A Fiberglass-Cloth-Reinforced Perfluorosulfonic Acid Membrane
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Chemicals
2.2. Membrane Fabrication
2.3. Characterizations and Property Tests
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kahraman, H.; Akın, Y. Recent studies on proton exchange membrane fuel cell components, review of the literature. Energy Convers. Manag. 2024, 304, 118244. [Google Scholar] [CrossRef]
- Kusoglu, A.; Weber, A.Z. New Insights into Perfluorinated Sulfonic-Acid Ionomers. Chem. Rev. 2017, 117, 987–1104. [Google Scholar] [CrossRef]
- Maiti, T.K.; Singh, J.; Dixit, P.; Majhi, J.; Bhushan, S.; Bandyopadhyay, A.; Chattopadhyay, S. Advances in perfluorosulfonic acid-based proton exchange membranes for fuel cell applications: A review. Chem. Eng. J. Adv. 2022, 12, 100372. [Google Scholar] [CrossRef]
- Xu, T.-C.; Wang, C.-S.; Hu, Z.-Y.; Zheng, J.-J.; Jiang, S.-H.; He, S.-J.; Hou, H.-Q. High Strength and Stable Proton Exchange Membrane Based on Perfluorosulfonic Acid/Polybenzimidazole. Chin. J. Polym. Sci. 2022, 40, 764–771. [Google Scholar] [CrossRef]
- Sakthivel, V.; Kaviyarasu, D.; Kim, A.R.; Kwak, H.B.; Yoo, D.J. Synergistic integration of sulfonated aromatic polymer blends for enhanced performance in proton exchange membrane fuel cells. J. Membr. Sci. 2025, 718, 123641. [Google Scholar] [CrossRef]
- Meng, H.; Song, J.; Guan, P.; Wang, H.; Zhao, W.; Zou, Y.; Ding, H.; Wu, X.; He, P.; Liu, F.; et al. High ion exchange capacity perfluorosulfonic acid resine proton exchange membrane for high temperature applications in polymer electrolyte fuel cells. J. Power Sources 2024, 602, 234205. [Google Scholar] [CrossRef]
- Tan, H.; Zhao, S.; Ali, S.E.; Zheng, S.; Alanazi, A.K.; Wang, R.; Zhang, H.; Abo-Dief, H.M.; Xu, B.B.; Algadi, H.; et al. Perfluorosulfonic acid proton exchange membrane with double proton site side chain for high-performance fuel cells at low humidity. J. Mater. Sci. Technol. 2023, 166, 155–163. [Google Scholar] [CrossRef]
- Sezer, N.; Bayhan, S.; Fesli, U.; Sanfilippo, A. A comprehensive review of the state-of-the-art of proton exchange membrane water electrolysis. Mater. Sci. Energy Technol. 2025, 8, 44–65. [Google Scholar] [CrossRef]
- Urbano, E.; Pahon, E.; Yousfi-Steiner, N.; Guillou, M. Accelerated stress testing in proton exchange membrane water electrolysis—Critical review. J. Power Sources 2024, 623, 235451. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, H.; Zhang, A.; Tian, T.; Shen, Y.; Wu, M.; Li, N.; Tang, H. Enhancing proton exchange membrane water electrolysis by building electron/proton pathways. Adv. Powder Mater. 2024, 3, 100203. [Google Scholar] [CrossRef]
- Ajeya, K.V.; Dhanabalan, K.; Thong, P.T.; Kim, S.-C.; Park, S.-C.; Son, W.-K.; Jung, H.-Y. Short-side-chain perfluorosulfonic acid incorporated with functionalized silane-based hybrid membrane for the application of energy devices. Int. J. Hydrogen Energy 2024, 55, 432–440. [Google Scholar] [CrossRef]
- Khataee, A.; Nederstedt, H.; Jannasch, P.; Lindström, R.W. Poly(arylene alkylene)s functionalized with perfluorosulfonic acid groups as proton exchange membranes for vanadium redox flow batteries. J. Membr. Sci. 2023, 671, 121390. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.Q.; Ko, H.; Hwang, I.; Lee, Y.; Kim, K.; So, S.; Choi, S.Q. Sub-20 nm ultrathin perfluorosulfonic acid-grafted graphene oxide composite membranes for vanadium redox flow batteries. J. Membr. Sci. 2023, 688, 122150. [Google Scholar] [CrossRef]
- Deng, S.; Hao, M.; Wang, R.; Zhang, J.; Zhang, X.; Li, Y. Improving water retention and mass transport for low-humidity proton exchange membrane fuel cells via a porous-channel interdigitated flow field. Int. J. Hydrogen Energy 2024, 95, 874–887. [Google Scholar] [CrossRef]
- Lou, J.; Lu, Y.; Yang, D.; Pan, X.; Li, B.; Ming, P. Experimental and model refinement of water content and membrane conductivity in reinforced composite proton exchange membranes. Int. J. Hydrogen Energy 2024, 94, 756–764. [Google Scholar] [CrossRef]
- Park, G.-C.; Kim, D. Porous PTFE reinforced SPEEK proton exchange membranes for enhanced mechanical, dimensional, and electrochemical stability. Polymer 2021, 218, 123506. [Google Scholar] [CrossRef]
- Mirfarsi, S.H.; Kumar, A.; Jeong, J.; Brown, E.; Adamski, M.; Jones, S.; McDermid, S.; Britton, B.; Kjeang, E. Mechanical durability of reinforced sulfo-phenylated polyphenylene-based proton exchange membranes: Impacts of ion exchange capacity and reinforcement thickness. J. Power Sources 2025, 630, 236137. [Google Scholar] [CrossRef]
- Yousefi Tehrani, M.; Mirfarsi, S.H.; Rowshanzamir, S. Mechanical stress and strain investigation of sulfonated Poly(ether ether ketone) proton exchange membrane in fuel cells: A numerical study. Renew. Energy 2022, 184, 182–200. [Google Scholar] [CrossRef]
- Liu, L.; Xing, Y.; Li, Y.; Fu, Z.; Li, Z.; Li, H. Enhanced mechanical durability of perfluorosulfonic acid proton-exchange membrane based on a double-layer ePTFE reinforcement strategy. Int. J. Hydrogen Energy 2022, 47, 29014–29026. [Google Scholar] [CrossRef]
- Huang, H.; Zeng, X.; Zhong, Z.; Fan, J.; Li, H. Low hydrogen permeability and high durability proton exchange membrane with three-dimensional acid-base crosslink structure for water electrolysis. J. Membr. Sci. 2024, 694, 122408. [Google Scholar] [CrossRef]
- Song, J.; Lan, T.; Xie, Y.; Liu, D.; Wu, Y.; Ma, H.; Wei, G.; Wang, L.; Wang, Z. Pore-filled composite proton exchange membrane based on crystalline poly (ether ketone) with considerable comprehensive performance in direct methanol fuel cell system. J. Power Sources 2024, 614, 234979. [Google Scholar] [CrossRef]
- Kim, S.W.; Choi, S.Y.; Rhee, H.W. A novel sPEEK nanocomposite membrane with well-controlled sPOSS aggregation in tunable nanochannels for fast proton conduction. Nanoscale 2018, 10, 18217–18227. [Google Scholar] [CrossRef]
- Zhu, B.; Sui, Y.; Wei, P.; Wen, J.; Cao, H.; Cong, C.; Meng, X.; Zhou, Q. NH2-UiO-66 coated fibers to balance the excellent proton conduction efficiency and significant dimensional stability of proton exchange membrane. J. Membr. Sci. 2021, 628, 119214. [Google Scholar] [CrossRef]
- Dong, X.; Li, Y.; Wei, G.; Zhao, S.; Gao, S.; Gao, J.; He, Y. Perfluorosulfonic acid membranes with reduced hydrogen permeation by filling with carbon quantum dots for fuel cells. J. Mater. Sci. 2024, 59, 11893–11906. [Google Scholar] [CrossRef]
- Huang, H.; Zeng, X.; Zhang, X.; Li, H. Proton Exchange Membrane with Excellent Proton Conductivity and Superior Stability for Application at High Operating Temperatures. Energy Fuels 2023, 37, 17516–17525. [Google Scholar] [CrossRef]
- Jang, J.; Kim, D.-H.; Ahn, M.-K.; Min, C.-M.; Lee, S.-B.; Byun, J.; Pak, C.; Lee, J.-S. Phosphoric acid doped triazole-containing cross-linked polymer electrolytes with enhanced stability for high-temperature proton exchange membrane fuel cells. J. Membr. Sci. 2020, 595, 117508. [Google Scholar] [CrossRef]
- Hugo, Y.A.; Kout, W.; Forner-Cuenca, A.; Borneman, Z.; Nijmeijer, K. Wire based electrospun composite short side chain perfluorosulfonic acid/polyvinylidene fluoride membranes for hydrogen-bromine flow batteries. J. Power Sources 2021, 497, 229812. [Google Scholar] [CrossRef]
- Maiti, T.K.; Singh, J.; Maiti, S.K.; Majhi, J.; Ahuja, A.; Singh, M.; Bandyopadhyay, A.; Manik, G.; Chattopadhyay, S. Molecular dynamics simulations and experimental studies of the perfluorosulfonic acid-based composite membranes containing sulfonated graphene oxide for fuel cell applications. Eur. Polym. J. 2022, 174, 111345. [Google Scholar] [CrossRef]
- Xu, G.; Wu, Z.; Wei, Z.; Zhang, W.; Wu, J.; Li, Y.; Li, J.; Qu, K.; Cai, W. Non-destructive fabrication of Nafion/silica composite membrane via swelling-filling modification strategy for high temperature and low humidity PEM fuel cell. Renew. Energy 2020, 153, 935–939. [Google Scholar] [CrossRef]
- Woo, S.H.; Lee, S.Y.; Yoon, Y.-G.; Rigacci, A.; Woo, J.-J.; Beauger, C.; Kim, H.-J. Functionalized nanoclays for improved properties of composite proton exchange membranes. J. Power Sources 2022, 549, 232083. [Google Scholar] [CrossRef]
- Lei, J.; Liu, X.; Chen, X.; Luo, H.; Feng, W.; Zhang, J.; Liu, F.; Pei, S.; Zhang, Y. Ultra-bubble-repellent sodium perfluorosulfonic acid membrane with a mussel-inspired intermediate layer for high-efficiency chlor-alkali electrolysis. J. Membr. Sci. 2022, 644, 120181. [Google Scholar] [CrossRef]
- Wang, P.; Liu, X.; Wang, D.; Wang, M.; Zhang, D.; Chen, J.; Li, K.; Li, Y.; Jia, K.; Wang, Z.; et al. Recent progress on the poly(arylene ether)s-based electrospun nanofibers for high-performance applications. Mater. Res. Express 2021, 8, 122003. [Google Scholar] [CrossRef]
- Zeng, L.; Lu, X.; Yuan, C.; Yuan, W.; Chen, K.; Guo, J.; Zhang, X.; Wang, J.; Liao, Q.; Wei, Z. Self-Enhancement of Perfluorinated Sulfonic Acid Proton Exchange Membrane with Its Own Nanofibers. Adv. Mater. 2024, 36, 2305711. [Google Scholar] [CrossRef] [PubMed]
- Mu’min, M.S.; Komma, M.; Abbas, D.; Wagner, M.; Krieger, A.; Thiele, S.; Böhm, T.; Kerres, J. Electrospun phosphonated poly(pentafluorostyrene) nanofibers as a reinforcement of Nafion membranes for fuel cell application. J. Membr. Sci. 2023, 685, 121915. [Google Scholar] [CrossRef]
- Meng, X.; Peng, L.; Wang, Y.; Li, X.; Peng, Q.; Zhang, X.; Cong, C.; Ye, H.; Zhou, Q. Study on the properties of hybrid COF connected three-dimensional nanofiber structures in proton exchange membranes. Int. J. Hydrogen Energy 2024, 71, 334–344. [Google Scholar] [CrossRef]
- Zhang, X.; Trieu, D.; Zheng, D.; Ji, W.; Qu, H.; Ding, T.; Qiu, D.; Qu, D. Nafion/PTFE Composite Membranes for a High Temperature PEM Fuel Cell Application. Ind. Eng. Chem. Res. 2021, 60, 11086–11094. [Google Scholar] [CrossRef]
- Yoon, K.R.; Lee, K.A.; Jo, S.; Yook, S.H.; Lee, K.Y.; Kim, I.D.; Kim, J.Y. Mussel-Inspired Polydopamine-Treated Reinforced Composite Membranes with Self-Supported CeOxRadical Scavengers for Highly Stable PEM Fuel Cells. Adv. Funct. Mater. 2018, 29, 1806929. [Google Scholar] [CrossRef]
- Gloukhovski, R.; Freger, V.; Tsur, Y. A Novel Composite Nafion/Anodized Aluminium Oxide Proton Exchange Membrane. Fuel Cells 2016, 16, 434–443. [Google Scholar] [CrossRef]
- Moriyama, N.; Wakimoto, K.; Nagasawa, H.; Kanezashi, M.; Tsuru, T. Steam permeation properties of perfluorosulfonic acid/ceramic composite membranes at a high temperature under various humidity conditions. Sep. Purif. Technol. 2023, 320, 124166. [Google Scholar] [CrossRef]
- Toupin, M.; Malek, K.; Mokrini, A. Techno-Economics of a New High Throughput Process for Proton Exchange Membranes Manufacturing. World Electr. Veh. J. 2016, 8, 431–442. [Google Scholar] [CrossRef]
- Song, C.; Min, L.; Zhang, W.; Xu, L.; Wang, Y. A benzimidazole-linked polymer membrane in alkaline water electrolysis. J. Membr. Sci. 2023, 683, 121883. [Google Scholar] [CrossRef]
Membrane | Thickness/μm | JL/mA cm−2 | JH × 109/mol s−1 cm−2 | KH × 1011/mol cm s−1 cm−2 kPa−1 |
---|---|---|---|---|
P-PFSA | 48 | 0.848 | 4.39 | 10.55 |
PFSA/G17 | 25 | 0.281 | 1.46 | 1.82 |
Nafion 212 | 58 | 0.370 | 1.92 | 5.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Dou, Y.; Zhang, W.; Xu, L.; Wang, Y. A Fiberglass-Cloth-Reinforced Perfluorosulfonic Acid Membrane. Membranes 2025, 15, 166. https://doi.org/10.3390/membranes15060166
Zhang Z, Dou Y, Zhang W, Xu L, Wang Y. A Fiberglass-Cloth-Reinforced Perfluorosulfonic Acid Membrane. Membranes. 2025; 15(6):166. https://doi.org/10.3390/membranes15060166
Chicago/Turabian StyleZhang, Zhutao, Yiru Dou, Wen Zhang, Li Xu, and Yuxin Wang. 2025. "A Fiberglass-Cloth-Reinforced Perfluorosulfonic Acid Membrane" Membranes 15, no. 6: 166. https://doi.org/10.3390/membranes15060166
APA StyleZhang, Z., Dou, Y., Zhang, W., Xu, L., & Wang, Y. (2025). A Fiberglass-Cloth-Reinforced Perfluorosulfonic Acid Membrane. Membranes, 15(6), 166. https://doi.org/10.3390/membranes15060166