Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,693)

Search Parameters:
Keywords = complex manufacturing system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2466 KiB  
Article
A Capillary-Based Micro Gas Flow Measurement Method Utilizing Laminar Flow Regime
by Yuheng Zheng, Dailiang Xie, Zhengcheng Qin, Zhengwei Huang, Ya Xu, Da Wang and Hong Zheng
Appl. Sci. 2025, 15(15), 8593; https://doi.org/10.3390/app15158593 (registering DOI) - 2 Aug 2025
Abstract
Accurate micro gas flow measurement is critical for medical ventilator calibration, environmental gas monitoring, and semiconductor manufacturing. Laminar flowmeters are widely employed in micro gas flow measurement applications owing to their inherent advantages of high linearity, the absence of moving components, and a [...] Read more.
Accurate micro gas flow measurement is critical for medical ventilator calibration, environmental gas monitoring, and semiconductor manufacturing. Laminar flowmeters are widely employed in micro gas flow measurement applications owing to their inherent advantages of high linearity, the absence of moving components, and a broad measurement range. Nevertheless, due to the low measurement accuracy under micro gas flow caused by nonlinear errors and a relatively complex structure, traditional laminar flow measurement devices exhibit limitations in micro gas flow measurement scenarios. This study proposes a novel micro gas flow measurement method based on a single capillary laminar flow element, which simplifies the structure and enhances applicability in the field of micro gas flow. Through structural optimization with precise control of the capillary length–diameter ratios and theoretical error correction based on computational analysis, nonlinear errors were effectively reduced while improving the measurement accuracy in the field of micro gas flow. The proposed methodology was systematically validated through computational fluid dynamics simulations (ANSYS Fluent 2021 R1) and experimental investigations using a dedicated test platform. The experimental results show that the relative error of the measurement system within the full measurement range is less than ±0.6% (1–10 cm3/min; cm3/min means cubic centimeter per minute), and its accuracy is superior to 1% of reading (1% Rd) or 1.5% of reading (1.5% Rd) of conventional laminar flowmeters. The fitting curve of the flow rate versus the pressure difference derived from the measurement results maintains an excellent linear correlation (R2 > 0.99), thus confirming that this method has practical application value in the field of micro gas flow measurement. Full article
Show Figures

Figure 1

24 pages, 1396 KiB  
Article
Design of Experiments Leads to Scalable Analgesic Near-Infrared Fluorescent Coconut Nanoemulsions
by Amit Chandra Das, Gayathri Aparnasai Reddy, Shekh Md. Newaj, Smith Patel, Riddhi Vichare, Lu Liu and Jelena M. Janjic
Pharmaceutics 2025, 17(8), 1010; https://doi.org/10.3390/pharmaceutics17081010 (registering DOI) - 1 Aug 2025
Viewed by 30
Abstract
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription [...] Read more.
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription medication for pain reaching approximately USD 17.8 billion. Theranostic pain nanomedicine therefore emerges as an attractive analgesic strategy with the potential for increased efficacy, reduced side-effects, and treatment personalization. Theranostic nanomedicine combines drug delivery and diagnostic features, allowing for real-time monitoring of analgesic efficacy in vivo using molecular imaging. However, clinical translation of these nanomedicines are challenging due to complex manufacturing methodologies, lack of standardized quality control, and potentially high costs. Quality by Design (QbD) can navigate these challenges and lead to the development of an optimal pain nanomedicine. Our lab previously reported a macrophage-targeted perfluorocarbon nanoemulsion (PFC NE) that demonstrated analgesic efficacy across multiple rodent pain models in both sexes. Here, we report PFC-free, biphasic nanoemulsions formulated with a biocompatible and non-immunogenic plant-based coconut oil loaded with a COX-2 inhibitor and a clinical-grade, indocyanine green (ICG) near-infrared fluorescent (NIRF) dye for parenteral theranostic analgesic nanomedicine. Methods: Critical process parameters and material attributes were identified through the FMECA (Failure, Modes, Effects, and Criticality Analysis) method and optimized using a 3 × 2 full-factorial design of experiments. We investigated the impact of the oil-to-surfactant ratio (w/w) with three different surfactant systems on the colloidal properties of NE. Small-scale (100 mL) batches were manufactured using sonication and microfluidization, and the final formulation was scaled up to 500 mL with microfluidization. The colloidal stability of NE was assessed using dynamic light scattering (DLS) and drug quantification was conducted through reverse-phase HPLC. An in vitro drug release study was conducted using the dialysis bag method, accompanied by HPLC quantification. The formulation was further evaluated for cell viability, cellular uptake, and COX-2 inhibition in the RAW 264.7 macrophage cell line. Results: Nanoemulsion droplet size increased with a higher oil-to-surfactant ratio (w/w) but was no significant impact by the type of surfactant system used. Thermal cycling and serum stability studies confirmed NE colloidal stability upon exposure to high and low temperatures and biological fluids. We also demonstrated the necessity of a solubilizer for long-term fluorescence stability of ICG. The nanoemulsion showed no cellular toxicity and effectively inhibited PGE2 in activated macrophages. Conclusions: To our knowledge, this is the first instance of a celecoxib-loaded theranostic platform developed using a plant-derived hydrocarbon oil, applying the QbD approach that demonstrated COX-2 inhibition. Full article
(This article belongs to the Special Issue Quality by Design in Pharmaceutical Manufacturing)
17 pages, 2522 KiB  
Article
Organization of the Optimal Shift Start in an Automotive Environment
by Gábor Lakatos, Bence Zoltán Vámos, István Aupek and Mátyás Andó
Computation 2025, 13(8), 181; https://doi.org/10.3390/computation13080181 (registering DOI) - 1 Aug 2025
Viewed by 71
Abstract
Shift organizations in automotive manufacturing often rely on manual task allocation, resulting in inefficiencies, human error, and increased workload for supervisors. This research introduces an automated solution using the Kuhn-Munkres algorithm, integrated with the Moodle learning management system, to optimize task assignments based [...] Read more.
Shift organizations in automotive manufacturing often rely on manual task allocation, resulting in inefficiencies, human error, and increased workload for supervisors. This research introduces an automated solution using the Kuhn-Munkres algorithm, integrated with the Moodle learning management system, to optimize task assignments based on operator qualifications and task complexity. Simulations conducted with real industrial data demonstrate that the proposed method meets operational requirements, both logically and mathematically. The system improves the start of shifts by assigning simpler tasks initially, enhancing operator confidence and reducing the need for assistance. It also ensures that task assignments align with required training levels, improving quality and process reliability. For industrial practitioners, the approach provides a practical tool to reduce planning time, human error, and supervisory burden, while increasing shift productivity. From an academic perspective, the study contributes to applied operations research and workforce optimization, offering a replicable model grounded in real-world applications. The integration of algorithmic task allocation with training systems enables a more accurate matching of workforce capabilities to production demands. This study aims to support data-driven decision-making in shift management, with the potential to enhance operational efficiency and encourage timely start of work, thereby possibly contributing to smoother production flow and improved organizational performance. Full article
(This article belongs to the Special Issue Computational Approaches for Manufacturing)
Show Figures

Figure 1

20 pages, 4569 KiB  
Article
Lightweight Vision Transformer for Frame-Level Ergonomic Posture Classification in Industrial Workflows
by Luca Cruciata, Salvatore Contino, Marianna Ciccarelli, Roberto Pirrone, Leonardo Mostarda, Alessandra Papetti and Marco Piangerelli
Sensors 2025, 25(15), 4750; https://doi.org/10.3390/s25154750 (registering DOI) - 1 Aug 2025
Viewed by 55
Abstract
Work-related musculoskeletal disorders (WMSDs) are a leading concern in industrial ergonomics, often stemming from sustained non-neutral postures and repetitive tasks. This paper presents a vision-based framework for real-time, frame-level ergonomic risk classification using a lightweight Vision Transformer (ViT). The proposed system operates directly [...] Read more.
Work-related musculoskeletal disorders (WMSDs) are a leading concern in industrial ergonomics, often stemming from sustained non-neutral postures and repetitive tasks. This paper presents a vision-based framework for real-time, frame-level ergonomic risk classification using a lightweight Vision Transformer (ViT). The proposed system operates directly on raw RGB images without requiring skeleton reconstruction, joint angle estimation, or image segmentation. A single ViT model simultaneously classifies eight anatomical regions, enabling efficient multi-label posture assessment. Training is supervised using a multimodal dataset acquired from synchronized RGB video and full-body inertial motion capture, with ergonomic risk labels derived from RULA scores computed on joint kinematics. The system is validated on realistic, simulated industrial tasks that include common challenges such as occlusion and posture variability. Experimental results show that the ViT model achieves state-of-the-art performance, with F1-scores exceeding 0.99 and AUC values above 0.996 across all regions. Compared to previous CNN-based system, the proposed model improves classification accuracy and generalizability while reducing complexity and enabling real-time inference on edge devices. These findings demonstrate the model’s potential for unobtrusive, scalable ergonomic risk monitoring in real-world manufacturing environments. Full article
(This article belongs to the Special Issue Secure and Decentralised IoT Systems)
Show Figures

Figure 1

19 pages, 2196 KiB  
Article
User-Centered Design of a Computer Vision System for Monitoring PPE Compliance in Manufacturing
by Luis Alberto Trujillo-Lopez, Rodrigo Alejandro Raymundo-Guevara and Juan Carlos Morales-Arevalo
Computers 2025, 14(8), 312; https://doi.org/10.3390/computers14080312 (registering DOI) - 1 Aug 2025
Viewed by 70
Abstract
In manufacturing environments, the proper use of Personal Protective Equipment (PPE) is essential to prevent workplace accidents. Despite this need, existing PPE monitoring methods remain largely manual and suffer from limited coverage, significant errors, and inefficiencies. This article focuses on addressing this deficiency [...] Read more.
In manufacturing environments, the proper use of Personal Protective Equipment (PPE) is essential to prevent workplace accidents. Despite this need, existing PPE monitoring methods remain largely manual and suffer from limited coverage, significant errors, and inefficiencies. This article focuses on addressing this deficiency by designing a computer vision desktop application for automated monitoring of PPE use. This system uses lightweight YOLOv8 models, developed to run on the local system and operate even in industrial locations with limited network connectivity. Using a Lean UX approach, the development of the system involved creating empathy maps, assumptions, product backlog, followed by high-fidelity prototype interface components. C4 and physical diagrams helped define the system architecture to facilitate modifiability, scalability, and maintainability. Usability was verified using the System Usability Scale (SUS), with a score of 87.6/100 indicating “excellent” usability. The findings demonstrate that a user-centered design approach, considering user experience and technical flexibility, can significantly advance the utility and adoption of AI-based safety tools, especially in small- and medium-sized manufacturing operations. This article delivers a validated and user-centered design solution for implementing machine vision systems into manufacturing safety processes, simplifying the complexities of utilizing advanced AI technologies and their practical application in resource-limited environments. Full article
Show Figures

Figure 1

35 pages, 1049 KiB  
Article
Strategic Human Resource Development for Industry 4.0 Readiness: A Sustainable Transformation Framework for Emerging Economies
by Kwanchanok Chumnumporn Vong, Kalaya Udomvitid, Yasushi Ueki, Nuchjarin Intalar, Akkaranan Pongsathornwiwat, Warut Pannakkong, Somrote Komolavanij and Chawalit Jeenanunta
Sustainability 2025, 17(15), 6988; https://doi.org/10.3390/su17156988 (registering DOI) - 1 Aug 2025
Viewed by 98
Abstract
Industry 4.0 represents a significant transformation in industrial systems through digital integration, presenting both opportunities and challenges for aligning the workforce, especially in emerging economies like Thailand. This study adopts a sequential exploratory mixed-method approach to investigate how strategic human resource development (HRD) [...] Read more.
Industry 4.0 represents a significant transformation in industrial systems through digital integration, presenting both opportunities and challenges for aligning the workforce, especially in emerging economies like Thailand. This study adopts a sequential exploratory mixed-method approach to investigate how strategic human resource development (HRD) contributes to sustainable transformation, defined as the enduring alignment between workforce capabilities and technological advancement. The qualitative phase involved case studies of five Thai manufacturing firms at varying levels of Industry 4.0 adoption, utilizing semi-structured interviews with executives and HR leaders. Thematic findings informed the development of a structured survey, distributed to 144 firms. Partial Least Squares Structural Equation Modeling (PLS SEM) was used to test the hypothesized relationships among business pressures, leadership support, HRD preparedness, and technological readiness. The analysis reveals that business pressures significantly influence leadership and HRD, which in turn facilitate technological readiness. However, business pressures alone do not directly enhance readiness without the support of intermediaries. These results underscore the critical role of integrated HRD and leadership frameworks in enabling sustainable digital transformation. This study contributes to theoretical perspectives by integrating HRD, leadership, and technological readiness, offering practical guidance for firms aiming to navigate the complexities of Industry 4.0. Full article
Show Figures

Figure 1

27 pages, 15611 KiB  
Article
An Innovative Design of a Rail Vehicle for Modern Passenger Railway Transport
by Martin Bučko, Dalibor Barta, Alyona Lovska, Miroslav Blatnický, Ján Dižo and Mykhailo Pavliuchenkov
Future Transp. 2025, 5(3), 98; https://doi.org/10.3390/futuretransp5030098 (registering DOI) - 1 Aug 2025
Viewed by 60
Abstract
The structural design of rail vehicle bodies significantly influences rail vehicle performance, passenger comfort, and operational efficiency. This study presents a comparative analysis of three key concepts of a rail vehicle body, namely a differential, an integral, and a hybrid structure, with a [...] Read more.
The structural design of rail vehicle bodies significantly influences rail vehicle performance, passenger comfort, and operational efficiency. This study presents a comparative analysis of three key concepts of a rail vehicle body, namely a differential, an integral, and a hybrid structure, with a focus on their structural principles, material utilization, and implications for manufacturability and maintenance. Three rail vehicle body variants were developed, each incorporating a low-floor configuration to enhance accessibility and interior layout flexibility. The research explores the suitable placement of technical components such as a power unit and an air-conditioning system, and it evaluates interior layouts aimed at maximizing both passenger capacity and their travelling comfort. Key features, including door and window technologies, thermal comfort solutions, and seating arrangements, are also analyzed. The study emphasizes the importance of compromises between structural stiffness, reparability, production complexity, and passenger-oriented design considerations. A part of the research includes a proposal of three variants of a rail vehicle body frame, together with their strength analysis by means of the finite element method. These analyses identified that the maximal permissible stresses for the individual versions of the frame were not exceeded. Findings contribute to the development of more efficient, accessible, and sustainable regional passenger rail vehicles. Full article
Show Figures

Figure 1

38 pages, 1463 KiB  
Article
Industry 4.0 and Collaborative Networks: A Goals- and Rules-Oriented Approach Using the 4EM Method
by Thales Botelho de Sousa, Fábio Müller Guerrini, Meire Ramalho de Oliveira and José Roberto Herrera Cantorani
Platforms 2025, 3(3), 14; https://doi.org/10.3390/platforms3030014 - 1 Aug 2025
Viewed by 101
Abstract
The rapid evolution of Industry 4.0 technologies has resulted in a scenario in which collaborative networks are essential to overcome the challenges related to their implementation. However, the frameworks to guide such collaborations remain underexplored. This study addresses this gap by proposing Business [...] Read more.
The rapid evolution of Industry 4.0 technologies has resulted in a scenario in which collaborative networks are essential to overcome the challenges related to their implementation. However, the frameworks to guide such collaborations remain underexplored. This study addresses this gap by proposing Business Rules and Goals Models to operationalize Industry 4.0 solutions through enterprise collaboration. Using the For Enterprise Modeling (4EM) method, the research integrates qualitative insights from expert opinions, including interviews with 12 professionals (academics, industry professionals, and consultants) from Brazilian manufacturing sectors. The Goals Model identifies five main objectives—competitiveness, efficiency, flexibility, interoperability, and real-time collaboration—while the Business Rules Model outlines 18 actionable recommendations, such as investing in digital infrastructure, upskilling employees, and standardizing information technology systems. The results reveal that cultural resistance, limited resources, and knowledge gaps are critical barriers, while interoperability and stakeholder integration emerge as enablers of digital transformation. The study concludes that successfully adopting Industry 4.0 requires technological investments, organizational alignment, structured governance, and collaborative ecosystems. These models provide a practical roadmap for companies navigating the complexities of Industry 4.0, emphasizing adaptability and cross-functional synergy. The research contributes to the literature on collaborative networks by connecting theoretical frameworks with actionable enterprise-level strategies. Full article
Show Figures

Figure 1

32 pages, 5560 KiB  
Article
Design of Reconfigurable Handling Systems for Visual Inspection
by Alessio Pacini, Francesco Lupi and Michele Lanzetta
J. Manuf. Mater. Process. 2025, 9(8), 257; https://doi.org/10.3390/jmmp9080257 (registering DOI) - 31 Jul 2025
Viewed by 110
Abstract
Industrial Vision Inspection Systems (VISs) often struggle to adapt to increasing variability of modern manufacturing due to the inherent rigidity of their hardware architectures. Although the Reconfigurable Manufacturing System (RMS) paradigm was introduced in the early 2000s to overcome these limitations, designing such [...] Read more.
Industrial Vision Inspection Systems (VISs) often struggle to adapt to increasing variability of modern manufacturing due to the inherent rigidity of their hardware architectures. Although the Reconfigurable Manufacturing System (RMS) paradigm was introduced in the early 2000s to overcome these limitations, designing such reconfigurable machines remains a complex, expert-dependent, and time-consuming task. This is primarily due to the lack of structured methodologies and the reliance on trial-and-error processes. In this context, this study proposes a novel theoretical framework to facilitate the design of fully reconfigurable handling systems for VISs, with a particular focus on fixture design. The framework is grounded in Model-Based Definition (MBD), embedding semantic information directly into the 3D CAD models of the inspected product. As an additional contribution, a general hardware architecture for the inspection of axisymmetric components is presented. This architecture integrates an anthropomorphic robotic arm, Numerically Controlled (NC) modules, and adaptable software and hardware components to enable automated, software-driven reconfiguration. The proposed framework and architecture were applied in an industrial case study conducted in collaboration with a leading automotive half-shaft manufacturer. The resulting system, implemented across seven automated cells, successfully inspected over 200 part types from 12 part families and detected more than 60 defect types, with a cycle below 30 s per part. Full article
Show Figures

Figure 1

29 pages, 7249 KiB  
Article
Application of Multi-Objective Optimization for Path Planning and Scheduling: The Edible Oil Transportation System Framework
by Chin S. Chen, Chia J. Lin, Yu J. Lin and Feng C. Lin
Appl. Sci. 2025, 15(15), 8539; https://doi.org/10.3390/app15158539 (registering DOI) - 31 Jul 2025
Viewed by 173
Abstract
This study proposes a multi-objective optimization scheduling method for edible oil transportation in smart manufacturing, focusing on centralized control and addressing challenges such as complex pipelines and shared resource constraints. The method employs the A* and Dijkstra pathfinding algorithm to determine the shortest [...] Read more.
This study proposes a multi-objective optimization scheduling method for edible oil transportation in smart manufacturing, focusing on centralized control and addressing challenges such as complex pipelines and shared resource constraints. The method employs the A* and Dijkstra pathfinding algorithm to determine the shortest pipeline route for each task, and estimates pipeline resource usage to derive a node cost weight function. Additionally, the transport time is calculated using the Hagen–Poiseuille law by considering the viscosity coefficients of different oil types. To minimize both cost and time, task execution sequences are optimized based on a Pareto front approach. A 3D digital model of the pipeline system was developed using C#, SolidWorks Professional, and the Helix Toolkit V2.24.0 to simulate a realistic production environment. This model is integrated with a 3D visual human–machine interface(HMI) that displays the status of each task before execution and provides real-time scheduling adjustment and decision-making support. Experimental results show that the proposed method improves scheduling efficiency by over 43% across various scenarios, significantly enhancing overall pipeline transport performance. The proposed method is applicable to pipeline scheduling and transportation management in digital factories, contributing to improved operational efficiency and system integration. Full article
Show Figures

Figure 1

13 pages, 564 KiB  
Article
Enhanced Semantic Retrieval with Structured Prompt and Dimensionality Reduction for Big Data
by Donghyeon Kim, Minki Park, Jungsun Lee, Inho Lee, Jeonghyeon Jin and Yunsick Sung
Mathematics 2025, 13(15), 2469; https://doi.org/10.3390/math13152469 - 31 Jul 2025
Viewed by 185
Abstract
The exponential increase in textual data generated across sectors such as healthcare, finance, and smart manufacturing has intensified the need for effective Big Data analytics. Large language models (LLMs) have become critical tools because of their advanced language processing capabilities. However, their static [...] Read more.
The exponential increase in textual data generated across sectors such as healthcare, finance, and smart manufacturing has intensified the need for effective Big Data analytics. Large language models (LLMs) have become critical tools because of their advanced language processing capabilities. However, their static nature limits their ability to incorporate real-time and domain-specific knowledge. Retrieval-augmented generation (RAG) addresses these limitations by enriching LLM outputs through external content retrieval. Nevertheless, traditional RAG systems remain inefficient, often exhibiting high retrieval latency, redundancy, and diminished response quality when scaled to large datasets. This paper proposes an innovative structured RAG framework specifically designed for large-scale Big Data analytics. The framework transforms unstructured partial prompts into structured semantically coherent partial prompts, leveraging element-specific embedding models and dimensionality reduction techniques, such as principal component analysis. To further improve the retrieval accuracy and computational efficiency, we introduce a multi-level filtering approach integrating semantic constraints and redundancy elimination. In the experiments, the proposed method was compared with structured-format RAG. After generating prompts utilizing two methods, silhouette scores were computed to assess the quality of embedding clusters. The proposed method outperformed the baseline by improving the clustering quality by 32.3%. These results demonstrate the effectiveness of the framework in enhancing LLMs for accurate, diverse, and efficient decision-making in complex Big Data environments. Full article
(This article belongs to the Special Issue Big Data Analysis, Computing and Applications)
Show Figures

Figure 1

25 pages, 11507 KiB  
Article
Accurate EDM Calibration of a Digital Twin for a Seven-Axis Robotic EDM System and 3D Offline Cutting Path
by Sergio Tadeu de Almeida, John P. T. Mo, Cees Bil, Songlin Ding and Chi-Tsun Cheng
Micromachines 2025, 16(8), 892; https://doi.org/10.3390/mi16080892 (registering DOI) - 31 Jul 2025
Viewed by 144
Abstract
The increasing utilization of hard-to-cut materials in high-performance sectors such as aerospace and defense has pushed manufacturing systems to be flexible in processing large workpieces with a wide range of materials while also delivering high precision. Recent studies have highlighted the potential of [...] Read more.
The increasing utilization of hard-to-cut materials in high-performance sectors such as aerospace and defense has pushed manufacturing systems to be flexible in processing large workpieces with a wide range of materials while also delivering high precision. Recent studies have highlighted the potential of integrating industrial robots (IRs) with electric discharge machining (EDM) to create a non-contact, low-force manufacturing platform, particularly suited for the accurate machining of hard-to-cut materials into complex and large-scale monolithic components. In response to this potential, a novel robotic EDM system has been developed. However, the manual programming and control of such a convoluted system present a significant challenge, often leading to inefficiencies and increased error rates, creating a scenario where the EDM process becomes unfeasible. To enhance the industrial applicability of this robotic EDM technology, this study focuses on a novel methodology to develop and validate a digital twin (DT) of the physical robotic EDM system. The digital twin functions as a virtual experimental environment for tool motion, effectively addressing the challenges posed by collisions and kinematic singularities inherent in the physical system, yet with proven 20-micron EDM gap accuracy. Furthermore, it facilitates a CNC-like, user-friendly offline programming framework for robotic EDM cutting path generation. Full article
Show Figures

Figure 1

20 pages, 3729 KiB  
Article
Can AIGC Aid Intelligent Robot Design? A Tentative Research of Apple-Harvesting Robot
by Qichun Jin, Jiayu Zhao, Wei Bao, Ji Zhao, Yujuan Zhang and Fuwen Hu
Processes 2025, 13(8), 2422; https://doi.org/10.3390/pr13082422 - 30 Jul 2025
Viewed by 293
Abstract
More recently, artificial intelligence (AI)-generated content (AIGC) is fundamentally transforming multiple sectors, including materials discovery, healthcare, education, scientific research, and industrial manufacturing. As for the complexities and challenges of intelligent robot design, AIGC has the potential to offer a new paradigm, assisting in [...] Read more.
More recently, artificial intelligence (AI)-generated content (AIGC) is fundamentally transforming multiple sectors, including materials discovery, healthcare, education, scientific research, and industrial manufacturing. As for the complexities and challenges of intelligent robot design, AIGC has the potential to offer a new paradigm, assisting in conceptual and technical design, functional module design, and the training of the perception ability to accelerate prototyping. Taking the design of an apple-harvesting robot, for example, we demonstrate a basic framework of the AIGC-assisted robot design methodology, leveraging the generation capabilities of available multimodal large language models, as well as the human intervention to alleviate AI hallucination and hidden risks. Second, we study the enhancement effect on the robot perception system using the generated apple images based on the large vision-language models to expand the actual apple images dataset. Further, an apple-harvesting robot prototype based on an AIGC-aided design is demonstrated and a pick-up experiment in a simulated scene indicates that it achieves a harvesting success rate of 92.2% and good terrain traversability with a maximum climbing angle of 32°. According to the tentative research, although not an autonomous design agent, the AIGC-driven design workflow can alleviate the significant complexities and challenges of intelligent robot design, especially for beginners or young engineers. Full article
(This article belongs to the Special Issue Design and Control of Complex and Intelligent Systems)
Show Figures

Figure 1

25 pages, 3785 KiB  
Article
Evolutionary Algorithms for the Optimal Design of Robotic Cells: A Dual Approximation for Space and Time
by Raúl-Alberto Sánchez-Sosa and Ernesto Chavero-Navarrete
Appl. Sci. 2025, 15(15), 8455; https://doi.org/10.3390/app15158455 - 30 Jul 2025
Viewed by 184
Abstract
The optimization of robotic cells is a key challenge in the manufacturing industry due to the need to maximize efficiency in limited spaces and minimize operation times. Traditional cell design methods often face challenges due to the high complexity and dynamic nature of [...] Read more.
The optimization of robotic cells is a key challenge in the manufacturing industry due to the need to maximize efficiency in limited spaces and minimize operation times. Traditional cell design methods often face challenges due to the high complexity and dynamic nature of real-world applications. In response, this study presents a dual approach to optimize both spatial design and traversal time in robotic cells, using bioinspired evolutionary algorithms. Initially, a genetic algorithm is employed to optimize the layout of the cell elements, reducing space usage and avoiding interferences between workstations. Subsequently, an ant colony optimization algorithm is used to optimize the robots’ trajectories, minimizing cycle time. Through simulations and a digital model of the cell, key metrics such as total space reduction, operational time improvement, and productivity increase are evaluated. The results demonstrate that the combination of both approaches achieves significant improvements, enabling an average reduction of 21.19% in the occupied area and up to 20.15% in operational cycle time, consistently outperforming traditional methods. This approach has the potential to be applied in various industrial configurations, representing a relevant contribution in the integration of artificial intelligence techniques for the enhancement of robotic systems. Full article
Show Figures

Graphical abstract

29 pages, 2504 KiB  
Review
Bridging Gaps in Vaccine Access and Equity: A Middle Eastern Perspective
by Laith N. AL-Eitan, Diana L. Almahdawi, Rabi A. Abu Khiarah and Mansour A. Alghamdi
Vaccines 2025, 13(8), 806; https://doi.org/10.3390/vaccines13080806 - 29 Jul 2025
Viewed by 406
Abstract
Vaccine equity and access remain critical challenges in global health, particularly in regions with complex socio-political landscapes, like the Middle East. This review examines disparities in vaccine distribution within the Middle Eastern context, analyzing the unique challenges and opportunities across the region. It [...] Read more.
Vaccine equity and access remain critical challenges in global health, particularly in regions with complex socio-political landscapes, like the Middle East. This review examines disparities in vaccine distribution within the Middle Eastern context, analyzing the unique challenges and opportunities across the region. It provides an overview of the area’s diverse finances and its impact on healthcare accessibility. We examine vaccination rates and identify critical barriers to vaccination, which may be particular issues in developing countries, such as vaccine thermostability, logistical hurdles, financial constraints, and socio-cultural factors, or broader problems, like political instability, economic limitations, and deficiencies in healthcare infrastructure. However, we also highlight successful efforts at the regional and national levels to improve vaccine equity, along with their outcomes and impacts. Ultimately, by drawing on the experiences of previous programs and initiatives, we propose strategies to bridge the gaps in vaccine access through sustainable financing, local manufacturing, and the strengthening of health systems. This approach emphasizes the importance of regional collaboration and long-term self-sufficiency in enhancing global health security and achieving more equitable outcomes in the Middle East. Full article
Show Figures

Figure 1

Back to TopTop