Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (105)

Search Parameters:
Keywords = composite polyimide film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2815 KiB  
Article
Research on the Structural Design and Mechanical Properties of T800 Carbon Fiber Composite Materials in Flapping Wings
by Ruojun Wang, Zengyan Jiang, Yuan Zhang, Luyao Fan and Weilong Yin
Materials 2025, 18(15), 3474; https://doi.org/10.3390/ma18153474 - 24 Jul 2025
Viewed by 259
Abstract
Due to its superior maneuverability and concealment, the micro flapping-wing aircraft has great application prospects in both military and civilian fields. However, the development and optimization of lightweight materials have always been the key factors limiting performance enhancement. This paper designs the flapping [...] Read more.
Due to its superior maneuverability and concealment, the micro flapping-wing aircraft has great application prospects in both military and civilian fields. However, the development and optimization of lightweight materials have always been the key factors limiting performance enhancement. This paper designs the flapping mechanism of a single-degree-of-freedom miniature flapping wing aircraft. In this study, T800 carbon fiber composite material was used as the frame material. Three typical wing membrane materials, namely polyethylene terephthalate (PET), polyimide (PI), and non-woven kite fabric, were selected for comparative analysis. Three flapping wing configurations with different stiffness were proposed. These wings adopted carbon fiber composite material frames. The wing membrane material is bonded to the frame through a coating. Inspired by bionics, a flapping wing that mimics the membrane vein structure of insect wings is designed. By changing the type of membrane material and the distribution of carbon fiber composite materials on the wing, the stiffness of the flapping wing can be controlled, thereby affecting the mechanical properties of the flapping wing aircraft. The modal analysis of the flapping-wing structure was conducted using the finite element analysis method, and the experimental prototype was fabricated by using 3D printing technology. To evaluate the influence of different wing membrane materials on lift performance, a high-precision force measurement experimental platform was built, systematic tests were carried out, and the lift characteristics under different flapping frequencies were analyzed. Through computational modeling and experiments, it has been proven that under the same flapping wing frequency, the T800 carbon fiber composite material frame can significantly improve the stiffness and durability of the flapping wing. In addition, the selection of wing membrane materials has a significant impact on lift performance. Among the test materials, the PET wing film demonstrated excellent stability and lift performance under high-frequency conditions. This research provides crucial experimental evidence for the optimal selection of wing membrane materials for micro flapping-wing aircraft, verifies the application potential of T800 carbon fiber composite materials in micro flapping-wing aircraft, and opens up new avenues for the application of advanced composite materials in high-performance micro flapping-wing aircraft. Full article
Show Figures

Figure 1

20 pages, 1483 KiB  
Article
The Effect of Synthesis Conditions and Chemical Structure of Thermoplastic Polyimides on Their Thermomechanical Properties and Short-Term Electrical Strength
by Victor M. Nazarychev, Andrey A. Pavlov, Almaz M. Kamalov, Margarita E. Borisova, Andrei L. Didenko, Elena M. Ivan’kova, Vadim E. Kraft, Gleb V. Vaganov, Alexandra L. Nikolaeva, Anna S. Ivanova, Victor K. Lavrentiev, Elena N. Popova, Ivan V. Abalov, Aleksey N. Blokhin, Alexander N. Bugrov and Vladislav V. Kudryavtsev
Polymers 2025, 17(10), 1385; https://doi.org/10.3390/polym17101385 - 18 May 2025
Viewed by 628
Abstract
Polyimides (PIs) are materials that are resistant to high temperatures and crucial for the manufacturing of films, fibers, coatings, and 3D-printed items. PIs are widely used as electrically insulating materials in electronics and electrical engineering. This study investigated how the chemical structure (i.e., [...] Read more.
Polyimides (PIs) are materials that are resistant to high temperatures and crucial for the manufacturing of films, fibers, coatings, and 3D-printed items. PIs are widely used as electrically insulating materials in electronics and electrical engineering. This study investigated how the chemical structure (i.e., choice of initial monomers), the synthesis conditions of the prepolymer (i.e., choice of amide solvent), and the conditions for forming polyimide films (i.e., final curing temperature) affect the thermophysical properties and short-term electrical strength of obtained polyimide films of different chemical structures. In this work, we varied the compositions of the dianhydrides used for synthesizing polyamic acids—pyromellitic acid (PMDA), tetracarboxylic acid diphenyl oxide (ODPA) and 1,3-bis(3′,4-dicarboxyphenoxy)benzene acid (R)—with a constant diamine: 4,4′-oxydianiline (ODA). Additionally, we varied the amide solvents employed: N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), and N-methyl-2-pyrrolidone (NMP). This study represents the first investigation into how the choice of solvent in the synthesis of thermoplastic polyimide prepolymers affects their short-term electrical strength. The molecular weights of the polyamic acids were determined using gel permeation chromatography (GPC). The deformation and strength characteristics of the investigated films were also assessed. The thermophysical properties of the polyimides were evaluated via dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). X-ray diffraction analysis and infrared spectroscopy (IR) were conducted on the examined film samples. The short-term electrical strength was also evaluated. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Graphical abstract

16 pages, 2619 KiB  
Article
New (Co)poly(hydroxyimide)s Based on 4,4′-Oxydiphthalic Anhydride—Effect of Composition on Properties, Including Gas Transport Ability
by Agnieszka Katarzyna Pająk, Andrzej Jankowski and Ewa Schab-Balcerzak
Materials 2025, 18(10), 2193; https://doi.org/10.3390/ma18102193 - 9 May 2025
Viewed by 484
Abstract
This paper presents novel soluble (co)poly(hydroxyimide)s ((co)PIOH) based on 4,4′-oxydiphthalic anhydride (ODPA), 3,3′-dihydroxybenzidine (HAB), and 3,6-diaminodurene (D) with the 3/1, 1/1, and 1/3 HAB/D ratios. This chemical structure of the compounds provides the possibility of their future modification through the thermal rearrangement (polybenzoxazoles) [...] Read more.
This paper presents novel soluble (co)poly(hydroxyimide)s ((co)PIOH) based on 4,4′-oxydiphthalic anhydride (ODPA), 3,3′-dihydroxybenzidine (HAB), and 3,6-diaminodurene (D) with the 3/1, 1/1, and 1/3 HAB/D ratios. This chemical structure of the compounds provides the possibility of their future modification through the thermal rearrangement (polybenzoxazoles) or functionalization via Mitsunobu reaction (azo side-chain polyimides), i.e., obtaining new materials with interesting properties and therefore with expanded applications. Copolymers were characterized via FTIR, NMR, XRD, and GPC methods to confirm their structure, composition, and molar masses. The effect of copolymer composition on the thermal, mechanical, optical, and permeation properties studied for He, O2, N2, and CO2, as well as hydrophobicity, was investigated. They exhibited a large interval between the glass transition temperature and the decomposition temperature, making them promising for the thermoforming technique. Transmittance above 90% was noted in the visible range for all (co)PIOH films deposited on a glass substrate. Young’s modulus of fabricated membranes was in the range of 2.37 to 3.38 GPa. The highest permeability coefficients were recorded for (co)PIOH with a 1:3 HAB-to D-ratio. Full article
Show Figures

Figure 1

14 pages, 4721 KiB  
Article
Tuning Fillers via Multidimensional Synergistic Optimization for High-Temperature Capacitive Energy Storage
by Linfei Lu, Yipeng Tan, Hang Gao, Chiung Kuei Fu, Lingmin Yao and Qinglin Deng
Coatings 2025, 15(5), 555; https://doi.org/10.3390/coatings15050555 - 6 May 2025
Viewed by 473
Abstract
High-temperature performance is crucial for dielectric capacitors, especially in military and aerospace applications, as they offer superior charge–discharge rates and power density compared to supercapacitors and batteries. However, the stability of polymers based on commercial dielectric capacitors under extreme environmental conditions (i.e., ≥100 [...] Read more.
High-temperature performance is crucial for dielectric capacitors, especially in military and aerospace applications, as they offer superior charge–discharge rates and power density compared to supercapacitors and batteries. However, the stability of polymers based on commercial dielectric capacitors under extreme environmental conditions (i.e., ≥100 °C) presents significant challenges. Herein, with polyimide (PI) as the matrix, a middle layer is produced that is rich in zero-dimensional nanoparticles, BaTiO3 (0DBTO@PI), to enhance dielectric polarization. The upper and lower layers integrate two-dimensional laminated Al2O3 (2DAO@PI) as thermal conductive and insulating layers to improve heat dissipation and electrical insulation. The composites combine polarization enhancement and thermal management to synergistically improve high-temperature capacitive energy storage. As a result, the designed composite capacitors maintain good performance at temperatures > 150 °C. Even at 200 °C, it retains 2.36 J cm−3 (a 203% increase over pure PI), demonstrating unprecedented stability under extreme temperatures. Layer-specific functionalization provides a new and significant paradigm for designing high-temperature polymer-based energy storage films. Full article
Show Figures

Graphical abstract

28 pages, 6590 KiB  
Article
Pulse Sensors Based on Laser-Induced Graphene Transferred to Biocompatible Polyurethane Networks: Fabrication, Transfer Methods, Characterization, and Application
by Vanja Vojnović, Marko Spasenović, Ivan Pešić, Teodora Vićentić, Milena Rašljić Rafajilović, Stefan D. Ilić and Marija V. Pergal
Chemosensors 2025, 13(4), 122; https://doi.org/10.3390/chemosensors13040122 - 2 Apr 2025
Viewed by 1367
Abstract
Flexible, wearable biomedical sensors based on laser-induced graphene (LIG) have garnered significant attention due to a straightforward fabrication process and exceptional electrical and mechanical properties. However, most relevant studies rely on commercial polyimide precursors, which suffer from inadequate biocompatibility and weak adhesion between [...] Read more.
Flexible, wearable biomedical sensors based on laser-induced graphene (LIG) have garnered significant attention due to a straightforward fabrication process and exceptional electrical and mechanical properties. However, most relevant studies rely on commercial polyimide precursors, which suffer from inadequate biocompatibility and weak adhesion between the precursor material and the LIG layer. To address these challenges, we synthesized cross-linked polyurethanes (PUs) with good biocompatibility and used them as substrates for LIG-based wearable pulse sensors. During fabrication, we employed two methods of LIG transfer to achieve optimal transfer yield. We adjusted the thickness of PU films and tailored their mechanical and physicochemical properties by varying the soft segment content to achieve optimal sensor performance. Our findings demonstrate that the success of LIG transfer is strongly influenced by the structure and composition of the polymeric substrate. Tensile testing revealed that increasing the soft segment content in PU films significantly improved their tensile strength, elongation at break, and flexibility, with PU based on 50 wt.% soft segment content (PU-50) showing the best mechanical properties. LIG exhibited minimal sensitivity to humidity, while PU films maintained high transparency (>80% at 500 nm), and PU-50 was non-toxic, with less than 5% lactate dehydrogenase (LDH) release in endothelial cell cultures, confirming its biocompatibility. Adhesion tests demonstrated that LIG transferred onto PU-50 exhibited significantly stronger adhesion compared to other tested substrates, with only a 30% increase in electrical resistance after the Scotch tape test, ensuring stability for wearable sensors. The optimal substrate, a semicrystalline PU-50, yielded superior transfer efficiency. Among all tested sensors, the LIG/PU-50, featuring a 77 μm thick substrate with good mechanical properties and improved adhesion, exhibited the highest signal-to-noise ratio (SNR). This study showcases a skin-safe LIG/PU-based pulse sensor that has significant potential for applications as a wearable patch in medical and sports monitoring. Full article
Show Figures

Graphical abstract

14 pages, 2841 KiB  
Article
Polyimide Modified with Different Types and Contents of Polar/Nonpolar Groups: Synthesis, Structure, and Dielectric Properties
by Ting Li, Jie Liu, Shuhui Yu, Xiaojun Zhang and Zhiqiang Chen
Polymers 2025, 17(6), 753; https://doi.org/10.3390/polym17060753 - 13 Mar 2025
Viewed by 1044
Abstract
Polyimide-based dielectric materials, as excellent high-temperature-resistant polymers, play a crucial role in advanced electronic devices and power systems. However, given the limitations of composite PI materials, it is a significant challenge to simultaneously improve the dielectric constant and breakdown strength of intrinsic polyimide [...] Read more.
Polyimide-based dielectric materials, as excellent high-temperature-resistant polymers, play a crucial role in advanced electronic devices and power systems. However, given the limitations of composite PI materials, it is a significant challenge to simultaneously improve the dielectric constant and breakdown strength of intrinsic polyimide dielectric materials to achieve high energy density. In this study, an indiscriminate copolymerization method was proposed, which utilizes two different diamine monomers with bulky side groups (-CF3) and high polarity (C-O-C), respectively, to copolymerize with the same dianhydride monomer and prepare a series of intrinsic PI films. Remarkably, PI films with a highly dipolar rigid backbone maintain excellent thermal and mechanical properties while enhancing dipole polarization. Meanwhile, a high breakdown strength of PI is shown, because the bulky side groups act as deep traps to capture and disperse charges during the charge transfer process. Under the optimal copolymer ratio, the dielectric constant and dielectric loss are 4.2 and 0.008, respectively. At room temperature, the highest breakdown strength reaches 493MV/m, and the energy storage density and charge–discharge efficiency are 5.07 J/cm3 and 82%, respectively. Finally, based on density functional theory calculations, the copolymerization tendencies of the three monomers are verified, and it is speculated that the copolymerization ratio of PI-60% is the most stable and exhibits the best overall performance, which perfectly aligns with the experimental results. These experimental results demonstrate the exciting potential of intrinsic polyimide in thin film capacitors. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

17 pages, 5079 KiB  
Article
Holey Carbon Nanohorns-Based Nanohybrid as Sensing Layer for Resistive Ethanol Sensor
by Bogdan-Catalin Serban, Niculae Dumbravescu, Octavian Buiu, Marius Bumbac, Mihai Brezeanu, Cristina Pachiu, Cristina-Mihaela Nicolescu, Oana Brancoveanu and Cornel Cobianu
Sensors 2025, 25(5), 1299; https://doi.org/10.3390/s25051299 - 20 Feb 2025
Cited by 1 | Viewed by 668
Abstract
The study presents the ethanol vapor sensing performance of a resistive sensor that utilizes a quaternary nanohybrid sensing layer composed of holey carbon nanohorns (CNHox), graphene oxide (GO), SnO2, and polyvinylpyrrolidone (PVP) in an equal mass ratio of 1:1:1:1 (w [...] Read more.
The study presents the ethanol vapor sensing performance of a resistive sensor that utilizes a quaternary nanohybrid sensing layer composed of holey carbon nanohorns (CNHox), graphene oxide (GO), SnO2, and polyvinylpyrrolidone (PVP) in an equal mass ratio of 1:1:1:1 (w/w/w/w). The sensing device includes a flexible polyimide substrate and interdigital transducer (IDT)-like electrodes. The sensing film is deposited by drop-casting on the sensing structure. The morphology and composition of the sensitive film are analyzed using scanning electron microscopy (SEM), Energy Dispersive X-ray (EDX) Spectroscopy, and Raman spectroscopy. The manufactured resistive device presents good sensitivity to concentrations of alcohol vapors varying in the range of 0.008–0.16 mg/cm3. The resistance of the proposed sensing structure increases over the entire range of measured ethanol concentration. Different types of sensing mechanisms are recognized. The decrease in the hole concentration in CNHox, GO, and CNHox due to the interaction with ethanol vapors, which act as electron donors, and the swelling of the PVP are plausible and seem to be the prevalent sensing pathway. The hard–soft acid-base (HSAB) principle strengthens our analysis. Full article
(This article belongs to the Special Issue Recent Advances in Sensors for Chemical Detection Applications)
Show Figures

Figure 1

24 pages, 56372 KiB  
Article
Structure–Properties Correlations in Novel Copoly(urethane-imide) Films Selectively Destructed Under Thermolysis and Hydrolysis in Alkaline Media
by Andrei L. Didenko, Tatyana E. Sukhanova, Anna S. Nesterova, Gleb V. Vaganov, Viktor K. Lavrentiev, Ilya A. Kabykhno, Natalia A. Grozova, Elena N. Popova, Almaz M. Kamalov, Konstantin S. Polotnyanshchikov, Tatyana S. Anokhina, I. L. Borisov and Vladislav V. Kudryavtsev
Polymers 2025, 17(3), 329; https://doi.org/10.3390/polym17030329 - 25 Jan 2025
Viewed by 881
Abstract
The paper describes changes in the structure, morphology, mechanical and thermal properties of porous film samples of poly(4,4′-oxidiphenylene)pyromellitimide prepared as a result of selective destruction of urethane blocks in copolymers composed of pyromellitimide blocks and polyurethane blocks. The initial samples of the new [...] Read more.
The paper describes changes in the structure, morphology, mechanical and thermal properties of porous film samples of poly(4,4′-oxidiphenylene)pyromellitimide prepared as a result of selective destruction of urethane blocks in copolymers composed of pyromellitimide blocks and polyurethane blocks. The initial samples of the new composition of statistical copoly(urethane-imide)s (CoPUIs) were prepared via polycondensation methods using pyromellitic dianhydride (PMDA), 4,4′-oxidyaniline (ODA), 2,4-toluylenediisocyanate (TDI), as well as polycaprolactone (PCL) and poly(1,6-hexanediol/neopentylglycol-alt-adipic acid) (ALT) as monomers. The molar ratio of imide and polyurethane blocks in CoPUI was 10:1. The initial films were heated up to 170 °C to complete the polycondensation processes, after which they were subjected to thermolysis and hydrolysis. The thermolysis (thermal degradation) of copolymers was carried out by heating the initial samples to temperatures of 300 °C or 350 °C. Then, the thermolized films were subjected to chemical degradation in hydrolytic baths containing an aqueous solution of potassium hydroxide. As a result, urethane blocks were destroyed and removed from the polymer. The resulting products practically did not contain polyurethane links and, in chemical composition, were practically identical to poly(4,4′-oxidiphenylene)pyromellitimide. NMR and IR spectroscopy, atomic force microscopy, X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry and dynamic mechanical analysis and mechanical properties testing were used to determine the differences in the structure and properties of the initial copolymers and targeted products. The effect of the conditions of destructive processes on the structure, morphology and mechanical properties of the obtained porous polyimide films was determined. From a practical point of view, the final porous films are promising as membranes for filtering aggressive amide solvents at high temperatures. Full article
Show Figures

Figure 1

12 pages, 3591 KiB  
Article
Multilayer Graphene Stacked with Silver Nanowire Networks for Transparent Conductor
by Jinsung Kwak
Materials 2025, 18(1), 208; https://doi.org/10.3390/ma18010208 - 6 Jan 2025
Cited by 1 | Viewed by 977
Abstract
A mechanically robust flexible transparent conductor with high thermal and chemical stability was fabricated from welded silver nanowire networks (w-Ag-NWs) sandwiched between multilayer graphene (MLG) and polyimide (PI) films. By modifying the gas flow dynamics and surface chemistry of the Cu surface during [...] Read more.
A mechanically robust flexible transparent conductor with high thermal and chemical stability was fabricated from welded silver nanowire networks (w-Ag-NWs) sandwiched between multilayer graphene (MLG) and polyimide (PI) films. By modifying the gas flow dynamics and surface chemistry of the Cu surface during graphene growth, a highly crystalline and uniform MLG film was obtained on the Cu foil, which was then directly coated on the Ag-NW networks to serve as a barrier material. It was found that the highly crystalline layers in the MLG film compensate for structural defects, thus forming a perfect barrier film to shield Ag NWs from oxidation and sulfurization. MLG/w-Ag-NW composites were then embedded into the surface of a transparent and colorless PI thin film by spin-coating. This allowed the MLG/w-Ag-NW/PI composite to retain its original structural integrity due to the intrinsic physical and chemical properties of PI, which also served effectively as a binder. In view of its unique sandwich structure and the chemical welding of the Ag NWs, the flexible substrate-cum-electrode had an average sheet resistance of ≈34 Ω/sq and a transmittance of ≈91% in the visible range, and also showed excellent stability against high-temperature annealing and sulfurization. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

13 pages, 2344 KiB  
Article
The Fabrication of Polyimide-Based Tunable Charge Traps Ternary Memristors Doped with Ni-Co Coated Carbon Composite Nanofibers
by Yuanyuan Liu, Liyuan Liu, He Zhao and Jinghua Yin
Polymers 2024, 16(21), 2993; https://doi.org/10.3390/polym16212993 - 25 Oct 2024
Viewed by 1005
Abstract
In the dynamic fields of information science and electronic technology, there is a notable trend towards leveraging carbon materials, favored for their ease of synthesis, biocompatibility, and abundance. This trend is particularly evident in the development of memristors, benefiting from the unique electronic [...] Read more.
In the dynamic fields of information science and electronic technology, there is a notable trend towards leveraging carbon materials, favored for their ease of synthesis, biocompatibility, and abundance. This trend is particularly evident in the development of memristors, benefiting from the unique electronic properties of carbon to enhance device performance. This study utilizes sensitized chemical evaporation and spin-coating carbonization techniques to fabricate nickel-cobalt coated carbon composite nanofibers (SC-NCMNTs). Novel polyimide (PI) matrix composite memory devices were fabricated using in situ polymerization technology. Transmission electron microscopy (TEM) and micro-Raman spectroscopy analyses validated the presence of dual interface structures located between the Ni-Co-MWNTs, carbon composite nanofibers, and PI matrix, revealing a significant number of defects within the SC-NCMNTs/PI composite films. Consequently, this results in a tunable charge trap-based ternary resistive switching behavior of the composite memory devices, exhibiting a high ON/OFF current ratio of 104 and a retention time of 2500 s at an operating voltage of less than 3 V. The mechanism of resistive switching is thoroughly elucidated through a comprehensive charge transport model, incorporating molecular orbital energy levels. This study provides valuable insights for the rational design and fabrication of efficient memristors characterized by multilevel resistive switching states. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

12 pages, 4580 KiB  
Article
A Polyimide Composite-Based Electromagnetic Cantilever Structure for Smart Grid Current Sensing
by Zeynel Guler and Nathan Jackson
Micromachines 2024, 15(10), 1189; https://doi.org/10.3390/mi15101189 - 26 Sep 2024
Cited by 1 | Viewed by 4202
Abstract
Polyimides (PIs) have been extensively used in thin film and micro-electromechanical system (MEMS) processes based on their excellent thermal and mechanical stability and high glass transition temperature. This research explores the development of a novel multilayer and multifunctional polymer composite electro-piezomagnetic device that [...] Read more.
Polyimides (PIs) have been extensively used in thin film and micro-electromechanical system (MEMS) processes based on their excellent thermal and mechanical stability and high glass transition temperature. This research explores the development of a novel multilayer and multifunctional polymer composite electro-piezomagnetic device that can function as an energy harvester or sensor for current-carrying wires or magnetic field sensing. The devices consist of four layers of composite materials with a polyimide matrix. The composites have various nanoparticles to alter the functionality of each layer. Nanoparticles of Ag were used to increase the electrical conductivity of polyimide and act as electrodes; lead zirconate titanate was used to make the piezoelectric composite layer; and either neodymium iron boron (NdFeB) or Terfenol-D was used to make the magnetic and magnetostrictive composite layer, which was used as the proof mass. A novel all-polymer multifunctional polyimide composite cantilever was developed to operate at low frequencies. This paper compares the performance of the different magnetic masses, shapes, and concentrations, as well as the development of an all-magnetostrictive device to detect voltage or current changes when coupled to the magnetic field from a current-carrying wire. The PI/PZT cantilever with the PI/NdFeB proof mass demonstrated higher voltage output compared to the PI/Terfenol-D proof mass device. However, the magnetostrictive composite film could be operated without a piezoelectric film based on the Villari effect, which consisted of a single PI-Terfenol-D film. The paper illustrates the potential to develop an all-polymer composite MEMS device capable of acting as a magnetic field or current sensor. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

11 pages, 3581 KiB  
Article
All-Fiber Flexible Electrochemical Sensor for Wearable Glucose Monitoring
by Zeyi Tang, Jinming Jian, Mingxin Guo, Shangjian Liu, Shourui Ji, Yilong Li, Houfang Liu, Tianqi Shao, Jian Gao, Yi Yang and Tianling Ren
Sensors 2024, 24(14), 4580; https://doi.org/10.3390/s24144580 - 15 Jul 2024
Cited by 3 | Viewed by 3486
Abstract
Wearable sensors, specifically microneedle sensors based on electrochemical methods, have expanded extensively with recent technological advances. Today’s wearable electrochemical sensors present specific challenges: they show significant modulus disparities with skin tissue, implying possible discomfort in vivo, especially over extended wear periods or on [...] Read more.
Wearable sensors, specifically microneedle sensors based on electrochemical methods, have expanded extensively with recent technological advances. Today’s wearable electrochemical sensors present specific challenges: they show significant modulus disparities with skin tissue, implying possible discomfort in vivo, especially over extended wear periods or on sensitive skin areas. The sensors, primarily based on polyethylene terephthalate (PET) or polyimide (PI) substrates, might also cause pressure or unease during insertion due to the skin’s irregular deformation. To address these constraints, we developed an innovative, wearable, all-fiber-structured electrochemical sensor. Our composite sensor incorporates polyurethane (PU) fibers prepared via electrospinning as electrode substrates to achieve excellent adaptability. Electrospun PU nanofiber films with gold layers shaped via thermal evaporation are used as base electrodes with exemplary conductivity and electrochemical catalytic attributes. To achieve glucose monitoring, gold nanofibers functionalized by gold nanoflakes (AuNFs) and glucose oxidase (GOx) serve as the working electrode, while Pt nanofibers and Ag/AgCl nanofibers serve as the counter and reference electrode. The acrylamide-sodium alginate double-network hydrogel synthesized on electrospun PU fibers serves as the adhesive and substance-transferring layer between the electrodes. The all-fiber electrochemical sensor is assembled layer-by-layer to form a robust structure. Given the stretchability of PU nanofibers coupled with a high specific surface area, the manufactured porous microneedle glucose sensor exhibits enhanced stretchability, superior sensitivity at 31.94 μA (lg(mM))−1 cm−2, a broad detection range (1–30 mM), and a significantly low detection limit (1 mM, S/N = 3), as well as satisfactory biocompatibility. Therefore, the novel electrochemical microneedle design is well-suited for wearable or even implantable continuous monitoring applications, thereby showing promising significant potential within the global arena of wearable medical technology. Full article
(This article belongs to the Special Issue Wearable and Implantable Electrochemical Sensors)
Show Figures

Figure 1

13 pages, 5276 KiB  
Article
Flexible Resistive Gas Sensor Based on Molybdenum Disulfide-Modified Polypyrrole for Trace NO2 Detection
by Kuo Zhao, Yunbo Shi, Mingrui Cui, Bolun Tang, Canda Zheng, Qinglong Chen and Yuhan Hu
Polymers 2024, 16(13), 1940; https://doi.org/10.3390/polym16131940 - 7 Jul 2024
Cited by 6 | Viewed by 1902
Abstract
High sensitivity and selectivity and short response and recovery times are important for practical conductive polymer gas sensors. However, poor stability, poor selectivity, and long response times significantly limit the applicability of single-phase conducting polymers, such as polypyrrole (PPy). In this study, PPy/MoS [...] Read more.
High sensitivity and selectivity and short response and recovery times are important for practical conductive polymer gas sensors. However, poor stability, poor selectivity, and long response times significantly limit the applicability of single-phase conducting polymers, such as polypyrrole (PPy). In this study, PPy/MoS2 composite films were prepared via chemical polymerization and mechanical blending, and flexible thin-film resistive NO2 sensors consisting of copper heating, fluorene polyester insulating, and PPy/MoS2 sensing layers with a silver fork finger electrode were fabricated on a flexible polyimide substrate using a flexible electronic printer. The PPy/MoS2 composite films were characterized using X-ray diffraction, Fourier-transform infrared spectroscopy, and field-emission scanning electron microscopy. A home-built gas sensing test platform was built to determine the resistance changes in the composite thin-film sensor with temperature and gas concentration. The PPy/MoS2 sensor exhibited better sensitivity, selectivity, and stability than a pure PPy sensor. Its response to 50 ppm NO2 was 38% at 150 °C, i.e., 26% higher than that of the pure PPy sensor, and its selectivity and stability were also higher. The greater sensitivity was attributed to p–n heterojunction formation after MoS2 doping and more gas adsorption sites. Thus, PPy/MoS2 composite film sensors have good application prospects. Full article
(This article belongs to the Special Issue Polymers for Biosensors and Detection)
Show Figures

Figure 1

12 pages, 3920 KiB  
Article
Recovery of Metal Ions (Cd2+, Co2+, and Ni2+) from Nitrate and Sulfate on Laser-Induced Graphene Film Using Applied Voltage and Its Application
by Xiu-man Wang, Tong Su and Yujun Chai
Materials 2024, 17(12), 2965; https://doi.org/10.3390/ma17122965 - 17 Jun 2024
Viewed by 1150
Abstract
The urgent removal of Cd, Co, and Ni from nitrate and sulfate is essential to mitigate the potential risk of chemical pollution from large volumes of industrial wastewater. In this study, these metal ions were rapidly recovered through applying voltage on nitrate and [...] Read more.
The urgent removal of Cd, Co, and Ni from nitrate and sulfate is essential to mitigate the potential risk of chemical pollution from large volumes of industrial wastewater. In this study, these metal ions were rapidly recovered through applying voltage on nitrate and sulfate, utilizing laser-induced graphene/polyimide (LIG/PI) film as the electrode. Following the application of external voltage, both the pH value and conductivity of the solution undergo changes. Compared to Co2+ and Ni2+, Cd2+ exhibits a lower standard electrode potential and stronger reducibility. Consequently, in both nitrate and sulfate solutions, the reaction sequence follows the order of Cd2+ > Co2+ > Ni2+, with the corresponding electrode adsorption quantities in the order of Cd2+ > Co2+ ~ Ni2+. Additionally, using the recovered Co(OH)2 as the raw material, a LiCoO2 composite was prepared. The assembled battery with this composite exhibited a specific capacity of 122.8 mAh g−1, meeting practical application requirements. This research has significance for fostering green development. Full article
(This article belongs to the Special Issue Electrochemical Material Science and Electrode Processes)
Show Figures

Figure 1

19 pages, 5362 KiB  
Article
Sensor-Less Control of Mirror Manipulator Using Shape Memory Polyimide Composite Actuator: Experimental Work
by Vetriselvi Velusamy, Dhanalakshmi Kaliaperumal and Seung-Bok Choi
Sensors 2024, 24(12), 3910; https://doi.org/10.3390/s24123910 - 17 Jun 2024
Viewed by 1166
Abstract
Integrated thin film-based shape memory polyimide composites (SMPICs) are potentially attractive for efficient and compact design, thereby offering cost-effective applications. The objective of this article is to design and evaluate a mirror manipulator using an SMPIC as an actuator and a sensor with [...] Read more.
Integrated thin film-based shape memory polyimide composites (SMPICs) are potentially attractive for efficient and compact design, thereby offering cost-effective applications. The objective of this article is to design and evaluate a mirror manipulator using an SMPIC as an actuator and a sensor with control. A sensor-less control strategy using the SMPIC (a self-sensing actuator) with a proportional derivative combined variable structure controller (PD-VSC) is proposed for position control of the mirror in both the vertical and angular directions. The mirror manipulator is able to move the mirror in the vertical and angular directions by 3.39 mm and 10.5 deg, respectively. A desired fast response is obtained as the performance under control. In addition, some benefits from the proposed control realization include good tracking, stable switching, no overshoot, no steady state oscillations, and robust disturbance rejection. These superior properties are experimentally validated to reflect practical feasibility. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop