Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (218)

Search Parameters:
Keywords = composite clothing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2213 KiB  
Article
Tracing the Threads: Comparing Red Garments in Forensic Investigations
by Jolanta Wąs-Gubała and Bartłomiej Feigel
Appl. Sci. 2025, 15(14), 7945; https://doi.org/10.3390/app15147945 - 17 Jul 2025
Viewed by 329
Abstract
The aim of this study was to compare the types, textile structures, labels, and fiber compositions of 64 red garments submitted as evidence in selected criminal cases between 2022 and 2024. The research enhanced the current knowledge of the characteristics of red clothing [...] Read more.
The aim of this study was to compare the types, textile structures, labels, and fiber compositions of 64 red garments submitted as evidence in selected criminal cases between 2022 and 2024. The research enhanced the current knowledge of the characteristics of red clothing available to consumers and demonstrated the relevance of textile analysis in forensic science. Knitted fabrics were the most commonly used in the garments, followed by woven fabrics, nonwovens, and felts. Fiber identification focused on color and shade, generic classification, morphological structure, and chemical composition, revealing both similarities and distinctions among the samples. In a small percentage of cases, label information was found to be inaccurate. The study also examined the fiber content of threads, patches, logos, prints, and embroidery, underscoring the forensic potential of these often-overlooked elements. The identification of over 300 individual fibers enabled a critical evaluation of the analytical procedures and confirmed their effectiveness in forensic contexts. Full article
Show Figures

Figure 1

22 pages, 11082 KiB  
Article
Exploring the Impact of Inter-Layer Structure on Glass Fiber-Poplar Composite Board: Mechanical and Thermal Properties Analysis
by Jiong Zhang, Shurui Liu, Jinpeng Li, Jixuan Wang, Haoyu Bai, Peng Wei and Tian Liu
Materials 2025, 18(14), 3284; https://doi.org/10.3390/ma18143284 - 11 Jul 2025
Viewed by 261
Abstract
This study presents the design and fabrication of a glass fiber–poplar veneer composite plate, investigating how varying interlayer configurations of glass fiber (single- and double-layer) and the arrangement of poplar veneer layers (odd and even) impact the mechanical and thermal insulation characteristics of [...] Read more.
This study presents the design and fabrication of a glass fiber–poplar veneer composite plate, investigating how varying interlayer configurations of glass fiber (single- and double-layer) and the arrangement of poplar veneer layers (odd and even) impact the mechanical and thermal insulation characteristics of these composite plates. Compared to plywood made from natural wood, glass fiber significantly improved the properties of fast-growing poplar plywood. The highest impact strength increased by 3.62 times, while the flexural strength increased by 26.22% and the tensile strength by 29.66%. The thermal diffusion coefficient of the experimental group decreased by 40.74%, indicating better insulation. Interestingly, single-layer glass fiber is superior to a double-layer structure in terms of thermal insulation. An optimal interlayer structure was identified, comprising one veneer layer between two layers of glass fiber cloth, repeated three times. Abaqus 2019 was used for finite element analysis (FEA). The simulation results agree with the experimental data to within 5%. These findings confirm the importance of structural configuration in determining the properties of composite materials, providing a theoretical basis for the structural design of fiber–reinforced composite materials. Full article
Show Figures

Figure 1

24 pages, 11951 KiB  
Article
The Influence of Various Chemical Modifications of Sheep Wool Fibers on the Long-Term Mechanical Properties of Sheep Wool/PLA Biocomposites
by Piotr Szatkowski
Materials 2025, 18(13), 3056; https://doi.org/10.3390/ma18133056 - 27 Jun 2025
Viewed by 442
Abstract
Sheep wool is a natural fiber from various sheep breeds, mainly used in clothing for its insulation properties. It makes up a small share of global fiber production, which is declining as synthetic fibers replace wool and meat farming becomes more profitable. Wool [...] Read more.
Sheep wool is a natural fiber from various sheep breeds, mainly used in clothing for its insulation properties. It makes up a small share of global fiber production, which is declining as synthetic fibers replace wool and meat farming becomes more profitable. Wool from slaughter sheep, often unsuitable for textiles, is treated as biodegradable waste. The aim of the study was to develop a fully biodegradable composite of natural origin from a polylactide (PLA) matrix reinforced with sheep wool and to select the optimal modifications (chemical) of sheep wool fibers to obtain modified properties, including mechanical properties. The behavior of the composites after exposure to aging conditions simulating naturally occurring stimuli causing biodegradation and thus changes in the material’s performance over its lifespan was also examined. Dynamic thermal analysis was used to describe and parameterize the obtained data and their variables, and the mechanical properties were investigated. The research culminated in a microscopic analysis along with changes in surface properties. The study demonstrated that wool-reinforced composites exhibited significantly improved resistance to UV degradation compared to pure PLA, with samples containing 15% unmodified wool showing a 54% increase in storage modulus at 0 °C after aging. Chemical modifications using nitric acid, iron compounds, and tar were successfully implemented to enhance fiber–matrix compatibility, resulting in increased glass transition temperatures and modified mechanical properties. Although wool fiber is not a good choice for modifications to increase mechanical strength, adding wool fiber does not improve mechanical properties but also does not worsen them much. Wool fibers are a good filler that accelerates degradation and are also a waste, which reduces the potential costs of producing such a biocomposite. The research established that these biocomposites maintain sufficient mechanical properties for packaging applications while offering better environmental resistance than pure polylactide, contributing to the development of circular economy solutions for agricultural waste valorization. So far, no studies have been conducted in the literature on the influence of sheep wool and its modified versions on the mechanical properties and the influence of modification on the degradation rate of PLA/sheep wool biocomposites. Full article
(This article belongs to the Special Issue Advanced Polymers and Composites for Multifunctional Applications)
Show Figures

Figure 1

14 pages, 1615 KiB  
Article
Investigation on the Properties of Phenolic-Resin-Based Functional Gradient Thermal Protection Composite Materials
by Jiangman Li, Weixiong Chen and Jianlong Chang
Aerospace 2025, 12(6), 536; https://doi.org/10.3390/aerospace12060536 - 13 Jun 2025
Cited by 1 | Viewed by 714
Abstract
Crosslinked phenolic resin was prepared using hexamethylenetetramine (HMTA) as a crosslinking agent in hydrochloric acid solution. The ablation-heat-resistant material was prepared by a pressure-assisted RTM (resin transfer molding) process with reinforcing material (quartz fibre 2.5D needle-punched fabric/satin fibre cloth/fibre mesh tire) and matrix [...] Read more.
Crosslinked phenolic resin was prepared using hexamethylenetetramine (HMTA) as a crosslinking agent in hydrochloric acid solution. The ablation-heat-resistant material was prepared by a pressure-assisted RTM (resin transfer molding) process with reinforcing material (quartz fibre 2.5D needle-punched fabric/satin fibre cloth/fibre mesh tire) and matrix (crosslinked phenolic resin). The thermal stability of the cured product was studied by a thermogravimetric analyser (TG and DTG). The mechanical properties, heat resistance, and ablation properties of the composites were tested. The ablation morphology, element analysis, and phase structure of the composites were analysed by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and X-ray diffraction (XRD), respectively. The results show that the phenolic resin has a lower initial viscosity and a longer pot life at 80 °C, and a higher carbon residue rate (70.18%). The tensile strength of the composites is close to 40 MPa, the tensile modulus is higher than 1.35 GPa, the compression modulus is higher than 10 MPa, and the elongation at break is higher than 1.55%. SiO2, SiC, and ZrO2 ceramic phases were formed after ablation, which effectively improved the ablation performance of the composites. Full article
(This article belongs to the Special Issue Thermal Protection System Design of Space Vehicles)
Show Figures

Figure 1

27 pages, 1091 KiB  
Review
Advances in Thermoregulating Textiles: Materials, Mechanisms, and Applications
by Kuok Ho Daniel Tang
Textiles 2025, 5(2), 22; https://doi.org/10.3390/textiles5020022 - 11 Jun 2025
Viewed by 1690
Abstract
Advancements in thermoregulating textiles have been propelled by innovations in nanotechnology, composite materials, and smart fiber engineering. This article reviews recent scholarly papers on experimental passive and active thermoregulating textiles to present the latest advancements in these fabrics, their mechanisms of thermoregulation, and [...] Read more.
Advancements in thermoregulating textiles have been propelled by innovations in nanotechnology, composite materials, and smart fiber engineering. This article reviews recent scholarly papers on experimental passive and active thermoregulating textiles to present the latest advancements in these fabrics, their mechanisms of thermoregulation, and their feasibility for use. The review underscores that phase-change materials enhanced with graphene, boron nitride, and carbon nanofibers offer superior thermal conductivity, phase stability, and flexibility, making them ideal for wearable applications. Shape-stabilized phase-change materials and aerogel-infused fibers have shown promising results in outdoor, industrial, and emergency settings due to their durability and high insulation efficiency. Radiative cooling textiles, engineered with hierarchical nanostructures and Janus wettability, demonstrate passive temperature regulation through selective solar reflection and infrared emission, achieving substantial cooling effects without external energy input. Thermo-responsive, shape-memory materials, and moisture-sensitive polymers enable dynamic insulation and actuation. Liquid-cooling garments and thermoelectric hybrids deliver precise temperature control but face challenges in portability and power consumption. While thermoregulating textiles show promise, the main challenges include achieving scalable manufacturing, ensuring material flexibility, and integrating multiple functions without sacrificing comfort. Future research should focus on hybrid systems combining passive and active mechanisms, user-centric wearability studies, and cost-effective fabrication methods. These innovations hold significant potential for applications in extreme environments, athletic wear, military uniforms, and smart clothing, contributing to energy efficiency, health, and comfort in a warming climate. Full article
Show Figures

Figure 1

9 pages, 1752 KiB  
Communication
A Fiberglass-Cloth-Reinforced Perfluorosulfonic Acid Membrane
by Zhutao Zhang, Yiru Dou, Wen Zhang, Li Xu and Yuxin Wang
Membranes 2025, 15(6), 166; https://doi.org/10.3390/membranes15060166 - 2 Jun 2025
Viewed by 939
Abstract
Perfluorosulfonic acid (PFSA) membranes have found broad-ranging applications, owing to their high ionic conductivity and excellent chemical stability. However, membranes with higher mechanical strength, lower area-specific resistance, reduced swelling, less gas crossover and more affordable costs are desirable. Herein, we report on the [...] Read more.
Perfluorosulfonic acid (PFSA) membranes have found broad-ranging applications, owing to their high ionic conductivity and excellent chemical stability. However, membranes with higher mechanical strength, lower area-specific resistance, reduced swelling, less gas crossover and more affordable costs are desirable. Herein, we report on the fabrication of a fiberglass-cloth-reinforced PFSA membrane using a simple solution cast method. The breaking strength of the reinforced membrane has the potential to reach 81 MPa, which is about 6 times and 2.5 times that of its non-reinforced counterpart and the commercial Nafion 117 (N117) membrane, respectively. The area swelling ratio of the reinforced membrane is lowered to merely 3%, which is only about 1/12 that of N117, in water at 100 °C. Despite ionic conduction being hindered by the fiberglass cloth, the reinforced PFSA membrane shows an area-specific resistance of only 0.069 Ω·cm2, which is 58% lower than that of N117, under 80 °C and 100% humidity. This research provides a promising technological pathway for the development of high-performance ionic conductive membranes. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

16 pages, 4117 KiB  
Article
Surface Modification of Poly(ethylene-alt-tetrafluoroethylene) by Atmospheric Pressure Dielectric Barrier Discharge Plasma
by Xiaoshan Yan, Zuohui Ji, Xiaopeng Li, Yue Zhao, Zhen Li, Zhai Chen and Heguo Li
Polymers 2025, 17(11), 1519; https://doi.org/10.3390/polym17111519 - 29 May 2025
Viewed by 507
Abstract
The fluororesin membrane emerges as an ideal chemical-protective clothing material due to its excellent permeation resistance. However, using a fluororesin membrane with a low surface energy for compounding fabrics is very challenging. Herein, we demonstrate a strategy to modify the surface of a [...] Read more.
The fluororesin membrane emerges as an ideal chemical-protective clothing material due to its excellent permeation resistance. However, using a fluororesin membrane with a low surface energy for compounding fabrics is very challenging. Herein, we demonstrate a strategy to modify the surface of a poly(ethylene-alt-tetrafluoroethylene) (ETFE) membrane by the atmospheric pressure dielectric barrier discharge (DBD) of plasma under different working voltages, processing times, and concentrations of acrylic acid (AA) in a helium (He) atmosphere. The increase in the hydrophilicity of the ETFE membrane is confirmed by the wettability test, which shows a significant decrease in the water contact angle, from 96° to 50°, after plasma modification. The interfacial T-peel strength of an ETFE membrane composited with polyester fabric increased from 0.53 N/cm to 13.64 N/cm after plasma modification. Significantly, the T-peel strength of the composite using a modified ETFE membrane with ultrasonic washing could still reach 11.75 N/cm. Various characterization methods clearly disclosed the physical and chemical changes on the ETFE membrane surface, such as introducing the polar -COOH group at a nano-level, improving the roughness, decreasing the ratios of the F/C element, and increasing the ratios of the O/C element, suggesting using nano-level grafted polyacrylic acid (g-PAA) on the surface of the membrane by DBD. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

23 pages, 23602 KiB  
Article
Exploration of the Supercapacitive Performance of 3D Flower-like Architecture of Quaternary CuNiCoZnO Developed on Versatile Substrates
by Priya G. Gaikwad, Nidhi Tiwari, Rajanish K. Kamat, Sadaf Jamal Gilani, Sagar M. Mane, Jaewoong Lee and Shriniwas B. Kulkarni
Micromachines 2025, 16(6), 645; https://doi.org/10.3390/mi16060645 - 28 May 2025
Viewed by 455
Abstract
The demand for high-performance supercapacitors has driven extensive research into novel electrode materials with superior electrochemical properties. This study explores the supercapacitive behavior of quaternary CuNiCoZnO (CNCZO) films engineered into a three-dimensional (3D) flower-like morphology and developed on versatile substrates, including carbon cloth, [...] Read more.
The demand for high-performance supercapacitors has driven extensive research into novel electrode materials with superior electrochemical properties. This study explores the supercapacitive behavior of quaternary CuNiCoZnO (CNCZO) films engineered into a three-dimensional (3D) flower-like morphology and developed on versatile substrates, including carbon cloth, stainless steel mesh, and nickel foam. The unique structural design, comprising interconnected nanosheets, enhances the electroactive surface area, facilitates ion diffusion, and improves charge storage capability. The synergistic effect of the multi-metallic composition contributes to remarkable electrochemical characteristics, including high specific capacitance, excellent rate capability, and outstanding cycling stability. Furthermore, the influence of different substrates on the electrochemical performance is systematically investigated to optimize material–substrate interactions. Electrochemical evaluations reveal outstanding specific capacitance values of 2318.5 F/g, 1993.7 F/g, and 2741.3 F/g at 2 mA/cm2 for CNCZO electrodes on stainless steel mesh, carbon cloth, and nickel foam, respectively, with capacitance retention of 77.3%, 95.7%, and 86.1% over 5000 cycles. Furthermore, a symmetric device of CNCZO@Ni exhibits a peak specific capacitance of 67.7 F/g at a current density of 4 mA/cm2, a power density of 717.4 W/kg, and an energy density of 25.6 Wh/kg, maintaining 84.5% stability over 5000 cycles. The straightforward synthesis of CNCZO on multiple substrates presents a promising route for the development of flexible, high-performance energy storage devices. Full article
(This article belongs to the Special Issue Energy Conversion and Storage Devices: Materials and Applications)
Show Figures

Figure 1

17 pages, 7447 KiB  
Article
Research on the Mechanical Properties of Fiber-Reinforced Bamboo Board and Numerical Simulation Analysis of the Structural Mechanical Properties of Products
by Huilong Wang and Baoshi Jiang
Appl. Sci. 2025, 15(10), 5288; https://doi.org/10.3390/app15105288 - 9 May 2025
Viewed by 463
Abstract
Bamboo is a fast-growing biomass material with excellent performance, making it a preferred choice for the development of green and low-carbon building materials. However, challenges such as combustibility and difficulties in processing and utilization persist. In this study, bamboo chips are wrapped in [...] Read more.
Bamboo is a fast-growing biomass material with excellent performance, making it a preferred choice for the development of green and low-carbon building materials. However, challenges such as combustibility and difficulties in processing and utilization persist. In this study, bamboo chips are wrapped in fiberglass cloth and cemented with magnesium oxychloride cement (MOC) to develop green, environmentally friendly, flame-retardant, and carbon-storing bamboo-based composite panels. Firstly, the optimal ratio of the inorganic adhesive MOC was systematically investigated, and flue gas desulfurization gypsum (FG) was added to enhance its water resistance. The flexural strengths of the composite board in the direction of the bamboo fiber and that perpendicular to it were found to be 15.71 MPa and 34.64 MPa, respectively. Secondly, numerical simulations were conducted alongside plate experiments, analyzing the floor and wall made from the boards. The results indicate that since the fiber-reinforced bamboo board as a lightweight wall can meet the requirements for a two-story building, it does not satisfy safety standards as a floor slab due to the higher loads. Despite this limitation, the fiber-reinforced bamboo board shows promising application prospects as a green and low-carbon alternative. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

17 pages, 4566 KiB  
Article
Visible-Light Photocatalytic Degradation of Methylene Blue by Yb3+-Doped 3D Nanosheet Arrays BiOI Anchored on High-Chloride Fly Ash Composites
by Shuxian Qiu, Danhua Zhao, Runtong Luo, Xiaohong Liu, Jianping Yang, Lijun Xie, Xingyuan Gao and Liaochuan Jiang
Inorganics 2025, 13(5), 147; https://doi.org/10.3390/inorganics13050147 - 6 May 2025
Viewed by 661
Abstract
A Yb3+-doped BiOI 3D nanosheet array composite was successfully fabricated through a solvothermal deposition strategy on flexible carbon cloth (CC). This composite was subsequently integrated with high-chlorine fly ash (FA) blocks to form the Yb-BiOI/CC/FA hybrid material. Comprehensive characterization was performed [...] Read more.
A Yb3+-doped BiOI 3D nanosheet array composite was successfully fabricated through a solvothermal deposition strategy on flexible carbon cloth (CC). This composite was subsequently integrated with high-chlorine fly ash (FA) blocks to form the Yb-BiOI/CC/FA hybrid material. Comprehensive characterization was performed using multiple analytical techniques for crystalline phase identification, morphological analysis, valence state, band structure evaluation, and charge carrier separation assessment. Electrochemical measurements were conducted to evaluate the material’s electronic properties. Experimental results demonstrated superior photocatalytic performance under visible light irradiation, with the Yb-BiOI/CC/FA composite achieving 52.87% methylene blue degradation efficiency. The reaction rate constant of this modified nanomaterial was approximately 2.1 times higher than that of pristine BiOI/CC/FA. Radical trapping experiments revealed that superoxide radicals (·O2) served as the predominant oxidative species. This study presents a dual-benefit strategy for environmental remediation by simultaneously achieving sustainable waste valorization of industrial byproducts (FA) and developing high-efficiency photocatalytic materials. The successful integration of rare-earth metal modification with substrate engineering provides valuable insights for designing advanced photocatalytic systems for pollutant degradation. Full article
Show Figures

Graphical abstract

22 pages, 11345 KiB  
Article
Obtaining Polyacrylonitrile Carbon Nanofibers by Electrospinning for Their Application as Flame-Retardant Materials
by Elizaveta Mokhova, Mariia Gordienko, Natalia Menshutina, Ksenia Serkina and Igor Avetissov
Polymers 2025, 17(9), 1255; https://doi.org/10.3390/polym17091255 - 5 May 2025
Cited by 1 | Viewed by 692
Abstract
The article describes obtaining polyacrylonitrile (PAN) nanofibers by electrospinning on a setup developed at the Mendeleev University of Chemical Technology of Russia (MUCTR). A technique for producing PAN-based carbon nanofibers (CNFs) and PAN-based CNFs modified with titanium oxide (TiO2) is presented. [...] Read more.
The article describes obtaining polyacrylonitrile (PAN) nanofibers by electrospinning on a setup developed at the Mendeleev University of Chemical Technology of Russia (MUCTR). A technique for producing PAN-based carbon nanofibers (CNFs) and PAN-based CNFs modified with titanium oxide (TiO2) is presented. The article presents a comprehensive study of the characteristics of PAN-based nanofibers and CNFs, including an analysis of the external structure of the fibers, the dependence of fiber diameters on the viscosity of the initial solutions, the effect of temperature treatment on the functional groups of PAN, elemental analysis, and flame-retardant properties. It was found that the fiber diameter and its external structure strongly depend on the viscosity of the initial solutions; an increase in viscosity leads to a linear increase in the fiber diameter. Preliminary temperature treatment at 250 °C helps stabilize PAN nanofibers and prevents their melting at the carbonization stage. The differential scanning calorimetry results allowed us to determine the presence of peaks for the initial PAN nanofibers, indicating an exothermic process in the temperature range of 290–320 °C. The peak height decreased with increasing TiO2 concentration in the samples. For CNF samples of different compositions, the endothermic effect prevailed in the temperature range of 400–700 °C, indicating the possible flame-retardant properties of these materials. The limiting oxygen index (LOI) was calculated based on the thermogravimetric analysis results. The highest LOI values were obtained for CNFs based on PAN without adding TiO2 nanoparticles and CNFs modified with TiO2 (3 wt.%). The resulting CNF-based nonwovens can be recommended for use in heat-protective clothing, flame-retardant mattresses, and flame-retardant suits for the military. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

11 pages, 564 KiB  
Article
Acid Whey from Industrial Greek Strained Yoghurt: Effect of the Kind of Milk and the Way of Straining on Its Composition and Processing by Nanofiltration
by Marianna Karela, Lambros Sakkas, Evangelia Zoidou, Golfo Moatsou, Konstantina Milosi and Ekaterini Moschopoulou
Dairy 2025, 6(3), 21; https://doi.org/10.3390/dairy6030021 - 28 Apr 2025
Viewed by 806
Abstract
The acid whey derived during the production of Greek yoghurt, i.e., yoghurt acid whey (YAW), is considered as environmental pollutant due to its low pH and high lactose content. YAW may be obtained by centrifugation or ultrafiltration or filtration through cloth bags (traditional [...] Read more.
The acid whey derived during the production of Greek yoghurt, i.e., yoghurt acid whey (YAW), is considered as environmental pollutant due to its low pH and high lactose content. YAW may be obtained by centrifugation or ultrafiltration or filtration through cloth bags (traditional method) of the initial yoghurt, methods that could affect its composition. In the last years, efforts have been made to improve its composition using membrane technology. In the present work, the composition of 35 different YAW samples from Greek Yoghurt dairies was studied. The YAW samples were grouped according to the way of production and the kind of milk in the case of the traditional method. The results showed that both the kind of milk and the way of yoghurt staining affected its composition. Ovine YAW derived from traditional straining was richer in lactic acid and calcium than bovine YAW. Moreover, the composition of bovine YAW varied among the different ways of straining, and this affected its behaviour during membrane processing. Nanofiltration of three representative bovine YAW samples and one ovine YAW sample at their natural pH, i.e., pH 4.5, and at 25 °C removed the lactic acid at a range from 40 to 55%, and the monovalent cations > 60% and retained lactose and galactose at percentages > 95% and 80% respectively. Full article
(This article belongs to the Section Milk Processing)
Show Figures

Figure 1

34 pages, 4100 KiB  
Review
Crosslinking Approaches for Polyethylene Imine (PEI) and Its Uses in Adsorption of Heavy Metals, Dyes, and Carbon Dioxide
by Ashika Chandra, Ashneel Ajay Singh, Surendra Prasad, Mats R. Andersson and Desta Gedefaw
Appl. Sci. 2025, 15(9), 4767; https://doi.org/10.3390/app15094767 - 25 Apr 2025
Viewed by 2865
Abstract
Polyethylene imine (PEI) is a synthetic water-soluble and nitrogen-rich polymer with an ethylene amine repeating unit. It exists in a linear or branched forms and finds applications in various areas. PEI is often chemically modified by crosslinking reactions using molecular and polymeric crosslinkers [...] Read more.
Polyethylene imine (PEI) is a synthetic water-soluble and nitrogen-rich polymer with an ethylene amine repeating unit. It exists in a linear or branched forms and finds applications in various areas. PEI is often chemically modified by crosslinking reactions using molecular and polymeric crosslinkers (e.g., trichlorotriazine, epichlorohydrin, ethylene glycol diglycidyl ether, poly(ethylene glycol) diglycidyl ether, etc.) to increase its stability and reduce its water solubility. PEI (pristine/crosslinked) has a strong affinity for metal cations (e.g., Cu2+, Au3+, Pb2+, etc.), where the nitrogen atoms interact with the metal ions, and hence is suitable to remove metals from water with high efficiency. A thin film of crosslinked PEI on substrates can be prepared and finds diverse applications such as in removing metals and dyes, and biofouling prevention in the marine environment. The copper ion, as an example, can be stored (adsorbed) in a thin film of crosslinked PEI on a carbon cloth substrate, which can be released to water by passing an electric current through the film or with an acid treatment. It has also been reported that crosslinked PEI and composite materials can be used for the adsorption of dyes and gases such as CO2 and SO2 from the environment. The performance of pristine/composite/crosslinked PEI in gas, metal ion, and dye adsorption is affected by several factors. The focus of this review is to discuss the different reactions used to crosslink PEI and review the properties of the crosslinked materials and their applications. Studies have shown that the properties of the crosslinked PEI and hence its success in capturing metal ions, dyes, and CO2 is dependent not only on the type of crosslinker but also on the degree of crosslinking. Full article
Show Figures

Graphical abstract

10 pages, 2744 KiB  
Article
Facile Synthesis of Polypyrrole/MnO2/Carbon Cloth Composites for Supercapacitor Electrodes
by Yan Chen, Hanyue He, Min Liu, He Xu, Haibo Zhang, Xinghua Zhu and Dingyu Yang
Nanomaterials 2025, 15(9), 641; https://doi.org/10.3390/nano15090641 - 23 Apr 2025
Viewed by 717
Abstract
In the development of flexible smart electronics, fabricating electrodes with optimized architectures to achieve superior electrochemical performance remains a significant challenge. This study presents a two-step synthesis and characterization of a polypyrrole (PPy)-MnO2/carbon cloth (CC) nanocomposite. The MnO2/CC substrate [...] Read more.
In the development of flexible smart electronics, fabricating electrodes with optimized architectures to achieve superior electrochemical performance remains a significant challenge. This study presents a two-step synthesis and characterization of a polypyrrole (PPy)-MnO2/carbon cloth (CC) nanocomposite. The MnO2/CC substrate was first prepared via the hydrothermal method, followed by uniform PPy coating through vapor-phase polymerization in the presence of an oxidizing agent. Electrochemical measurements revealed substantial enhancement in performance, with the specific capacitance increasing from 123.1 mF/cm2 for the MnO2/CC composite to 324.5 mF/cm2 for the PPy/MnO2/CC composite at a current density of 2.5 mA/cm2. This remarkable improvement can be attributed to the synergistic effects between the conductive PPy polymer and MnO2/CC substrate and the formation of additional ion transport channels facilitated by the PPy coating. This work provides valuable insights for designing high-performance electrode materials and advances the development of composite-based energy storage devices. Full article
Show Figures

Figure 1

14 pages, 4314 KiB  
Article
Rationally Designed PPy-Coated Fe2O3 Nanoneedles Anchored on N-C Nanoflakes as a High-Performance Anode for Aqueous Supercapacitors
by Zhiqiang Cui, Siqi Zhan, Yatu Luo, Yunfeng Hong, Zexian Liu, Guoqiang Tang, Dongming Cai and Rui Tong
Crystals 2025, 15(4), 346; https://doi.org/10.3390/cryst15040346 - 7 Apr 2025
Cited by 13 | Viewed by 588
Abstract
Flexible supercapacitors have emerged as pivotal energy storage components in wearable smart electronic systems, owing to their exceptional electrochemical performance. However, the widespread application of flexible supercapacitors in smart electronic devices is significantly hindered by the developmental bottleneck of high-performance anode materials. In [...] Read more.
Flexible supercapacitors have emerged as pivotal energy storage components in wearable smart electronic systems, owing to their exceptional electrochemical performance. However, the widespread application of flexible supercapacitors in smart electronic devices is significantly hindered by the developmental bottleneck of high-performance anode materials. In this study, a novel electrode composed of surface-modified Fe2O3 nanoneedles uniformly coated with a polypyrrole (PPy) film and anchored on Co-MOF-derived N-C nanoflake arrays (PPy/Fe2O3/N-C) is designed. This composite electrode, grown in situ on carbon cloth (CC), demonstrated outstanding specific capacity, rate performance, and mechanical flexibility, attributed to its unique hierarchical 3D arrayed structure and the protective PPy layer. The fabricated PPy/Fe2O3/N-C@CC (P-FONC) composite electrode exhibited an excellent specific capacitance of 356.6 mF cm−2 (143 F g−1) at a current density of 2 mA cm−2. The current density increased to 20 mA cm−2, and the composite electrode material preserved a specific capacitance of 278 mF cm−2 (112 F g−1). Furthermore, the assembled quasi-solid-state Mn/Fe asymmetric supercapacitor, configured with P-FONC as the negative electrode and MnO2/N-C@CC as the positive electrode, demonstrated robust chemical stability and notable mechanical flexibility. This study sheds fresh light on the creation of three-dimensional composite electrode materials for highly efficient, flexible energy storage systems. Full article
Show Figures

Figure 1

Back to TopTop