulation for the shear lag effect on CBGCWs is then derived using the principle of the energy variational method. The feasibility and accuracy of the proposed method are validated through a numerical study of a simply supported CBGCW subjected to uniform loading. In addition, a parametric analysis of the shear lag effect on CBGCWs is conducted. The results demonstrate that local bending deformation of the top flange leads to an uneven distribution of shear lag effects and the shear lag effect on corrugated steel webs is significantly influenced by the width–to–span ratio. Full article
(This article belongs to the Special Issue Recent Developments in Structural Health Monitoring)
Show Figures

Figure 1

16 pages, 6076 KiB  
Article
Statistical Evaluation of Uniform Temperature and Thermal Gradients for Composite Girder of Tibet Region Using Meteorological Data
by Yujuan Liu, Zhiyuan Ma and Jiang Liu
Buildings 2024, 14(12), 3798; https://doi.org/10.3390/buildings14123798 - 27 Nov 2024
Cited by 1 | Viewed by 858
Abstract
To accurately assess the temperature action and effect of steel-concrete composite girder bridges in plateau and cold areas, this paper investigated nearly 50 years of historical meteorological data from 26 meteorological observation stations in the Tibet region of China. Based on the most [...] Read more.
To accurately assess the temperature action and effect of steel-concrete composite girder bridges in plateau and cold areas, this paper investigated nearly 50 years of historical meteorological data from 26 meteorological observation stations in the Tibet region of China. Based on the most unfavorable extreme meteorological data at each meteorological station, a finite element model was used to analyze the temperature field of the composite girder. The most unfavorable values of temperature were obtained. The regional differences in temperature actions at different meteorological stations were analyzed, and the isotherm maps of the extreme values of the uniform temperature and thermal gradients were further obtained based on spatial interpolation methods in the ArcGIS program. The study shows that the uniform temperature is significantly affected by the climatic environment, and the isotherm maps provide a visual representation of the geographic distribution pattern of temperature extremes. The maximum and minimum uniform temperatures in Tibet range from 18.28 °C to 42.27 °C and from −41.07 °C to 4.71 °C respectively. The maximum regional difference of positive and negative thermal gradient reaches 11.32 °C and 7.69 °C respectively. The temperature effects calculated using the most unfavorable values of the isotherm map are all more unfavorable than the specification calculations. In particular, the tensile stress of the concrete under the positive thermal gradient reaches 2.91 MPa, which exceeds the standard value of the tensile strength of concrete. This is a significant risk factor for cracking. The compressive stress of the steel girder under a negative thermal gradient reaches 19.35 MPa, which represents a 136% increase compared to the specified value. This increase elevates the risk of instability in the steel girder. Full article
(This article belongs to the Special Issue Advances in Steel–Concrete Composite Structures)
Show Figures

Figure 1

18 pages, 5282 KiB  
Article
Study on the Degradation Model of Service Performance in Railway Steel–Concrete Composite Beams Considering the Cumulative Fatigue of Steel Beams and Studs Based on Vehicle–Bridge Coupling Theory
by Ce Gao, Cheng Zhang and Bing Han
Buildings 2024, 14(11), 3391; https://doi.org/10.3390/buildings14113391 - 25 Oct 2024
Cited by 1 | Viewed by 889
Abstract
The steel–concrete composite beam, as a structural form that combines the advantages of steel and concrete, has been applied in railway engineering. However, with the increase in railway operation time, the degradation pattern of the service performance of steel–concrete composite bridges remains unclear. [...] Read more.
The steel–concrete composite beam, as a structural form that combines the advantages of steel and concrete, has been applied in railway engineering. However, with the increase in railway operation time, the degradation pattern of the service performance of steel–concrete composite bridges remains unclear. This paper proposes a method for calculating the long-term service performance of railway steel–concrete composite beams, considering the cumulative fatigue damage of steel beams and studs, based on the vehicle–bridge coupling theory and Miner’s linear cumulative damage criterion. The proposed method is validated using measured data from an in-service steel–concrete composite railway bridge with spans of 40 + 50 + 40 m. The calculated mid-span vertical displacement and the first two natural frequencies of the composite beam deviated from the measured results by only 2.1%, 7.7%, and 9.5%, respectively. The research results can provide a basis for extending the service life of composite beams and preventing the occurrence of safety accidents. Full article
Show Figures

Figure 1

21 pages, 9757 KiB  
Article
A Method for Analyzing Transverse Stress in Link Slabs of Simply Supported Steel–Concrete Composite Bridges
by Wei Du, Zhijian Hu and Zhi Zhou
Buildings 2024, 14(10), 3308; https://doi.org/10.3390/buildings14103308 - 19 Oct 2024
Viewed by 1384
Abstract
The cracking of link slabs in jointless bridges presents significant challenges due to the complexity of their stress conditions. This study focused on analyzing the transverse stresses in link slabs of jointless steel–concrete composite bridges. Utilizing linear elasticity theory and partial differential equations [...] Read more.
The cracking of link slabs in jointless bridges presents significant challenges due to the complexity of their stress conditions. This study focused on analyzing the transverse stresses in link slabs of jointless steel–concrete composite bridges. Utilizing linear elasticity theory and partial differential equations of plates, the deflection and stress distribution functions for the link slabs were determined. The validity of these analytical solutions was confirmed through comparisons with finite element models and load tests. Results from both the load tests and the finite element model indicate that the upper face of the girder end link slabs experiences maximum tensile stresses in both transverse and longitudinal directions. The stress values obtained from the analytical method align well with these results, showing that the total stress, when considering transverse stresses, reaches 107% of the longitudinal stresses alone. Furthermore, a 40% reduction in longitudinal girder spacing or a 50% increase in girder end length can lead to link slab stresses of 128% and 145% of the longitudinal stresses, respectively. This finding suggests that even loads lower than those designed based solely on longitudinal stresses can result in cracking. Therefore, it is recommended that transverse stresses be considered in the design of link slabs for jointless bridges. Relying solely on conventional longitudinal stress analyses may underestimate actual stress conditions and contribute to the formation of cracks. Full article
Show Figures

Figure 1

17 pages, 8713 KiB  
Article
Flexural Behavior of Concrete-Filled Steel Tube Beams Composite with Concrete Slab Deck
by Salam Maytham AlObaidi, Mohammed Abbas Mousa, Aqil M. Almusawi, Muhaned A. Shallal and Saif Alzabeebee
Infrastructures 2024, 9(10), 187; https://doi.org/10.3390/infrastructures9100187 - 17 Oct 2024
Viewed by 1813
Abstract
Concrete-filled steel tube (CFST) beams have shown their flexural effectiveness in terms of stiffness, strength, and ductility. On the other hand, composite bridge girders demand durable and ductile girders to serve as tension members, while the concrete deck slab resists the compression stresses. [...] Read more.
Concrete-filled steel tube (CFST) beams have shown their flexural effectiveness in terms of stiffness, strength, and ductility. On the other hand, composite bridge girders demand durable and ductile girders to serve as tension members, while the concrete deck slab resists the compression stresses. In this study, six composite CFST beams with concrete slab decks with a span of 170 cm were investigated under a four-point bending test. The main variables of the study were the compressive strength of the concrete deck, the size of CFST beams, and the composite mechanism between the CFST girder and the concrete deck. The results showed that the flexural strength and ductility of the composite system increased by 20% with increasing concrete compressive strength. The study revealed that the higher-strength concrete slab deck enabled the CFST beam to exhibit improved flexural behavior with reduced deflections and enhanced resistance to cracking. The findings also highlighted the importance of considering the interactions between the steel tube and concrete slab deck in determining the flexural behavior of the composite system revealed by strain distribution along the composite beam profile as determined using the digital image correlation DIC technique, where a 40% increase in the flexural strength was obtained when a channel section was added to the joint of the composite section. Full article
Show Figures

Figure 1

22 pages, 8381 KiB  
Article
Effect of Corrosion on Fatigue Failure of Composite Girders with Corrugated Web on Steel Bottom Plate
by Pulu Han, Genhui Wang and Xuejun Jin
Buildings 2024, 14(10), 3221; https://doi.org/10.3390/buildings14103221 - 10 Oct 2024
Cited by 1 | Viewed by 1139
Abstract
Corrosive environments can adversely affect the fatigue performance of bridges and other building structures. In order to determine the influence of corrosion on the fatigue failure of concrete composite girders with a corrugated web on a steel bottom plate (hereinafter referred to as [...] Read more.
Corrosive environments can adversely affect the fatigue performance of bridges and other building structures. In order to determine the influence of corrosion on the fatigue failure of concrete composite girders with a corrugated web on a steel bottom plate (hereinafter referred to as CGCWSB), a scaled model test was conducted on a CGCWSB with a span of 30 m, which served as the structural prototype. Through the model test, theoretical analysis, and numerical simulation, the influence of uniform corrosion and pitting corrosion on the fatigue failure of the CGCWSB was determined, and the propagation law of pitting fatigue crack was determined. The results show that (1) the uniform corrosion caused the stress of the CGCWSB to become larger and the performance of the CGCWSB was reduced, the stress growth of the test girder after corrosion was about 10%, the corrosion rate was 9%, the pitting unevenness coefficient was 1.25, and the relative corrosion life was 26.34 years; (2) the fatigue failure of the non-corroded girder belongs to the weld fatigue failure, and the fatigue failure of the corroded girder was the coexistence of weld fatigue failure and pitting fatigue failure; (3) uniform corrosion did not create a new fatigue source, but it did result in the test girder’s fatigue failure ahead of time. Pitting corrosion did, however, create a new fatigue source; (4) an exponential correlation was present between the propagation length of a pitting crack and the number of equal load cycles. The ultimate failure mode of a pitting fatigue crack was when the crack length reached the thickness of the plate and the component was torn and destroyed; (5) following corrosion, the fatigue life of the test girder was found to be reduced by 10.65%, which suggests that salt corrosion had a significant impact on the fatigue life of the composite girder. This research work can provide a reference for the design and promotion of the use of the CGCWSB. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop