Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,069)

Search Parameters:
Keywords = complex carbohydrate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2553 KB  
Article
Royal Jelly Mitigates Cognitive Decline and Anxiety in Female Mice: A Promising Natural Neuroprotective Solution for Alzheimer’s Disease
by Noureddine Djebli, Nadjet Mostefa, Hadjer Chenini-Bendiab, Mokhtaria Hamidi, Arbia Zitouni, Flávia dos Santos Ferreira and Graziele Freitas de Bem
Compounds 2026, 6(1), 8; https://doi.org/10.3390/compounds6010008 - 21 Jan 2026
Abstract
Background: The incidence of dementia, especially Alzheimer’s disease (AD), is rising, with over 55 million affected globally. Therefore, this disease, for which there is no adequate treatment, is more frequent and prevalent in women. Royal jelly, a bee secretion, is known for its [...] Read more.
Background: The incidence of dementia, especially Alzheimer’s disease (AD), is rising, with over 55 million affected globally. Therefore, this disease, for which there is no adequate treatment, is more frequent and prevalent in women. Royal jelly, a bee secretion, is known for its health benefits and contains proteins, carbohydrates, lipids, minerals, polyphenols, enzymes, and B vitamins, as well as anti-inflammatory and antioxidant properties relevant to AD. Thus, we aimed to investigate the chemical compounds in royal jelly extract and their effect on neurobehavioral changes in an AD female model. Methods: In vitro studies were used to investigate the chemical and physicochemical properties of the royal jelly extract. In vivo studies, we divided female mice into five groups (n = 25): Control (C), Alzheimer (ALZ), ALZ standard (ALZ-STD, rivastigmine 1 mg/Kg), ALZ-D1 (royal jelly 150 mg/kg), and ALZ-D2 (royal jelly 300 mg/kg). The mice received the treatments orally at 45 days. We induced the AD model by orally administering aluminum chloride at 100 mg/kg and intraperitoneally injecting D-galactose at 120 mg/kg for 45 consecutive days, after which we subjected the animals to the radial arm maze, Morris water maze, elevated plus maze, and forced swim tests. Results: Analyses showed moderate acidity and a rich bioactive profile, with flavonoids being more prevalent. Antioxidant activity tests indicated moderate efficacy, while FTIR-ATR analysis revealed the chemical complexity of royal jelly. The royal jelly extract used in the study did not induce toxicity in vivo. Notably, royal jelly improved cognitive deficits, neurodegeneration, and reduced anxiety in AD. Conclusions: The study suggests that royal jelly extract has promising neuroprotective properties and could be a viable natural therapeutic option for AD. Full article
Show Figures

Figure 1

16 pages, 318 KB  
Review
Nutrition for Youth Athletes with ADHD: What We Know and Practical Applications
by Tyler B. Becker and Ronald L. Gibbs
Nutrients 2026, 18(2), 282; https://doi.org/10.3390/nu18020282 - 16 Jan 2026
Viewed by 177
Abstract
Over 10% of US children and adolescents have attention-deficit hyperactivity disorder (ADHD), with a similar prevalence among youth athletes. While ADHD may confer certain athletic performance advantages such as heightened quickness, decision-making and periods of hyperfocus, it also poses some challenges including reduced [...] Read more.
Over 10% of US children and adolescents have attention-deficit hyperactivity disorder (ADHD), with a similar prevalence among youth athletes. While ADHD may confer certain athletic performance advantages such as heightened quickness, decision-making and periods of hyperfocus, it also poses some challenges including reduced concentration, frustration, and possible increased injury risk. Pharmacologic treatments, including stimulant-based medications, can improve attentiveness and athletic performance but could alter nutritional behaviors such as appetite suppression. This paper reviews the current literature on nutritional strategies to provide practical sports nutrition guidelines for children and adolescent athletes with ADHD. Evidence suggests that optimizing energy intake, emphasizing complex carbohydrates, improving fat quality intake, and consuming adequate amounts of micronutrients may support both athletic performance and ADHD symptom management. In contrast, excessive added sugars and saturated fats are associated with poorer outcomes and manifestation of ADHD symptoms. Although no research examining nutritional interventions in youth athletes with ADHD have been performed, applying established sports nutrition principles for youth athletes with ADHD offers a promising approach to enhance performance, reduce injury risk, and support the long-term health of the athlete. Full article
(This article belongs to the Section Sports Nutrition)
Show Figures

Graphical abstract

40 pages, 2989 KB  
Systematic Review
The Genus Leccinum: Global Advances in Taxonomy, Ecology, Nutritional Value, and Environmental Significance
by Ruben Budau, Simona Ioana Vicas, Mariana Florica Bei, Danut Aurel Dejeu, Lucian Dinca and Danut Chira
J. Fungi 2026, 12(1), 70; https://doi.org/10.3390/jof12010070 - 16 Jan 2026
Viewed by 392
Abstract
Leccinum is an ecologically significant and taxonomically complex genus of ectomycorrhizal fungi widely distributed across boreal, temperate, Mediterranean, and selected tropical regions. Despite its ecological, nutritional, and applied importance, no comprehensive review has previously synthesized global knowledge on this genus. This work provides [...] Read more.
Leccinum is an ecologically significant and taxonomically complex genus of ectomycorrhizal fungi widely distributed across boreal, temperate, Mediterranean, and selected tropical regions. Despite its ecological, nutritional, and applied importance, no comprehensive review has previously synthesized global knowledge on this genus. This work provides the first integrative assessment of Leccinum research, combining a bibliometric analysis of 293 peer-reviewed publications with an in-depth qualitative synthesis of ecological, biochemical, and environmental findings. Bibliometric results show increasing scientific attention since the mid-20th century, with major contributions from Europe, Asia, and North America, and dominant research themes spanning taxonomy, ecology, chemistry, and environmental sciences. The literature review highlights substantial advances in phylogenetic understanding, species diversity, and host specificity. Leccinum forms ectomycorrhizal associations with over 60 woody host genera, underscoring its functional importance in forest ecosystems. Nutritionally, Leccinum species are rich in proteins, carbohydrates, minerals, bioactive polysaccharides, phenolic compounds, and umami-related peptides, with demonstrated antioxidant, immunomodulatory, and antitumor activities. At the same time, the genus exhibits notable bioaccumulation capacity for heavy metals (particularly Hg, Cd, and Pb) and radionuclides, making it both a valuable food source and a sensitive environmental bioindicator. Applications in biotechnology, environmental remediation, forest restoration, and functional food development are emerging but remain insufficiently explored. Identified research gaps include the need for global-scale phylogenomic frameworks, expanded geographic sampling, standardized biochemical analyses, and deeper investigation into physiological mechanisms and applied uses. This review provides the first holistic synthesis of Leccinum, offering an integrated perspective on its taxonomy, ecology, nutritional composition, environmental significance, and practical applications. The findings serve as a foundation for future mycological, ecological, and biotechnological research on this diverse and understudied fungal genus. Full article
(This article belongs to the Special Issue Research Progress on Edible Fungi)
Show Figures

Figure 1

26 pages, 4036 KB  
Article
Investigating the Role of Diet-Manipulated Gut Bacteria in Pathogenesis of Type 2 Diabetes Mellitus—An In Vitro Approach
by Asha Guraka, Marie Lush, Georgios Zouganelis, Joe Waldron, Subbareddy Mekapothula, Jinit Masania, Gareth Wynn Vaughan Cave, Myra Elizabeth Conway, Gyanendra Tripathi and Ali Kermanizadeh
Nutrients 2026, 18(2), 279; https://doi.org/10.3390/nu18020279 - 15 Jan 2026
Viewed by 176
Abstract
Background: The human gut microbiome is highly complex, and its composition is strongly influenced by dietary patterns. Alterations in microbiome structure have been associated with a range of diseases, including type 2 diabetes mellitus. However, the underlying mechanisms for this remain poorly understood. [...] Read more.
Background: The human gut microbiome is highly complex, and its composition is strongly influenced by dietary patterns. Alterations in microbiome structure have been associated with a range of diseases, including type 2 diabetes mellitus. However, the underlying mechanisms for this remain poorly understood. In this study, a novel in vitro approach was utilized to investigate the interplay between gut bacteria, dietary metabolites, and metabolic dysfunction. Methods: Two representative gut bacterial species—Bacteroides thetaiotaomicron and Lactobacillus fermentum—were isolated from human faecal samples and subjected to controlled dietary manipulation to mimic eubiotic and dysbiotic conditions. Metabolites produced under these conditions were extracted, characterized, and quantified. To assess the functional impact of these metabolites, we utilized the INS-1 832/3 insulinoma cell line, evaluating insulin sensitivity through glucose-stimulated insulin secretion and ERK1/2 activation. Results: Our findings demonstrate that metabolites derived from high-carbohydrate/high-fat diets exacerbate metabolic dysfunction, whereas those generated under high-fibre conditions significantly enhance insulin secretion and glucose-dependent ERK1/2 activation in co-culture compared to monocultures. Conclusions: This work systematically disentangles the complex interactions between gut microbiota, diet, and disease, providing mechanistic insights into how microbial metabolites contribute to the onset of metabolic disorders. Full article
Show Figures

Graphical abstract

17 pages, 3639 KB  
Article
The AP-1 Sigma Subunit Gene PsAP1 Acts as a Key Pathogenicity Factor by Regulating Metabolic Reprogramming in Puccinia striiformis f. sp. tritici
by Beibei Liu, Jianing Wu, Guoshuai Zhang, Jianghua Chen, Guangkuo Li, Xintong Wang, W. G. Dilantha Fernando, Haifeng Gao and Yue Li
J. Fungi 2026, 12(1), 57; https://doi.org/10.3390/jof12010057 - 12 Jan 2026
Viewed by 227
Abstract
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), poses a severe threat to global wheat production. The adaptor protein complex AP-1 plays a crucial role in vesicular trafficking, yet its function in rust fungi remains poorly understood. In this study, [...] Read more.
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), poses a severe threat to global wheat production. The adaptor protein complex AP-1 plays a crucial role in vesicular trafficking, yet its function in rust fungi remains poorly understood. In this study, a gene encoding an AP-1 σ subunit, designated PsAP1, was identified in Pst. The expression of PsAP1 was highly induced during the early infection stage. Heterologous expression of PsAP1 in a Fusarium graminearum mutant partially restored its pathogenic defects. Subcellular localization analysis revealed that PsAP1 localizes to the plasma membrane, cytoplasm, and nucleus. Silencing PsAP1 in wheat using Barley stripe mosaic virus-mediated host-induced gene silencing (BSMV-HIGS) significantly attenuated Pst pathogenicity, reducing hyphal growth by 6.7% (colony diameter), sporulation by 61.6% (lesion length), and pathogen biomass by 66%, along with enhanced accumulation of host reactive oxygen species. Transcriptomic analysis further demonstrated that silencing PsAP1 disrupted multiple pathways, including MAPK signaling, glutathione metabolism, and carbohydrate metabolism. These findings indicate that PsAP1 facilitates Pst infection by modulating vesicular trafficking, suppressing host immunity, and reprogramming host metabolism. This study provides novel insights into the pathogenic mechanisms of rust fungi and suggests a potential target for disease control. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

16 pages, 1739 KB  
Article
The Effect of Enzyme Synergism on Generation of Fermentable Sugars After Alkali Pretreatment of Wheat Straw, Assessed and Predicted Using Multivariate Analysis
by Yufa Gao, Zhe Li, Zhibin Li, Xitao Luo, Mohammad Ali Asadollahi, Safoora Mirmohamadsaghi, Guang Yu and Bin Li
Polymers 2026, 18(2), 157; https://doi.org/10.3390/polym18020157 - 7 Jan 2026
Viewed by 172
Abstract
Alkaline pretreatment of wheat straw could significantly augment enzymatic hydrolysis for producing fermentable sugars, which is a pivotal process for the conversion of lignocellulosic biomass into advanced biofuels, biomaterials, or biochemicals. Yet, the enzymatic conversion process system is complex and multivariate, and study [...] Read more.
Alkaline pretreatment of wheat straw could significantly augment enzymatic hydrolysis for producing fermentable sugars, which is a pivotal process for the conversion of lignocellulosic biomass into advanced biofuels, biomaterials, or biochemicals. Yet, the enzymatic conversion process system is complex and multivariate, and study on the interaction mechanism of the key parameters in enzymatic hydrolysis is still lacking. Therefore, in this work, multivariate data analysis (MDA) (i.e., principal component analysis (PCA) and partial least square (PLS)) was conducted to reveal the inherent relationship and the significance of these factors in a modified alkali pretreatment system. A robust model, developed from 140 enzymatic hydrolysis datasets, was validated with an additional 20 datasets, demonstrating the predictive prowess of the PLS model. MDA identified that cellulase dosage, mechanical refining, dye adsorption value, and solid content were paramount variables. The integration of cellulase and xylanase notably elevated sugar yields and the conversion rates of carbohydrates, surpassing those of single enzyme treatments. The model’s predictive accuracy, reflected in the close alignment between observed and predicted data, underscores its suitability for optimizing and controlling the enzymatic hydrolysis process. This study paves a way for data-driven strategies to enhance industrial bioprocessing of lignocellulosic feedstocks. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

35 pages, 4434 KB  
Article
A Hybrid Closed-Loop Blood Glucose Control Algorithm with a Safety Limiter Based on Deep Reinforcement Learning and Model Predictive Control
by Shanyong Huang, Yusheng Fu, Shaowei Kong, Yuyang Liu and Jian Yan
Biosensors 2026, 16(1), 47; https://doi.org/10.3390/bios16010047 - 6 Jan 2026
Viewed by 381
Abstract
Due to the complexity of blood glucose dynamics and the high variability of the physiological structure of diabetic patients, implementing a safe and effective insulin dosage control algorithm to keep the blood glucose of diabetic patients within the normal range (70–180 mg/dL) is [...] Read more.
Due to the complexity of blood glucose dynamics and the high variability of the physiological structure of diabetic patients, implementing a safe and effective insulin dosage control algorithm to keep the blood glucose of diabetic patients within the normal range (70–180 mg/dL) is currently a challenging task in the field of diabetes treatment. Deep reinforcement learning (DRL) has proven its potential in diabetes treatment in previous work, thanks to its strong advantages in solving complex dynamic and uncertain problems. It can address the challenges faced by traditional control algorithms, such as the need for patients to manually estimate carbohydrate intake before meals, the requirement to establish complex dynamic models, and the need for professional prior knowledge. However, reinforcement learning is essentially a highly exploratory trial-and-error learning strategy, which is contrary to the high-safety requirements of clinical practice. Therefore, achieving safer control has always been a major challenge for the clinical application of DRL. This paper addresses this challenge by combining the advantages of DRL and the traditional control algorithm—model predictive control (MPC). Specifically, by using the blood glucose and insulin data generated during the interaction between DRL and patients in the learning process to learn a blood glucose prediction model, the problem of MPC needing to establish a patient’s blood glucose dynamic model is solved. Then, MPC is used for forward-looking prediction and simulation of blood glucose, and a safety controller is introduced to avoid unsafe actions, thus restricting DRL control to a safer range. Experiments on the UVA/Padova glucose kinetics simulator approved by the US Food and Drug Administration (FDA) show that the time proportion of adult patients within the healthy blood glucose range under the control of the model proposed in this paper reaches 72.51%, an increase of 2.54% compared with the baseline model, and the proportion of severe hyperglycemia and hypoglycemia events is not increased, taking an important step towards the safe control of blood glucose. Full article
Show Figures

Figure 1

18 pages, 5441 KB  
Article
De Novo Transcriptome Analysis Reveals the Primary Metabolic Capacity of the Sponge Xestospongia sp. from Vietnam
by Le Bich Hang Pham, Hai Quynh Do, Chi Mai Nguyen, Tuong Van Nguyen, Hai Ha Nguyen, Huu Hong Thu Nguyen, Khanh Linh Nguyen, Thi Hoe Pham, Quang Hung Nguyen, Quang Trung Le, My Linh Tran and Thi Thu Hien Le
Fishes 2026, 11(1), 23; https://doi.org/10.3390/fishes11010023 - 31 Dec 2025
Viewed by 234
Abstract
Marine sponges possess complex metabolic systems that support their growth, physiology, and ecological interactions. However, the primary metabolic capacity of the sponge hosts remains incompletely characterized at the molecular level. In this study, we performed de novo transcriptome sequencing of a pooled sample [...] Read more.
Marine sponges possess complex metabolic systems that support their growth, physiology, and ecological interactions. However, the primary metabolic capacity of the sponge hosts remains incompletely characterized at the molecular level. In this study, we performed de novo transcriptome sequencing of a pooled sample of three individuals of Xestospongia sp. collected in Vietnam, using a high-throughput Illumina sequencing system, to characterize the host-derived metabolic pathways. A total of 43,278 unigenes were assembled, of which 69.15% were functionally annotated using multiple public databases. Functional annotation revealed a broad repertoire of genes associated with core metabolic pathways, including carbohydrate, lipid, and sterol metabolisms, as well as cofactor-related processes. Specifically, complete pathways involved in folate biosynthesis, terpenoid backbone biosynthesis, ubiquinone (Coenzyme Q) metabolism, and steroid biosynthesis were identified, reflecting the independent metabolic framework of the sponge host. Several highly expressed genes related to these pathways, including COQ7, ERG6, NUDX1, QDPR, and PCBD, were detected, and their expression patterns were confirmed by quantitative RT-PCR. Furthermore, protein-based phylogenetic analyses indicated that these genes are closely related to homologous proteins from other sponge species, supporting their host origin. This study provides the first comprehensive transcriptomic resource for Xestospongia sp. from Vietnam, and offers baseline molecular insights into the primary metabolic capacity of the sponge host. These data establish a foundation for future investigations of sponge physiology and host–microbe metabolic partitioning. Full article
(This article belongs to the Special Issue Functional Gene Analysis and Genomic Technologies in Aquatic Animals)
Show Figures

Figure 1

13 pages, 623 KB  
Article
Enhanced Microbial Diversity Attained Under Short Retention and High Organic Loading Conditions Promotes High Volatile Fatty Acid Production Efficiency
by Claudia Chao-Reyes, Rudolphus Antonius Timmers, Ahmed Mahdy, Silvia Greses and Cristina González-Fernández
Molecules 2026, 31(1), 132; https://doi.org/10.3390/molecules31010132 - 30 Dec 2025
Viewed by 206
Abstract
The optimization of volatile fatty acid (VFA) production from complex wastes under anaerobic conditions remains constrained in terms of productivity by the common use of long hydraulic retention times (HRTs, 20–30 days). Extended HRTs can limit process productivity by reducing substrate turnover and [...] Read more.
The optimization of volatile fatty acid (VFA) production from complex wastes under anaerobic conditions remains constrained in terms of productivity by the common use of long hydraulic retention times (HRTs, 20–30 days). Extended HRTs can limit process productivity by reducing substrate turnover and reactor throughput, while promoting further conversion of VFAs into methane and other end products. Despite its importance, the combined influence of pH and HRT on VFA yields and process optimization has not been comprehensively evaluated. This study investigates the effects of pH and short HRT on VFA production, microbial community structure, and hydrolysis and acidification efficiency in continuous stirred-tank reactors (CSTRs) fed with carbohydrate-rich feedstock (carrot residue pulp). Operating at an HRT of 11 days and an organic loading rate (OLR) of 4.4 g COD·L−1·d−1 at 25 °C under pH 5.1 resulted in a VFA bioconversion efficiency of ~45% and an acidification efficiency of 84%, without compromising VFA profile or productivity compared to reactors operated at 14 days HRT and 3.3 g COD·L−1·d−1. The shorter HRT and higher OLR enhanced hydrolysis efficiency (60%) and promoted greater microbial diversity, supporting robust hydrolytic activity and stable production dominated by acetic and butyric acids. These findings challenge the conventional assumption that longer retention times inherently improve process stability and demonstrate that operational conditions might improve reactor space–time yield in VFA-oriented fermentations. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Graphical abstract

37 pages, 4829 KB  
Review
C-Type Lectins from Marine Bivalves: Functional Diversity and Structural Insights
by Ivan Buriak, Daria Lanskikh, Ivan Baklanov, Daniil Kozyrev and Andrei Grinchenko
Mar. Drugs 2026, 24(1), 17; https://doi.org/10.3390/md24010017 - 26 Dec 2025
Viewed by 510
Abstract
C-type lectins (CTLs) are a large family of calcium-dependent carbohydrate-binding proteins that play crucial roles in innate immunity as pattern recognition receptors. Bivalve mollusks possess exceptionally diverse and expanded repertoires of CTLs, yet a systematic review integrating their structural, functional, and regulatory aspects [...] Read more.
C-type lectins (CTLs) are a large family of calcium-dependent carbohydrate-binding proteins that play crucial roles in innate immunity as pattern recognition receptors. Bivalve mollusks possess exceptionally diverse and expanded repertoires of CTLs, yet a systematic review integrating their structural, functional, and regulatory aspects has been lacking. This article provides a comprehensive synthesis of current knowledge on bivalve CTLs, analyzing their biosynthesis, complex tissue-specific expression under both normal and stressed conditions, and their multifaceted roles in immune defense and other physiological processes. Our analysis consolidates data on their diverse domain architectures, phylogenetic relationships, and the variability of key motifs within their carbohydrate-recognition domains. The results demonstrate that bivalve CTLs are not only critical for pathogen recognition, agglutination, and phagocytosis but also involved in processes like nutrition, development, byssus formation and biomineralization. However, a significant finding is that the detailed carbohydrate specificity for most bivalve CTLs remains poorly characterized, often limited to monosaccharide inhibition assays. In conclusion, while the immune role of bivalve CTLs is well-established, this review underscores a critical gap in understanding their fine glycan-binding profiles. Therefore, a shift in the focus of future research towards elucidating their structure and carbohydrate specificity is required for a full understanding of their biological functions and an assessment of their biomedical potential. Full article
(This article belongs to the Special Issue Marine Glycobiology)
Show Figures

Figure 1

18 pages, 1237 KB  
Article
Comparative Microbiome and Functional Profiling of Cowpea Kimchi Fermented Using Korean and Sichuan Techniques
by Luwei Wang, Bo Sun, Sa-ouk Kang and Rui Liu
Fermentation 2026, 12(1), 10; https://doi.org/10.3390/fermentation12010010 - 23 Dec 2025
Viewed by 531
Abstract
Fermented vegetables host complex microbiomes that drive flavor and functionality. We compared cowpea pod fermentations produced by a Korean kimchi-style method (HG) versus a Sichuan paocai-style method (SC) to isolate technique-driven effects on community structure and functional potential. Cowpea pods were fermented for [...] Read more.
Fermented vegetables host complex microbiomes that drive flavor and functionality. We compared cowpea pod fermentations produced by a Korean kimchi-style method (HG) versus a Sichuan paocai-style method (SC) to isolate technique-driven effects on community structure and functional potential. Cowpea pods were fermented for 10 days in triplicate, profiled by 16S rRNA (V3-V4) amplicon sequencing, analyzed in QIIME2, and functionally inferred with PICRUSt2. SC exhibited higher alpha diversity (Shannon, Chao1, Simpson) than HG (p < 0.05), and beta-diversity (Bray-Curtis dissimilarity) showed clear separation by fermentation style (PERMANOVA p = 0.001), indicating method-dependent community assembly. Both styles were dominated by lactic acid bacteria, chiefly Leuconostoc, Lactobacillus, and Weissella, but their proportions differed: HG retained higher Leuconostoc/Weissella, whereas SC favored Lactobacillus. Predicted functions diverged accordingly: HG was enriched for carbohydrate-metabolism genes (e.g., β-galactosidase; dextransucrase), consistent with rapid sugar fermentation and possible exopolysaccharide formation; SC showed enrichment of amino-acid-related pathways (e.g., acetolactate synthase; glutamate dehydrogenase), heterolactic fermentation, and γ-aminobutyric acid (GABA) biosynthesis, suggesting broader metabolic outputs relevant to flavor development and potential health attributes. Overall, fermentation technique substantially shapes both the microbiome and its predicted repertoire, with HG prioritizing carbohydrate catabolism and SC showing expanded metabolic potential; these insights can inform starter selection and process control for targeted product qualities. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

34 pages, 2784 KB  
Article
Alternative Proteins from Filamentous Fungi: Drivers of Transformative Change in Future Food Systems
by Luziana Hoxha and Mohammad J. Taherzadeh
Fermentation 2026, 12(1), 7; https://doi.org/10.3390/fermentation12010007 - 21 Dec 2025
Viewed by 799
Abstract
Current food systems are highly complex, with interdependencies across regions, resources, and actors, and conventional food production is a major contributor to climate change. Transitioning to sustainable protein sources is therefore critical to meet the nutritional needs of a growing global population while [...] Read more.
Current food systems are highly complex, with interdependencies across regions, resources, and actors, and conventional food production is a major contributor to climate change. Transitioning to sustainable protein sources is therefore critical to meet the nutritional needs of a growing global population while reducing environmental pressures. Filamentous fungi present a promising solution by converting agro-industrial side streams into mycoproteins—nutrient-dense, sustainable proteins with a carbon footprint more than ten times lower than beef. This review evaluates the potential of mycoproteins derived from fungi cultivated on low-cost substrates, focusing on their role in advancing sustainable food systems. Evidence indicates that mycoproteins are rich in protein (13.6–71% dw), complete amino acids, fiber (4.8–25% dw), essential minerals, polyphenols, and vitamins while maintaining low fat and moderate carbohydrate content. Fermentation efficiency and product quality depend on substrate type, nutrient availability, and fungal strain, with advances in bioreactor design and AI-driven optimization enhancing scalability and traceability. Supported by emerging regulatory frameworks, mycoproteins can reduce reliance on animal-derived proteins, valorize agricultural by-products, and contribute to climate-resilient, nutritionally rich diets. Integration into innovative food products offers opportunities to meet consumer preferences while promoting environmentally sustainable, socially equitable, and economically viable food systems within planetary boundaries. Full article
Show Figures

Figure 1

18 pages, 3879 KB  
Article
Exploring Dacarbazine Complexation with a Cellobiose-Based Carrier: A Multimethod Theoretical, NMR, and Thermochemical Study
by Marta Hoelm, Zdzisław Kinart and Stanisław Porwański
Molecules 2025, 30(24), 4819; https://doi.org/10.3390/molecules30244819 - 18 Dec 2025
Viewed by 315
Abstract
Dacarbazine (DTIC) is a clinically important anticancer drug whose photosensitivity poses challenges for its stability and interactions with supramolecular hosts. Here, we investigate its complexation with the host 1,10-N,N′-bis-(β-D-ureidocellobiosyl)-4,7,13,16-tetraoxa-1,10-diazacyclooctadecane (TN), a hybrid urea–carbohydrate–diazacrown system, using combined experimental and computational approaches. While [...] Read more.
Dacarbazine (DTIC) is a clinically important anticancer drug whose photosensitivity poses challenges for its stability and interactions with supramolecular hosts. Here, we investigate its complexation with the host 1,10-N,N′-bis-(β-D-ureidocellobiosyl)-4,7,13,16-tetraoxa-1,10-diazacyclooctadecane (TN), a hybrid urea–carbohydrate–diazacrown system, using combined experimental and computational approaches. While TN has been studied as a host molecule, its specific interactions with DTIC and the associated thermodynamic characteristics had not been characterized. Computational results (obtained at the density functional theory level (DFT)) indicate that TN primarily forms non-inclusion complexes, with DTIC engaging in hydrogen bonding with sugar units, urea bridges, and diazacrown ether moieties. Experimental 1H NMR studies in D2O confirmed these interaction patterns, showing notable chemical shifts for sugar protons. Conductometric measurements between 293 and 313 K allowed for the determination of formation constants and thermodynamic parameters. The results demonstrate that TN:DTIC complexation is spontaneous, exothermic, and enthalpy-driven, accompanied by decreased system entropy. Comparison with previous studies on cyclodextrin complexes shows that TN forms strong associations with DTIC, owing to its abundant donor–acceptor groups, which facilitate extensive hydrogen-bonding networks. These findings provide new insights into DTIC stabilization and highlight TN’s potential as a multifunctional platform for drug delivery. Full article
(This article belongs to the Special Issue Alternative Routes for the Delivery of Drug Molecules)
Show Figures

Figure 1

20 pages, 443 KB  
Article
Associations Between Nutritional Intake, Body Composition, Menstrual Health, and Performance in Elite Female Trail Runners
by Nil Piñol-Granadino, Marta Carrasco-Marginet, Silvia Puigarnau, Javier Espasa-Labrador, Álex Cebrián-Ponce, Fabrizio Gravina-Cognetti, Maria Darder-Terradas and Joan Solé-Fortó
J. Funct. Morphol. Kinesiol. 2025, 10(4), 482; https://doi.org/10.3390/jfmk10040482 - 17 Dec 2025
Viewed by 618
Abstract
Background: This study examined nutritional intake, body composition, menstrual health, and performance in elite female trail runners. Methods: A cross-sectional multivariate analysis was conducted on 35 athletes (14 eumenorrheic, 21 amenorrheic/oligomenorrheic). Nutritional intake was assessed through 7-day and 24 h food [...] Read more.
Background: This study examined nutritional intake, body composition, menstrual health, and performance in elite female trail runners. Methods: A cross-sectional multivariate analysis was conducted on 35 athletes (14 eumenorrheic, 21 amenorrheic/oligomenorrheic). Nutritional intake was assessed through 7-day and 24 h food records; anthropometry followed ISAK standards; performance was evaluated via ITRA and UTMB rankings. Statistical analyses included t-tests, MANCOVA, regression models, and Random Forest, adjusting for body composition and covariates. Results: Although energy availability (EA) did not differ significantly between groups, 94.3% of athletes had clinically low EA (<30 kcal/kg FFM/day). Amenorrheic athletes consumed more simple carbohydrates (21.8 ± 5.7% vs. 17.2 ± 3.1%), protein (2.5 ± 0.6 vs. 1.7 ± 0.2 g/kg/day), fiber, and lipids, while eumenorrheic athletes consumed more complex carbohydrates (129.7 ± 27.0 vs. 82.5 ± 33.3 g/day) and most vitamins. Both groups had inadequate calcium and iron intake. Low EA was moderately associated with an ectomorphic somatotype (r = 0.418). Performance negatively correlated with simple carbohydrates (r = −0.624) and positively with complex carbohydrates, total energy, protein, polyunsaturated fats, and zinc (r = 0.300–0.580). No significant performance differences were found between menstrual status groups. Conclusions: Menstrual irregularities did not affect performance, but nutritional patterns strongly influenced both performance and energy availability. Personalized nutrition strategies are essential for optimizing performance and safeguarding health in elite female trail runners. Full article
(This article belongs to the Special Issue Body Composition Assessment: Methods, Validity, and Applications)
Show Figures

Figure 1

16 pages, 3996 KB  
Article
FTIR Spectroscopy, a New Approach to Evaluating Caseinolytic Activity of Probiotic Lactic Acid Bacteria During Goat Milk Fermentation and Storage
by Juan José Carol Paz, Ana Yanina Bustos and Ana Estela Ledesma
Fermentation 2025, 11(12), 699; https://doi.org/10.3390/fermentation11120699 - 17 Dec 2025
Viewed by 789
Abstract
Goat milk can be a vehicle for beneficial microorganisms, such as probiotic lactic acid bacteria (LAB). During lactic fermentation, the hydrolysis of milk proteins can improve their nutritional properties and sensory attributes and even have beneficial health effects. The objective of this study [...] Read more.
Goat milk can be a vehicle for beneficial microorganisms, such as probiotic lactic acid bacteria (LAB). During lactic fermentation, the hydrolysis of milk proteins can improve their nutritional properties and sensory attributes and even have beneficial health effects. The objective of this study was to evaluate the caseinolytic activity of LAB strains with probiotic potential and to monitor the changes induced by fermentation and during storage in milk components using Fourier transform infrared (FTIR) spectroscopy. First, the proteolytic activity of 36 LAB strains isolated from dairy products was qualitatively assessed. Then, 17 strains with probiotic potential and moderate to high proteolytic activity were selected for further analysis. Casein proteolysis was found to be strain-dependent, with a decrease in total protein concentration ranging from 28% to 87% and an increase in amino acids ranging from 29% to 88%. Furthermore, a notable difference was observed in the amide bands in the FTIR spectra between the beginning and end of incubation, showing a decrease in the intensities of the bands attributed to proteins. In fermented goat milk, LAB growth resulted in a final count between 0.62 and 2.6 log CFU/mL, a 0.29 to 2.0 drop in pH, and lactic acid production between 0.20 and 1 g/L. FTIR spectra revealed time-dependent modifications in amide I and II bands accompanied by a marked reduction in carbohydrate content and an increase in lactic acid signal. After 21 days of storage, the viability of the strains, pH, and lactic acid in the fermented milks were not substantially modified. These results highlight the potential of lactic fermentation with strains selected for their probiotic potential as an approach to producing value-added goat milk products, as well as the usefulness of FTIR spectroscopy for characterizing complex systems such as goat milk. Full article
(This article belongs to the Special Issue Advances in Functional Fermented Foods)
Show Figures

Figure 1

Back to TopTop