Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = compensation for external periodic disturbances

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 4874 KB  
Article
Hierarchical Control for USV Trajectory Tracking with Proactive–Reactive Reward Shaping
by Zixiao Luo, Dongmei Du, Dandan Liu, Qiangqiang Yang, Yi Chai, Shiyu Hu and Jiayou Wu
J. Mar. Sci. Eng. 2025, 13(12), 2392; https://doi.org/10.3390/jmse13122392 - 17 Dec 2025
Cited by 1 | Viewed by 425
Abstract
To address trajectory tracking of underactuated unmanned surface vessels (USVs) under disturbances and model uncertainty, we propose a hierarchical control framework that combines model predictive control (MPC) with proximal policy optimization (PPO). The outer loop runs in the inertial reference frame, where an [...] Read more.
To address trajectory tracking of underactuated unmanned surface vessels (USVs) under disturbances and model uncertainty, we propose a hierarchical control framework that combines model predictive control (MPC) with proximal policy optimization (PPO). The outer loop runs in the inertial reference frame, where an MPC planner based on a kinematic model enforces velocity and safety constraints and generates feasible body–fixed velocity references. The inner loop runs in the body–fixed reference frame, where a PPO policy learns the nonlinear inverse mapping from velocity to multi–thruster thrust, compensating hydrodynamic modeling errors and external disturbances. On top of this framework, we design a Proactive–Reactive Adaptive Reward (PRAR) that uses the MPC prediction sequence and real–time pose errors to adaptively reweight the reward across surge, sway and yaw, improving robustness and cross–model generalization. Simulation studies on circular and curvilinear trajectories compare the proposed PRAR–driven dual–loop controller (PRAR–DLC) with MPC–PID, PPO–Only, MPC–PPO and PPO variants. On the curvilinear trajectory, PRAR–DLC reduces surge MAE and maximum tracking error from 0.269 m and 0.963 m (MPC–PID) to 0.138 m and 0.337 m, respectively; on the circular trajectory it achieves about an 8.5% reduction in surge MAE while maintaining comparable sway and yaw accuracy to the baseline controllers. Real–time profiling further shows that the average MPC and PPO evaluation times remain below the control sampling period, indicating that the proposed architecture is compatible with real–time onboard implementation and physical deployment. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 7938 KB  
Article
Combination of Finite Element Spindle Model with Drive-Based Cutting Force Estimation for Assessing Spindle Bearing Load of Machine Tools
by Chris Schöberlein, Daniel Klíč, Michal Holub, Holger Schlegel and Martin Dix
Machines 2025, 13(12), 1138; https://doi.org/10.3390/machines13121138 - 12 Dec 2025
Viewed by 460
Abstract
Monitoring spindle bearing load is essential for ensuring machining accuracy, reliability, and predictive maintenance in machine tools. This paper presents an approach that combines drive-based cutting force estimation with a finite element method (FEM) spindle model. The drive-based method reconstructs process forces from [...] Read more.
Monitoring spindle bearing load is essential for ensuring machining accuracy, reliability, and predictive maintenance in machine tools. This paper presents an approach that combines drive-based cutting force estimation with a finite element method (FEM) spindle model. The drive-based method reconstructs process forces from the motor torque signal of the feed axes by modeling and compensating motion-related torque components, including static friction, acceleration, gravitation, standstill, and periodic disturbances. The inverse mechanical and control transfer behavior is also considered. Input signals include the actual motor torque, axis position, and position setpoint, recorded by the control system’s internal measurement function at the interpolator clock rate. Cutting forces are then calculated in MATLAB/Simulink and used as inputs for the FEM spindle model. Rolling elements are replaced by bushing joints with stiffness derived from datasheets and adjusted through experiments. Force estimation was validated on a DMC 850 V machining center using a standardized test workpiece, with results compared against a dynamometer. The spindle model was validated separately on a MCV 754 Quick machine under static loading. The combined approach produced consistent results and identified the front bearing as the most critically loaded. The method enables practical spindle bearing load estimation without external sensors, lowering system complexity and cost. Full article
(This article belongs to the Special Issue Machines and Applications—New Results from a Worldwide Perspective)
Show Figures

Figure 1

19 pages, 3339 KB  
Article
Sensorless Control of Permanent Magnet Synchronous Motor in Low-Speed Range Based on Improved ESO Phase-Locked Loop
by Minghao Lv, Bo Wang, Xia Zhang and Pengwei Li
Processes 2025, 13(10), 3366; https://doi.org/10.3390/pr13103366 - 21 Oct 2025
Viewed by 814
Abstract
Aiming at the speed chattering problem caused by high-frequency square wave injection in permanent magnet synchronous motors (PMSMs) during low-speed operation (200–500 r/min), this study intends to improve the rotor position estimation accuracy of sensorless control systems as well as the system’s ability [...] Read more.
Aiming at the speed chattering problem caused by high-frequency square wave injection in permanent magnet synchronous motors (PMSMs) during low-speed operation (200–500 r/min), this study intends to improve the rotor position estimation accuracy of sensorless control systems as well as the system’s ability to resist harmonic interference and sudden load changes. The goal is to enhance the control performance of traditional control schemes in this scenario and meet the requirement of stable low-speed operation of the motor. First, the study analyzes the harmonic error propagation mechanism of high-frequency square wave injection and finds that the traditional PI phase-locked loop (PI-PLL) is susceptible to high-order harmonic interference during demodulation, which in turn leads to position estimation errors and periodic speed fluctuations. Therefore, the extended state observer phase-locked loop (ESO-PLL) is adopted to replace the traditional PI-PLL. A third-order extended state observer (ESO) is used to uniformly regard the system’s unmodeled dynamics, external load disturbances, and harmonic interference as “total disturbances”, realizing real-time estimation and compensation of disturbances, and quickly suppressing the impacts of harmonic errors and sudden load changes. Meanwhile, a dynamic pole placement strategy for the speed loop is designed to adaptively adjust the controller’s damping ratio and bandwidth parameters according to the motor’s operating states (loaded/unloaded, steady-state/transient): large poles are used in the start-up phase to accelerate response, small poles are switched in the steady-state phase to reduce errors, and a smooth attenuation function is used in the transition phase to achieve stable parameter transition, balancing the system’s dynamic response and steady-state accuracy. In addition, high-frequency square wave voltage signals are injected into the dq axes of the rotating coordinate system, and effective rotor position information is extracted by combining signal demodulation with ESO-PLL to realize decoupling of high-frequency response currents. Verification through MATLAB/Simulink simulation experiments shows that the improved strategy exhibits significant advantages in the low-speed range of 200–300 r/min: in the scenario where the speed transitions from 200 r/min to 300 r/min with sudden load changes, the position estimation curve of ESO-PLL basically overlaps with the actual curve, while the PI-PLL shows obvious deviations; in the start-up and speed switching phases, dynamic pole placement enables the motor to respond quickly without overshoot and no obvious speed fluctuations, whereas the traditional fixed-pole PI control has problems of response lag or overshoot. In conclusion, the “ESO-PLL + dynamic pole placement” cooperative control strategy proposed in this study effectively solves the problems of harmonic interference and load disturbance caused by high-frequency square wave injection in the low-speed range and significantly improves the accuracy and robustness of PMSM sensorless control. This strategy requires no additional hardware cost and achieves performance improvement only through algorithm optimization. It can be directly applied to PMSM control systems that require stable low-speed operation, providing a reliable solution for the promotion of sensorless control technology in low-speed precision fields. Full article
Show Figures

Figure 1

21 pages, 3369 KB  
Article
Event-Triggered Fixed-Time Consensus Tracking Control for Uncertain Nonlinear Multi-Agent Systems with Dead-Zone Input
by Zian Wang, Yixiang Gu, Jiarui Liu, Yue Zhang, Kai Feng, Jietao Dai and Guoxiong Zheng
Actuators 2025, 14(9), 414; https://doi.org/10.3390/act14090414 - 22 Aug 2025
Cited by 1 | Viewed by 1372
Abstract
This study explores the issue of fixed-time dynamic event-triggered consensus control for uncertain nonlinear multi-agent systems (MASs) within directed graph frameworks. In practical applications, the system encounters multiple constraints such as unknown time-varying parameters, unknown external disturbances, and input dead zones, which may [...] Read more.
This study explores the issue of fixed-time dynamic event-triggered consensus control for uncertain nonlinear multi-agent systems (MASs) within directed graph frameworks. In practical applications, the system encounters multiple constraints such as unknown time-varying parameters, unknown external disturbances, and input dead zones, which may increase the communication burden of the system. Therefore, achieving fixed-time consensus tracking control under the aforementioned conditions is challenging. To address these issues, an adaptive fixed-time consensus tracking control method based on boundary estimation and fuzzy logic systems (FLSs) is proposed to achieve online compensation for the input dead zone. Additionally, to optimize the utilization of communication resources, a periodic adaptive event-triggered control (PAETC) is designed. The mechanism dynamically adjusts the frequency at which the trigger is updated in real time, reducing communication resource usage by responding to changes in the control signal. Finally, the efficacy of the proposed approach is confirmed via theoretical evaluation and simulation. Full article
(This article belongs to the Special Issue Analysis and Design of Linear/Nonlinear Control System)
Show Figures

Figure 1

25 pages, 2473 KB  
Article
Predefined-Time Adaptive Neural Control with Event-Triggering for Robust Trajectory Tracking of Underactuated Marine Vessels
by Hui An, Zhanyang Yu, Jianhua Zhang, Xinxin Wang and Cheng Siong Chin
Processes 2025, 13(8), 2443; https://doi.org/10.3390/pr13082443 - 1 Aug 2025
Viewed by 718
Abstract
This paper addresses the trajectory tracking control problem of underactuated ships in ocean engineering, which faces the dual challenges of tracking error time–performance regulation and robustness design due to the system’s underactuated characteristics, model uncertainties, and external disturbances. Aiming to address the issues [...] Read more.
This paper addresses the trajectory tracking control problem of underactuated ships in ocean engineering, which faces the dual challenges of tracking error time–performance regulation and robustness design due to the system’s underactuated characteristics, model uncertainties, and external disturbances. Aiming to address the issues of traditional finite-time control (convergence time dependent on initial states) and fixed-time control (control chattering and parameter conservativeness), this paper proposes a predefined-time adaptive control framework that integrates an event-triggered mechanism and neural networks. By constructing a Lyapunov function with time-varying weights and designing non-periodic dynamically updated dual triggering conditions, the convergence process of tracking errors is strictly constrained within a user-prespecified time window without relying on initial states or introducing non-smooth terms. An adaptive approximator based on radial basis function neural networks (RBF-NNs) is employed to compensate for unknown nonlinear dynamics and external disturbances in real-time. Combined with the event-triggered mechanism, it dynamically adjusts the update instances of control inputs, ensuring prespecified tracking accuracy while significantly reducing computational resource consumption. Theoretical analysis shows that all signals in the closed-loop system are uniformly ultimately bounded, tracking errors converge to a neighborhood of the origin within the predefined-time, and the update frequency of control inputs exhibits a linear relationship with the predefined-time, avoiding Zeno behavior. Simulation results verify the effectiveness of the proposed method in complex marine environments. Compared with traditional control strategies, it achieves more accurate trajectory tracking, faster response, and a substantial reduction in control input update frequency, providing an efficient solution for the engineering implementation of embedded control systems in unmanned ships. Full article
(This article belongs to the Special Issue Design and Analysis of Adaptive Identification and Control)
Show Figures

Figure 1

24 pages, 2674 KB  
Article
Gaussian Process Regression-Based Fixed-Time Trajectory Tracking Control for Uncertain Euler–Lagrange Systems
by Tong Li, Tianqi Chen and Liang Sun
Actuators 2025, 14(7), 349; https://doi.org/10.3390/act14070349 - 16 Jul 2025
Viewed by 798
Abstract
The fixed-time trajectory tracking control problem of the uncertain nonlinear Euler–Lagrange system is studied. To ensure the fast, high-precision trajectory tracking performance of this system, a non-singular terminal sliding-mode controller based on Gaussian process regression is proposed. The control algorithm proposed in this [...] Read more.
The fixed-time trajectory tracking control problem of the uncertain nonlinear Euler–Lagrange system is studied. To ensure the fast, high-precision trajectory tracking performance of this system, a non-singular terminal sliding-mode controller based on Gaussian process regression is proposed. The control algorithm proposed in this paper is applicable to periodic motion scenarios, such as spacecraft autonomous orbital rendezvous and repetitive motions of robotic manipulators. Gaussian process regression is employed to establish an offline data-driven model, which is utilized for compensating parametric uncertainties and external disturbances. The non-singular terminal sliding-mode control strategy is used to avoid singularity and ensure fast convergence of tracking errors. In addition, under the Lyapunov framework, the fixed-time convergence stability of the closed-loop system is rigorously demonstrated. The effectiveness of the proposed control scheme is verified through simulations on a spacecraft rendezvous mission and periodic joint trajectory tracking for a robotic manipulator. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

22 pages, 12220 KB  
Article
Prescribed-Time Formation Tracking Control for Underactuated USVs with Prescribed Performance
by Bowen Sui, Jianqiang Zhang and Zhong Liu
J. Mar. Sci. Eng. 2025, 13(3), 480; https://doi.org/10.3390/jmse13030480 - 28 Feb 2025
Cited by 3 | Viewed by 1369
Abstract
This article proposes a prescribed-time formation tracking control scheme for USVs with prescribed performance constraints to address the issue of multiple underactuated USV formation tracking control with external environmental disturbances and input saturation. Initially, a prescribed-time extended state observer was constructed, capable of [...] Read more.
This article proposes a prescribed-time formation tracking control scheme for USVs with prescribed performance constraints to address the issue of multiple underactuated USV formation tracking control with external environmental disturbances and input saturation. Initially, a prescribed-time extended state observer was constructed, capable of promptly estimating and compensating for speed and external disturbances within a certain timeframe. Additionally, a unique performance function was developed, enabling the performance function to converge to a predetermined accuracy within a specified time, while allowing for flexible adjustment of the performance constraint shape by parameter modification. Furthermore, a prescribed-time formation control algorithm was developed by combining graph theory and dynamic surface control, enabling the formation error to converge within preset performance constraints at a specified period of T=10 s. It was proved that all signals in the closed-loop system are uniform, ultimately bounded by Lyapunov stability theory and the formation tracking errors display prescribed-time stability. Finally, the efficacy and superiority of the designed control scheme were evaluated by constructing numerical simulations. Full article
Show Figures

Figure 1

26 pages, 4402 KB  
Article
Fuel-Efficient and Fault-Tolerant CubeSat Orbit Correction via Machine Learning-Based Adaptive Control
by Mahya Ramezani, Mohammadamin Alandihallaj and Andreas M. Hein
Aerospace 2024, 11(10), 807; https://doi.org/10.3390/aerospace11100807 - 30 Sep 2024
Cited by 6 | Viewed by 2454
Abstract
The increasing deployment of CubeSats in space missions necessitates the development of efficient and reliable orbital maneuvering techniques, particularly given the constraints on fuel capacity and computational resources. This paper presents a novel two-level control architecture designed to enhance the accuracy and robustness [...] Read more.
The increasing deployment of CubeSats in space missions necessitates the development of efficient and reliable orbital maneuvering techniques, particularly given the constraints on fuel capacity and computational resources. This paper presents a novel two-level control architecture designed to enhance the accuracy and robustness of CubeSat orbital maneuvers. The proposed method integrates a J2-optimized sequence at the high level to leverage natural perturbative effects for fuel-efficient orbit corrections, with a gated recurrent unit (GRU)-based low-level controller that dynamically adjusts the maneuver sequence in real-time to account for unmodeled dynamics and external disturbances. A Kalman filter is employed to estimate the pointing accuracy, which represents the uncertainties in the thrust direction, enabling the GRU to compensate for these uncertainties and ensure precise maneuver execution. This integrated approach significantly enhances both the positional accuracy and fuel efficiency of CubeSat maneuvers. Unlike traditional methods, which either rely on extensive pre-mission planning or computationally expensive control algorithms, our architecture efficiently balances fuel consumption with real-time adaptability, making it well-suited for the resource constraints of CubeSat platforms. The effectiveness of the proposed approach is evaluated through a series of simulations, including an orbit correction scenario and a Monte Carlo analysis. The results demonstrate that the integrated J2-GRU system significantly improves positional accuracy and reduces fuel consumption compared to traditional methods. Even under conditions of high uncertainty, the GRU-based control layer effectively compensates for errors in thrust direction, maintaining a low miss distance throughout the maneuvering period. Additionally, the GRU’s simpler architecture provides computational advantages over more complex models such as long short-term memory (LSTM) networks, making it more suitable for onboard CubeSat implementations. Full article
(This article belongs to the Special Issue Small Satellite Missions)
Show Figures

Figure 1

19 pages, 4978 KB  
Article
Disturbance Observation and Suppression in an Airborne Electro-Optical Stabilized Platform Based on a Generalized High-Order Extended State Observer
by Lu Wang, Xiantao Li, Zhanmin Zhou, Yuzhang Liu, Zongyuan Yang, Shitao Zhang and Chong Li
Sensors 2024, 24(11), 3629; https://doi.org/10.3390/s24113629 - 4 Jun 2024
Cited by 3 | Viewed by 1836
Abstract
Active disturbance rejection control (ADRC) is widely used in airborne optoelectronic stabilization platforms due to its minimal reliance on the mathematical model of the controlled object. The extended state observer (ESO) is the core of ADRC, which treats internal parameter variations and external [...] Read more.
Active disturbance rejection control (ADRC) is widely used in airborne optoelectronic stabilization platforms due to its minimal reliance on the mathematical model of the controlled object. The extended state observer (ESO) is the core of ADRC, which treats internal parameter variations and external disturbances as total disturbances, observes the disturbances as extended states, and then compensates them into the control loop to eliminate their effects. However, the ESO can only achieve a precise estimation of constant or slowly varying disturbances. When the disturbance is periodically changing, satisfactory results cannot be obtained. In this paper, a generalized high-order extended state observer (GHOESO) is proposed to achieve the precise estimation of known frequency sinusoidal disturbance signals and improve disturbance suppression levels. Through numerical simulations, a traditional ESO and GHOESO are compared in terms of disturbance observation capability and disturbance suppression ability for single and compound disturbances based on our prior knowledge of disturbance frequency. The effectiveness of the proposed GHOESO method is verified. Finally, the algorithm is applied to an airborne optoelectronic stabilization platform for a 1°/1 Hz swing experiment on a space hexapod swing table. The experimental results demonstrate the superiority of the GHOESO proposed in this paper. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

19 pages, 6209 KB  
Article
Iterative Learning with Adaptive Sliding Mode Control for Trajectory Tracking of Fast Tool Servo Systems
by Xiuying Xu, Pengbo Liu, Shuaishuai Lu, Fei Wang, Jingfang Yang and Guangchun Xiao
Appl. Sci. 2024, 14(9), 3586; https://doi.org/10.3390/app14093586 - 24 Apr 2024
Cited by 4 | Viewed by 1781
Abstract
To address the tracking control problem of the periodic motion fast tool servo system (FTS), we propose a control method that combines adaptive sliding mode control with closed-loop iterative learning control. Adaptive sliding mode control enhances the system’s robustness to external non-repetitive disturbances, [...] Read more.
To address the tracking control problem of the periodic motion fast tool servo system (FTS), we propose a control method that combines adaptive sliding mode control with closed-loop iterative learning control. Adaptive sliding mode control enhances the system’s robustness to external non-repetitive disturbances, and exponential gain iterative learning control compensates for the influence of periodic disturbances such as cutting force. The experimental results show that the proposed iterative learning controller based on adaptive sliding mode control can effectively eliminate the influence of various interference factors, achieve accurate tracking of the FTS system’s motion trajectory within a limited number of iterations, and ensure the stability of the system, which has the advantages of a fast convergence speed, high tracking accuracy, and strong robustness. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

16 pages, 13841 KB  
Article
Distributed Fixed-Time Formation Tracking Control for the Multi-Agent System and an Application in Wheeled Mobile Robots
by Ling Ma, Yufeng Gao and Bo Li
Actuators 2024, 13(2), 68; https://doi.org/10.3390/act13020068 - 11 Feb 2024
Cited by 4 | Viewed by 2852
Abstract
This work addresses the issue of multi-agent system (MAS) formation control under external disturbances and a directed communication topology. Firstly, a new disturbance observer is proposed to effectively reconstruct and compensate for external disturbances within a short period of time. Then, the integral [...] Read more.
This work addresses the issue of multi-agent system (MAS) formation control under external disturbances and a directed communication topology. Firstly, a new disturbance observer is proposed to effectively reconstruct and compensate for external disturbances within a short period of time. Then, the integral terminal sliding mode technology is introduced to devise a novel distributed formation control protocol, ultimately realizing the stability of the MAS within a fixed time. Moreover, by means of rigorous Lyapunov theory analyses, a faster formation convergence rate and more accurate consensus accuracies are achieved in the proposed fixed-time strategy with variable exponent form. Finally, the formation tracking control scheme is applied to a multi-wheeled mobile robot (WMR) system. The experimental results strongly support the fine effectiveness of the control scheme designed in this work. Full article
(This article belongs to the Topic Advances in Mobile Robotics Navigation, 2nd Volume)
Show Figures

Figure 1

31 pages, 9856 KB  
Article
Research on Some Control Algorithms to Compensate for the Negative Effects of Model Uncertainty Parameters, External Interference, and Wheeled Slip for Mobile Robot
by Vo Thu Hà, Than Thi Thuong, Nguyen Thi Thanh and Vo Quang Vinh
Actuators 2024, 13(1), 31; https://doi.org/10.3390/act13010031 - 12 Jan 2024
Cited by 6 | Viewed by 4016
Abstract
In this article, the research team systematically developed a method to model the kinematics and dynamics of a 3-wheeled robot subjected to external disturbances and sideways wheel sliding. These models will be used to design control laws that compensate for wheel slippage, model [...] Read more.
In this article, the research team systematically developed a method to model the kinematics and dynamics of a 3-wheeled robot subjected to external disturbances and sideways wheel sliding. These models will be used to design control laws that compensate for wheel slippage, model uncertainties, and external disturbances. These control algorithms were developed based on dynamic surface control (DSC). An adaptive trajectory tracking DSC algorithm using a fuzzy logic system (AFDSC) and a radial neural network (RBFNN) with a fuzzy logic system were used to overcome the disadvantages of DSC and expand the application domain for non-holonomic wheeled mobile robots with lateral slip (WMR). However, this adaptive fuzzy neural network dynamic surface control (AFNNDSC) adaptive controller ensures the closed system is stable, follows the preset trajectory in the presence of wheel slippage model uncertainty, and is affected by significant amplitude disturbances. The stability and convergence of the closed-loop system are guaranteed based on the Lyapunov analysis. The AFNNDSC adaptive controller is evaluated by simulation on the Matlab/simulink software R2022b and in a steady state. The maximum position error on the right wheel and left wheel is 0.000572 (m) and 0.000523 (m), and the angular velocity tracking error in the right and left wheels of the control method is 0.000394 (rad/s). The experimental results show the theoretical analysis’ correctness, the proposed controller’s effectiveness, and the possibility of practical applications. Orbits are set as two periodic functions of period T as follows. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

14 pages, 4139 KB  
Article
Extended State Observer-Based Predictive Current Control for Dual Three-Phase PMSM with High Dynamic Performance
by Huanli Liu, Dayu Luo and Weiyang Lin
Electronics 2023, 12(20), 4266; https://doi.org/10.3390/electronics12204266 - 15 Oct 2023
Cited by 3 | Viewed by 2363
Abstract
Model predictive controllers are widely discussed in the field of dual three-phase permanent magnet synchronous motor control. However, conventional predictive current controllers usually suffer from parameter inaccuracies or model uncertainties, resulting in prediction errors and deterioration of control performance. Therefore, in this paper, [...] Read more.
Model predictive controllers are widely discussed in the field of dual three-phase permanent magnet synchronous motor control. However, conventional predictive current controllers usually suffer from parameter inaccuracies or model uncertainties, resulting in prediction errors and deterioration of control performance. Therefore, in this paper, an extended state observer-based (ESO) model predictive current controller is proposed to effectively improve the dynamic performance of the motor and its robustness to parameters or disturbances. Parameter inaccuracies or model uncertainties are considered to be lumped disturbances and expressed in the modified mathematical model of the motor. Then, with the designed observer estimating the external disturbances in real time, the prediction error is compensated and corrected periodically. Additionally, the parameter design method of the observer is presented to simplify the controller design. Finally, comparative experiments are implemented to sufficiently demonstrate the effectiveness of the proposed method for dynamic performance improvement as well as for parameter robustness. The results show that the proposed method takes only 17μs of computation time with a closed-loop bandwidth of 1839rad/s. In addition, the maximum d-axis following error of the proposed method is only 0.10A in the load dynamics experiments, which is a significant improvement compared to the 0.79A of the traditional proportional-integral controller. Full article
Show Figures

Figure 1

31 pages, 20467 KB  
Article
Active Disturbance Rejection Control Method for Marine Permanent-Magnet Propulsion Motor Based on Improved ESO and Nonlinear Switching Function
by Haohao Guo, Tianxiang Xiang, Yancheng Liu, Qiaofen Zhang, Siyuan Liu and Boyang Guan
J. Mar. Sci. Eng. 2023, 11(9), 1751; https://doi.org/10.3390/jmse11091751 - 7 Sep 2023
Cited by 5 | Viewed by 2248
Abstract
In the control of marine permanent-magnet propulsion motors, active disturbance rejection control has attracted much attention because it can deal with external load disturbances and uncertainties of motor parameters at the same time. However, the conventional second-order ADRC has the problem of slow [...] Read more.
In the control of marine permanent-magnet propulsion motors, active disturbance rejection control has attracted much attention because it can deal with external load disturbances and uncertainties of motor parameters at the same time. However, the conventional second-order ADRC has the problem of slow disturbance observation speed. To this end, this paper proposes an improved third-order extended state observer using the proportional–integral disturbance update law to improve the tracking performance and anti-external disturbance ability of the motor control system. Then, aiming at the problem that the structure does not effectively use the current information, resulting in large speed fluctuations when the load changes, the measured value of the q-axis current is used as the disturbance feedforward compensation item to further improve the load disturbance suppression ability of the motor. Finally, in order to suppress the influence of the current periodic disturbance caused by unmodeled dynamics on the steady-state accuracy of the motor, a nonlinear switching function with bounded gain and an IIR low-pass filter are designed to suppress the periodic disturbance without affecting the dynamic performance of the system. Combined with the established ship propeller load model, the effectiveness of the method is verified on the motor experimental platform: When suddenly changing 75% of the propeller load, the motor speed decreases by about 20%, and the adjustment time is 0.1 s, which improves the performance by more than 70% compared to PI control and conventional ADRC methods. Full article
(This article belongs to the Special Issue New Advances on Energy and Propulsion Systems for Ship)
Show Figures

Figure 1

16 pages, 3490 KB  
Article
Periodic Disturbance Compensation Control of a Rope-Driven Lower Limb Rehabilitation Robot
by Zhijun Wang, Mengxiang Li and Xiaotao Zhang
Actuators 2023, 12(7), 284; https://doi.org/10.3390/act12070284 - 12 Jul 2023
Cited by 4 | Viewed by 2170
Abstract
In order to solve the external periodic disturbance and unknown dynamics influence in the passive rehabilitation process of a rope-driven lower limb rehabilitation robot, a control method with periodic repeated learning was designed. In this control method, the closed-loop dynamics are divided into [...] Read more.
In order to solve the external periodic disturbance and unknown dynamics influence in the passive rehabilitation process of a rope-driven lower limb rehabilitation robot, a control method with periodic repeated learning was designed. In this control method, the closed-loop dynamics are divided into a periodic disturbance term, an unknown dynamics term, and a basic term, and the shape function is designed by using the Stone–Weirstrass theorem. In the process of periodic operation, the estimated value of the shape function coefficient is repeatedly learned to obtain the periodic disturbance term approximation and to realize the compensation in advance. Through the design of the impedance learning rate, the unknown dynamic term is periodically learned, and the unknown dynamics approximation is obtained. By combining the two approximations with the basic terms which can be solved directly, the external periodic disturbance is compensated for in advance and the control precision is improved. The control algorithm was verified by simulation, and the error fluctuation of the system gradually decreases and reaches the ideal value within several cycles. The performance of the control system is stable, and the problem of limb impedance caused by different patients is well solved. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

Back to TopTop